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Abstract

Supernova spectral time series contain a wealth of information about the progenitor and explosion process of these
energetic events. The modeling of these data requires the exploration of very high dimensional posterior
probabilities with expensive radiative transfer codes. Even modest parameterizations of supernovae contain more
than 10 parameters and a detailed exploration demands at least several million function evaluations. Physically
realistic models require at least tens of CPU minutes per evaluation putting a detailed reconstruction of the
explosion out of reach of traditional methodology. The advent of widely available libraries for the training of
neural networks combined with their ability to approximate almost arbitrary functions with high precision allows
for a new approach to this problem. Instead of evaluating the radiative transfer model itself, one can build a neural
network proxy trained on the simulations but evaluating orders of magnitude faster. Such a framework is called an
emulator or surrogate model. In this work, we present an emulator for the TARDIS supernova radiative transfer code
applied to Type Ia supernova spectra. We show that we can train an emulator for this problem given a modest
training set of 100,000 spectra (easily calculable on modern supercomputers). The results show an accuracy on the
percent level (that are dominated by the Monte Carlo nature of TARDIS and not the emulator) with a speedup of
several orders of magnitude. This method has a much broader set of applications and is not limited to the presented
problem.

Unified Astronomy Thesaurus concepts: Supernovae (1668); Neural networks (1933); Radiative transfer (1335)

1. Introduction

Supernova spectra arise from a complex interplay of
processes. Simulating them self-consistently is a computation-
ally intensive endeavor ranging from single simulations taking
several CPU minutes to thousands of CPU hours on large
supercomputers.

The TARDIS (Kerzendorf & Sim 2014) supernova spectrum
synthesis code can evaluate a single parameterized explosion
model within ≈10 CPUminutes with some approximations that
have a minor impact on the output. One of the goals of
TARDIS is to perform a Bayesian parameter inference on
spectral time series. However, even for a very simple model
for a single supernova spectrum with a fixed density profile and
10 uniform abundances this results in a dozen parameters. Such
parameter spaces require millions of evaluations for parameter
searches, which is infeasible even for fast codes like TARDIS.

Emulators are a solution to this problem (see Czekala et al.
2015 for an early implementation of emulators). These
constructs approximate simulations by using functions that are
easy to fit to a grid of simulations and are fast to evaluate.
Lietzau (2017) did attempt to emulate TARDIS using princpal
component analysis (PCA) and Gaussian process (GP) regres-
sion. Lietzauʼs (2017) emulator worked on 11 abundances for
(SN Ia) simulations with TARDIS but was not able to work on the
full set of 13 parameters. Vogl et al. (2020) showed that using

PCA and GP emulator techniques worked for the lower (five)
dimensional space of (SN IIP) spectra.
Neural networks have been shown to be universal function

approximators (Cybenko 1989; Hornik et al. 1989). TARDIS can
be seen as a function that takes an input vector of parameters and
transforms these into a spectral vector. We emulate an equivalent
parameter space (our parameter space taking nuclear decay into
account) to the work of Lietzau (2017) using neural networks.
In Section 2, we describe the methods used in this emulation

attempt. Section 3 summarizes the performance of the emulator
(accuracy and computational efficiency). We conclude the
Letter in Section 4 and give an outlook of future work.

2. Methods

The aim of this Letter is to show that the neural network
emulator technique is precise enough to be used for exploring
supernova spectra with radiative transfer codes. As an example we
choose a Type Ia supernova (SN Ia) spectrum at roughly 10 days
before maximum using a uniform model for the abundances. We
varied the abundances of nine elements, one isotope, the velocity
of the inner boundary, and temperature of the inner boundary (see
Kerzendorf & Sim 2014 for a description of these parameters). All
other parameters of the model remain fixed. We chose the density
profile branch85_w7 (a power-law density profile; see
Kerzendorf & Sim 2014 for details) and an outer boundary
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velocity of 20,000 km s−1. The plasma calculation used the
nebular setting for ionization and dilute-lte setting for
excitation. We use the formal integral calculated spectrum for our
emulation purposes.10 The input TARDIS configuration file is
available in the data cache linked to this Letter: doi:10.5281/
zenodo.4552670.

There are several steps to construct an emulator for TARDIS:
(1) selecting the training set of parameters covering the
necessary parameters for the specific problem; (2) calculating
the TARDIS spectra for the training set; (3) constructing a
neural network architecture; (4) training the neural network
architecture.

2.1. Generating the Training Set

We are trying to use a parameter space that is close to
physically realistic values. SN 2002bo is one of the most well
studied SNe Ia (309 results in ADS). Stehle et al. (2005) have
done a detailed abundance tomography on this object, and
Kerzendorf (2011) used this object for initial automated fitting
attempts, which are a precursor to the work presented here. The
assumptions made in TARDIS make it most accurate before
maximum and we will focus on 8.9 days after explosion
(roughly 10 days before maximum). We divide the creation of
the training set into finding suitable abundance combinations
and finding suitable inner boundary velocity and temperature
combinations.

Stehle et al. (2005) model the spectrum at 8.9 days after
explosion using vinner= 13,900 km s−1 and Tinner= 11,850 K.
We construct a uniformly spaced training grid with inner
boundary temperatures (Tinner) between 10,000 and 14,000 K
and inner velocities (vinner) between 10,000 and 15,000 km s−1.
This grid safely contains the accepted values of the parameters
presented in Stehle et al. (2005).

We rely on theoretical nucleosynthesis calculations given in
the Heidelberg Supernova Model Archive (HESMA11) to find
physically viable abundances. We use 62 spherically averaged
isotopic models (presented in the following papers: Fink et al.
2010, 2018, 2014; Kromer et al. 2010, 2016, 2013a, 2013b,
2015; Pakmor et al. 2010, 2012; Sim et al. 2010, 2012, 2013;
Röpke et al. 2012; Seitenzahl et al. 2013, 2016; Summa et al.
2013; Ohlmann et al. 2014; Marquardt et al. 2015; Noebauer
et al. 2017) for the creation of the training set (the online data
doi:10.5281/zenodo.4552670 contain the specific list of
models). We only use abundances that are in cells with
velocities above 10,000 km s−1 to be self-consistent with our
choice of inner boundary velocities.

The training set is created with the abundances of O, C, Mg,
Si, S, Ca, Ti, Cr, Fe (stable), and 56Ni. We then calculate the
location of the 20% and 80% quantile for each element
excluding oxygen. We sample uniformly in log10-space between
these two quantiles for all elements. Finally, we “fill” the
remaining part of the abundance fraction with oxygen. Oxygen
as a “filler” element is widely used in supernova fitting (e.g.,
Hachinger et al. 2017) due to the fact that spectra are normally
not overly sensitive to changes of some percent in the oxygen
mass fraction (see Hachinger 2011, Section 2.2.5.2).

We removed any combination of these parameters that
would lead to an input luminosity of less than 1× 1042 erg s−1.
The extent of the training parameter set can be seen in Table 1.
We experimented with several choices of number of packets

for each Monte Carlo iteration and gauged the variation for the
spectrum creation resulting from the Monte Carlo nature of
TARDIS (see Kerzendorf & Sim 2014 for details of this
process). The choice of 100,000 Monte Carlo packets for each
iteration (opting for 30 iterations in total and increasing the
number to 200,000 packets for the last iteration) resulted in
spectra that had less than 1% intrinsic noise—far lower than the
systematic uncertainties present in the comparison between
data and spectra.
We calculated a training/validation data set with 98,000

samples and a test set with 19,930 samples on the Michigan
State University (MSU) high-performance cluster provided by
the Institute for Cyber-Enabled Research.
We resampled the spectra from TARDIS on a logarithmic grid

between 3400Å and 7600Å to make the line structures across
the spectrum have roughly equal pixels per structure. The final
data set has 12 input parameters and 500 spectral data points.
The input TARDIS file, parameters (abundances, inner boundary
velocity/temperature), and spectra are available at 10.5281/
zenodo.4552670.

2.2. Neural Network Architecture and Training

We split the group of 98,000 spectra into a set of 68,600
(=70%) for training the neural networks and 29,400 for cross-
validation. Each data point consisted of 12 inputs (the “para-
meters”) and 500 outputs (the “spectra”). Both input and output
values were preprocessed by first taking the log10 of the values,
after which the values were normalized by removing the mean and
scaling to unit variance with STANDARDSCALER (SCIKIT-LEARN;
Pedregosa et al. 2011).
We use feed-forward neural networks to efficiently approx-

imate and generalize these data. Even though training a neural
network may cost a few hours of computation time, inference
with trained neural networks is very fast since it only involves a
small number—for the architectures used in this Letter on the
order of 106—of floating-point operations and a few hundred
nonlinear function evaluations.
We trained a number of feed-forward neural networks of

different topology on the data. The neural networks were
implemented in KERAS on TENSORFLOW 1.14 or 2.0.
Good neural network architectures were found by hyper-

parameter search. We used cluster-based hyperparameter
search using Polyaxon 0.5.612 on a cluster of IBM and Nvidia
machines, each with multiple Tesla V100 GPUs. Training a
single neural network lasts 4–7 hr on such an architecture, and
we parallelized over 200 instances.
Table 2 lists the hyperparameters over which we searched,

and their range of possible values.
We chose to train the network for 15,000 epochs for networks

trained without dropout and 40,000 epochs with dropout. Both
numbers were chosen with a considerable margin. From the
approximately 4000 runs we selected the best results by
analyzing their average loss (using mean squared error) over
the cross-validation data set. The best found neural network
architectures had a width of 200 to 400 neurons in one or two
hidden layers, a softplus activation function, and Nesterov-adam10 See https://tardis-sn.github.io/tardis/physics/montecarlo/sourceintegration.

html.
11 https://hesma.h-its.org 12 https://polyaxon.com/
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as the optimizer. Dropout never improved the results; batch
normalization was not among the 10 best but in the 50 best
networks (7% worse). Activation function softplus was in the top
30, but the difference in error with neural networks with elu,
relu, selu, or tanh activations functions was not more than about
3%. The used batch size had little influence, nor did the choice
of initializer.

We then selected the best neural networks for ensemble
modeling (Opitz & Maclin 1999). The selected network
architectures, those with the lowest loss on the cross-validation
data, are listed in Table 3. Ensemble modeling was done by
averaging over all listed neural networks.

3. Results

In the following, we used the predictions of the ensemble
neural network when comparing with the TARDIS spectra from
the test set (unless otherwise noted). We used both the
maximum fractional error and mean fractional error metrics
(see also Vogl et al. 2020) for comparisons:

å=
-l l

l=N

f f

f
MeanFE

1
, 1

i

N
i i

i0

,
emu

,
test

,
test

∣ ∣
( )

=
-l l

l=

f f

f
MaxFE max , 2

i

N i i

i0

,
emu

,
test

,
test

∣ ∣
( )

with N being the number of pixels in our spectra (in our case
500) and fλ,i the flux at the ith pixel in the test set. For the
training of the emulator we chose to use spectra in log10.
However, for the evaluation of the emulator, we will use the
linear space as any likelihood comparing the emulated
spectrum to an observed spectrum will be in linear flux units.
The ensemble neural network emulator performs well in both

metrics with 99% of predictions having a MaxFE< 0.049 and
MeanFE< 0.014 and a median prediction of MaxFe= 0.016
and MeanFE= 0.004. Figure 1 shows the best and worst
predictions in the test set including residuals.
Figure 2 shows the distribution and also compares the

prediction uncertainty to the networks that make up the
ensemble. The ensemble has roughly a 10% improvement in
MeanFE over the individual networks.
We remind the reader that TARDIS is based on an iterative

Monte Carlo algorithm. The method results in variations in the
final spectrum given different random seeds. We have run the
worst predicting parameter set (see Figure 1) with 100 different
seeds to test the variation. Figure 3 shows that the prediction
uncertainty of the emulator is close to the uncertainty of the Monte
Carlo algorithm.
For the desired application both MeanFE and MaxFE of the

emulation will not contribute significantly as the systematic
uncertainties will be much larger (MeanFE for SN 2002bo, 18%;
see Figure 5.5 in Kerzendorf 2011).
The main reason to use an emulator compared to TARDIS itself

is the speedup. The mean and standard deviation runtime for all
TARDIS runs during training set creation on a single CPU on the
MSU HPCC cluster are 602 s± 186 s with a minimum of 253 s
and a maximum of 2054 s. Ensemble network evaluation takes
85± 13.7ms, which is several thousand times faster than the
TARDIS evaluation. A toy example of exploring likelihoods shows
that a 20-dimensional problem needs 26 million evaluations (see

Table 1
The Distributions of Elemental Abundances (Uniformly in log10-space) for the Training Set

C O Mg Si S Ca Ti Cr Fe 56Ni

min 6.6e-06 0.05 2.5e-05 0.031 0.012 0.0016 3.6e-06 0.00019 0.005 0.025
25% 8.6e-05 0.51 0.00014 0.056 0.022 0.003 6.7e-06 0.00031 0.011 0.052
50% 0.0011 0.63 0.00071 0.1 0.04 0.0055 1.2e-05 0.00049 0.023 0.11
75% 0.013 0.73 0.0038 0.19 0.071 0.01 2.2e-05 0.00078 0.05 0.22
max 0.16 0.92 0.021 0.34 0.13 0.018 4.1e-05 0.0012 0.11 0.46

Note. The two additional parameters have uniform distributions: Tinner = 10,000–14,000 K and vinner = 10,000–15,000 km s−1.

Table 2
A Short Explanation of the Hyperparameters

Parameter Values

# hidden layers 2–6
# neurons/layer 100–500 in steps of 100
batch size 100, 500, 1000, 2000
activation function tanh, relu, selu, elu, softplus
optimizer adam, nadam, adadelta, adagrad
dropout rate 0–0.6 in steps of 0.2
batch normalization after each layer / not at all
initializer glorot_normal, he_normal

Note. Activation functions: tanh is a known mathematical function that keeps
the output of the neuron between +1 and −1; “rectified linear unit” (relu)
equals ºx xrelu max 0,( ) ( ). Softplus is a smooth version of relu and defined as

+ xln 1 exp( ( )). The selu function is a normalized relu (Klambauer et al. 2017).
The elu (Clevert et al. 2016) goes negative with -a xexp 1( ( ) ) for x < 0.
Adadelta (Zeiler 2012), adagrad (Duchi et al. 2011), and adam (Kingma &
Ba 2015) are modern second-order optimization methods used in neural
network training. Nadam is adam but with Nesterov gradients (Sutskever et al.
2013). Batch normalization (Ioffe & Szegedy 2015) normalizes the activations
of a layer of neurons per batch and helps a lot in preventing overfitting.
Dropout (Hinton et al. 2012) prevents overfitting by randomly switching
hidden units off during training by the given rate. We never combined batch
normalization with dropout. Early stopping is always done, by selecting that
step in the optimization that has a low error on the cross-validation Set.

Table 3
List of the Five Best Neural Network Architectures Used in the Ensemble

Training

Depth Optimizer Activation Width

4 nadam softplus 200
4 adam softplus 200
3 adam softplus 300
3 nadam softplus 400
4 nadam softplus 200

Note. Network 1 and 5 are the same network architecture but were trained with
different starting seeds resulting in different performances.
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algorithm radfriends in Table 1 in Buchner 2016), which with the
emulator is possible within ≈25 days but not achievable without
an emulator (≈420 yr). This can be improved by foregoing

ensemble modeling and taking a 10% accuracy loss but having an
evaluation time of 13.3± 0.46ms, which would complete the
exploration within ≈4 days.

4. Conclusion and Future Work

We present a 12-dimensional emulator for the TARDIS radiative
transfer code. The emulator can predict the spectrum with an
accuracy of on average 1% with a speedup of almost 10,000 in so-
called ensemble mode and a speedup of almost 50,000 with a
marginally lower accuracy in single mode. A major part of the
prediction uncertainty is likely not the emulator itself but noise
from the Monte Carlo method of TARDIS. The chosen parameter
space is focused on the SNe Ia modeling. However, the general
methodology can be applied to a much broader set of problems.
The presented emulator is useful for exploring single spectra

with abundances that are uniform throughout the envelope.
Initial fitting of supernova spectra including researching
likelihoods that incorporate systematic uncertainties to account
for the mismatch between TARDIS and observed spectra is
already underway.
A complete reconstruction of an exploded object from spectral

time series will have more than 100 parameters. This will
require the development of more complex emulators. For such

Figure 1. Comparison of a spectrum from the test set with a prediction from the ensemble emulator. We showcase the spectra with the highest and the lowest MaxFE
from the set of test set predictions. Left: largest MaxFE from the test set (≈10%). Right: smallest MaxFE from the test set (≈0.4%).

Figure 2. Histogram of prediction uncertainties for the test set using the MaxFE metric on the left and the MeanFE metric on the right.

Figure 3. Comparison of the emulator prediction uncertainty with the Monte
Carlo uncertainty.
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parameter spaces, we will need to use more constraining priors
when generating the training set. The authors have already
experimented with various schemes to find a training set
(e.g., drawing from kernel density estimates of the Heidelberg
Supernova Model Archive (HESMA) abundances) but such
work is outside the current scope of exploring neural networks as
function approximators for radiative transfer codes.

We have shown that emulators enable the exploration of
high dimensional parameter spaces even with costly simula-
tions. Such tools will be important assets for the data-rich era
that astronomy is entering.
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