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ABSTRACT

Recently discovered Weyl semimetals (WSM) have found special place in topological condensed
matter studies for they represent first example of massless Weyl fermions found in electronic
condensed matter systems. A WSM shows gapless bulk energy spectra with Dirac-like point
degeneracies, famously called Weyl nodes, which carry with themselves well defined chiralities
and topologically protected chiral charges. One finds the Berry curvature of the Bloch bands to
become singular, like in a magnetic monopole, at these Weyl nodes. Moreover, these systems
feature topological surface states in the form of open Fermi arcs. In this review, we undergo
a concise journey from graphene based Dirac physics to Weyl semimetals: the underlying
Hamiltonians, their basic features and their unique response to external electric and magnetic
fields in order to provide a basic walk-through of how the Weyl physics unfolded with time starting
from the discovery of Graphene.
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1 INTRODUCTION

In this short review, we give a chronological
account of how the Weyl physics [1, 2, 3, 4, 5]
emerges in the field of condensed matter and
the interesting nontrivial topologies associated
with them. As this descends right from the
Dirac theory [6] of fermions, it will be appropriate
to introduce them briefly so that the physics
discussed become much more clear as we go on
unraveling the basics of the Weyl semimetals.

In quantum mechanics, a wave function (given
as ψpr, tq) describes the quantum state of
the system/particle. It contains probabilistic
information of the position r of a particle at time
t. The time dependence of this function lead us
to the study of the Schrodinger equation which
shows the dynamics of this ψ as,

i~Bψ

Bt
“ Ĥψ (1)

Here Ĥ denotes a Hermitian operator called
Hamiltonian and it describes operation on the
quantum state to obtain the energy of the state.
Saying more precisely, if ψ is an eigen-function
for Ĥ, we get Ĥψ “ Eψ, where E denotes the
energy eigenvalue. In non-relativistic quantum
mechanics, this energy is just the sum of kinetic
and potential energies and we can form an
operator equation

Ĥ “
p̂2

2m
` V̂ (2)

or energy eigenvalue

E “
p2

2m
` V (3)

where p̂, V̂ are the momentum and potential
energy operators while p and V are the
corresponding eigenvalues. Here m denote
mass of the particle. So it says that energy
has quadratic dependence to momentum p
(considering no p dependence in V ).

However, relativistically the energy momentum
relation looks like

E2
“ p2c2 `m2c4 (4)

where m and c are rest mass of the body
and speed of light in vacuum respectively. So
this equation relates square of energy to the

square of momentum and demonstrates a linear
dependence between E2 and p2. In order to
obtain the expression for the Hamiltonian in such
cases, Dirac proposed an Hamiltonian [6] to be

Ĥ “ cp.α`mc2β. (5)

Here α and β are matrices with dimensionality
depending on the spatial dimensionality of the
system and they satisfy Clifford algebra namely,
tαi, αju “ 2δij , tαi, βu “ 0 and β2 “ 1.
Combining this with the Schrodinger equation
(and remembering that pj “ ´i~Bj), we get

i~Bψ

Bt
“ p´i~cαiBi `mc2βqψ. (6)

Relativity tells us that space and time are
connected and together we can form four-vectors
with one temporal component (denoted by index
0) and three spatial components (denoted by
indices 1,2,3). Here we define two 4-vectors:
γµ “ pγ0, γ1, γ2, γ3q and Bµ “ pB0, B1, B2, B3q

where B0 “ B
cBt

and Bi “ B
Bxi

. With γ0 “ β and
γi “ βαi (for i “ 1, 2, 3) we can rewrite Eq.6 as

pi~γµ
Bµ ´mcqψ “ 0 (7)

with µ Ñ 0, 1, 2, 3 denote the running indices for
four components (i.e., Eq.7 implies a sum over all
four µ indices). We may add here that upper and
lower indices in γµ and Bµ signify contravariant
and covariant [7] nature of the respective 4-
vectors. This is the famous Dirac equation
describing the dynamics of Dirac fermions. We
should mention here that the Dirac spinor ψ is a
complex function in general and thus each Dirac
fermion consists of two real components, called
Majorana fermions. Moreover, one can get a
Weyl fermion when the mass term in the equation
vanishes (i.e., m “ 0). We should add here that
for being a Weyl fermion, it also need to have
definite chirality (a property we will discuss later)
and this makes Weyl fermions available only in
odd spatial dimensions.

Though originally developed for relativistic high
energy physics, Dirac fermions got its firm
existence in low-energy condensed matter
systems like graphene, topological insulators
etc. Down the line comes the three dimensional
Weyl semimetals which host Weyl fermions in
the momentum space. Apart from the trace of
massless Weyl fermions first noticed in chiral
superfluid 3He-A [8], these WSM’s are the
foremost candidates to exhibit Weyl physics and
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the present review gives a brief account of the
electronics of such systems. But maintaining
the chronology, here we shortly discuss the
low energy Dirac physics in graphene and the
distinguishing spectral features of topological
insulators before going on to unravel the physics
of Weyl semimetals.

2 GRAPHENE DIRAC FER-
MIONS

Dirac physics in condensed matter systems
ushered in renewed interests among the physics
community since the famous discovery of
exfoliation technique of graphene monolayers
in 2004 [9]. It showed how a single two-
dimensional (2D) sheet scratched off a non-
conducting three dimensional (3D) graphite lump
can show unique conducting properties such
as large electron mobility, thermal conductivity
or huge tensile strengths. Dispersion near
the band crossings of such monolayers are
linear and results in Dirac fermions for the low
energy excitations [10, 11, 12, 13]. A simplified
Hamiltonian of such system can be constructed
from a tight-binding model (by which electron
in an orbital localized around a lattice site
can move/tunnel to a different orbital localized
around an adjacent lattice site) consisting of
nearest-neighbor hopping of electrons in the
underlying honeycomb lattice. It produces the so-
called Dirac points (DP) where the valence and
conduction bands touch, the dispersion being
linear at that point. Due to this point degeneracy

between conduction and valence band, graphene
is dubbed as a semimetal. There are two such
independent touching points called Dirac points
(corresponding to two separate wave-vectors, K
and K’,say) within the Brillouin zone (BZ) of the
2D lattice.

In a periodic crystal lattice, we can find a unit
cell, i.e., a minimum volume of space that can
be translated via lattice vectors to cover the
entire lattice space without any overlap. Like
the periodic lattice in real space, there is also a
momentum space or k-space which constitutes
a reciprocal space corresponding to the lattice.
This k-space consists of periodically arranged k-
points which are wave-vectors of the plane waves
having same periodicity as the lattice. There is a
unit cell in this reciprocal space as well and this
is called the Brillouin zone [14].

Considering low energy physics around these
points, one comes up with a continuum model
that resembles a massless Dirac Hamiltonian.
Typically, a continuum model for graphene is
given as H “ ~vF pσxkx ` σykyq. Here vF is
the Fermi velocity of electrons in graphene and
is roughly of the order of c{300 (c being the
speed of light). Like S=1/2 spins with spin-up
and spin-down eigenstates, here the σ’s have two
eigenvectors corresponding to two sublattices of
the honeycomb lattice of graphene and thus σ’s
are called the pseudo-spins. Now, in order to
comprehend the topological triviality/nontriviality
of systems like graphene, we need to resort to
a new quantity called Berry curvature and this is
what we are going to discuss next.

Fig. 1. (a) Dirac point showing touching of conduction and valence bands in graphene E ´ k
diagram. (b) Topological insulator band structures with gapped bulk states and spin-filtered

(up and down spins are indicated by Ò and Ó arrows) conducting edge/surface states
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2.1 Berry Curvature
Electrons in a crystal moves around in presence
of periodic ionic potentials. In the nearly free
electron model [14], electron feels the ionic
potential only when it is close to the periodic
ionic positions and the wavefunctions ψkprq are
described as

ψkprq “ eik.rukprq. (8)

Apart from the free electron like factor eik.r, the
wavefunction ψkprq contains a Bloch function
ukprq that has the same periodicity as the lattice.
Now for a time dependent Hamiltonian, the
time evolution of such wavefunction accumulates
an extra phase. This is different from the
usual dynamical phase (i.e., exponential factor
obtained for ψ on solving Eq.(1) for a time-
independent Hamiltonian) that comes from a
time-dependent Schrodinger equation. Rather it
is geometrical in nature for it depends only on
evolution of the state in the parameter space.
This is called the Berry phase and for very slow
evolution of a system it can be shown to be equal
to γ “

şrptq
ă ukpr1q|i~ B

Br1 |ukpr1q ą dr1 (when
expressed in the parameter space rptq), where
r1 “ rpt1q denotes the electronic position at time
t1. This integral depends on the path of temporal
evolution for rptq. But this is path independent for
a cyclic process, where the Hamiltonian is time
periodic with Hptq “ Hpt` T q and evolution only
in steps of time periods T are considered. So
for cyclic evolution γ has a physical meaning and
can be related to a physical variable. However,
the integrand Akpr1q “ă ukpr1q|i~ B

Br1 |ukpr1q ą,
called a Berry connection, still possess a k-
dependent phase degree of freedom that can
be inherently present in the Bloch functions.
So Berry connection depends on the particular
gauge chosen in the calculations [6].

A definite set of phase choice gives a definite
gauge.

We can use Stoke’s theorem to turn such closed
line integral into a surface integral to get a gauge
independent integrand Ωkprq “ ∇ ˆ Akprq,
called Berry curvature[15]. Due to the gauge
independence this can as well be related to a
physical variable.

In the momentum space, the Berry phase for a
cyclic evolution can be defined (for n-th Bloch

band unpkq[14]) as a surface integral over the
full BZ, of the Berry curvature Ωn “ ∇kˆ ă

unpkq|i∇k|unpkq ą. From there we get the
Chern numbers[6] given as ν “

ř

n

ş

BZ
Ωnd

dk
(here ∇k is the gradient along k direction and
ddk is the differential volume in d-dimensional
k-space). They stand for topological invariants
of topological systems for such systems are
characterized with certain nonzero quantized
values of these Chern numbers. There are
nontrivial systems where no single unpkq function
can be defined for the whole BZ and one need
to consider multiple unpkq functions, related
to each other via mere phase differences, for
different regimes of the BZ. In those cases, the
Berry phase or equivalently the Chern number
takes nonzero quantized values and gives an
quantitative estimate of the nontrivial topology of
the system.

From electromagnetism, we know that magnetic
field B and magnetic vector potential A are
related by B “ ∇ ˆ A. B is a physically
measurable quantity while A is not. Rather, A
is gauge dependent and can always be replaced
with A ` ∇λ , λ being a scalar function. Hence
A is called a gauge field. In our present case,
the gauge dependent Berry connection is like a
magnetic vector potential that varies depending
on the particular gauge used. But its curl, i.e.,
the Berry curvature is gauge independent and is
analogous to a magnetic field. In short, Ωn is like
a magnetic field in the momentum space.

We find Berry curvature in graphene to identically
become zero for all the Bloch vectors when
both time reversal symmetry (TRS) and inversion
symmetry (IS) is preserved [We should remind
the reader here that a TRS implies Hptq “

Hp´tq and an IS implies Hprq “ Hp´rq]. With
inversion breaking, the Berry phase or the total
surface integral still remains zero, even though
nonzero contribution comes from the Dirac points
K and K’, around which line integral of the Berry
connection becomes π and ´π respectively.

3 TOPOLOGICAL INSULATORS

TRS breaking comes with nonzero Chern
numbers [6]. This amounts to topological
nontriviality and causes conducting edge states
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in the system which would be impossible to get
in the presence of TRS.

Here edge/surface states imply the states
localized at the edges/surfaces of an insulator. A
topological insulator [13] experiences conducting
edge/surface states causing unidirectional
electron/holes flow along the edges/surfaces.
This is a topological effect characterized via
nonzero Chern numbers.

A TI has a gapped energy spectrum (i.e.,
conduction and valence bands do not touch)
making it an insulator in the bulk. However, their
spectra becomes gapless at the edges allowing
charge flow along the boundary. For example
in a quantum Hall effect (QHE), perpendicular
magnetic field breaks TRS in a 2D electron gas
to produce transverse Hall conductivity: σK “

ν e2

h
, ν being the Chern number. Later Haldane

introduced unique magnetic flux distribution
through the graphene/honeycomb lattice with
zero overall flux through each hexagonal unit
(amounting to an AC magnetic field [6]). This
adds mass terms (i.e., mσz terms) of opposite
signs in two valleys (i.e., K & K’ points) in the
graphene continuum model which ultimately
results in nonzero quantized Chern numbers.
This is an example where topological nontriviality
appears without resorting to large DC magnetic
fields, as required in QHE. Now such alternating
flux distribution can also be achieved by adding
a next nearest neighbor complex hopping term
to the graphene tight-binding model (in place of
turning in an AC magnetic field as discussed
before). Interestingly, one can also consider
Kane-Mele’s spinful model [16, 6] where spin
filtered conducting edge states are obtained in
presence of mirror symmetric spin-orbit coupling
(SOC) for it produces two copies of Haldane
model with opposite spins - popularly called
quantum spin Hall effect (QSHE).

SOC implies interaction a system experiences
when spin and orbital degrees of freedom
couples to(i.e., interacts with) each other.

In fact, this is the famous toy model for describing
a topological insulator (TI), where the bulk is
insulating yet supporting conducting states at the
edges and yet no TRS is broken. Just as a further
note, we should point out that the topological

edge states of these systems remain intact
even in the presence of the spin-z symmetry
breaking additional Rashba-SOC term where the
topological orders can be described via some Z2

invariants [6]. For more detailed discussion on
TI, one can take a look at review articles in Ref.
[13, 17]. In the following, we enlist two variants of
TI that has become very popular of late.

3.1 Floquet and Photonic
Topological Insulator

At this point, it is not out of the way to discuss
a bit of various possibilities and experimental
realization of topological phases that the physics
community is probing of late. The foremost of
those will probably be the Floquet topological
insulators (FTI). A trivial/non-topological quantum
system can be driven out of equilibrium when
a time periodic term is added to the system
Hamiltonian. The idea of Floquet theory of time
periodic systems is similar to the Bloch theory in
space periodic lattices. As we look at the time
periodic systems stroboscopically, i.e., in steps
of complete time periods, the wavefunctions can
be written as products of time periodic Floquet
states and exponential factors. This can lead to
an effective stationary (i.e., time independent)
Hamiltonian for the stroboscopic evolution of the
originally time-periodic Hamiltonians [18, 19].
Interestingly, such stationary Hamiltonian can
behave topologically (i.e., ν ‰ 0) even though
the original model is non-topological (i.e., ν “

0). That’s how we get a FTI. For example,
an irradiation via circularly polarized light on
graphene can create such systems [18]. Just
like we get nonzero quantized Chern numbers
in a TI, we get similar nonzero Chern numbers
(called Floquet Chern number) for FTI as well.

Apart from FTI, here we also brief on
another interesting concept leading to the
photonic topological insulators (PTI). Photonic
crystals have photonic band gaps that prevent
propagation of certain frequency radiations to
pass through it. A PTI can be constructed using
electromagnetic waves in 2D spatially periodic
photonic systems with TRS breaking magneto-
optical elements. It causes photonic bands
to possess chiral edge states with frequencies
within its photonic band gaps.
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These photonic crystal has one fundamental
difference from the quantum condensed matter
system that photons are bosonic particles unlike
the fermionic electron gas of the solid state
materials. Thus the Kramer’s theorem does not
hold for photonic crystals. Due to finite life time
of the photons, it need to be externally pumped
into the system and as a result of these pumping

and losses (e.g., radiative losses), the ways in
which topological effects are manifested in these
materials, can be different. Photon polarizations
can be treated as pseudospins and with no
coupling between each other, each pseudospin
behave independently and have non-zero Chern
numbers [20].

(c)

Fig. 2. (a) Dirac semimetal with positive and negative chiralities fermions sitting together. (b)
Weyl semimetal where a DP get separated into two WP with opposite chiralities. (c)

distribution of Berry curvature (i.e., the field lines) in the 3D BZ in a Weyl semimetal. Figures
are taken from Ref.[6].

4 WEYL SEMIMETALS

All these models, so far mentioned are two-dimensional. However, topological effects are seen in
higher dimensions as well. Of course there are three dimensional (3D) TI materials, what we are
mainly interested in the review are the ones called Weyl semimetals (WSM) (e.g., pyrochlore iridates).
They can be looked upon as 3D analogue of graphene [2] though a WSM has both gapless surface
and bulk states, unlike the graphene based topological insulators. More specifically, the dispersion
spectrum of the 3D bulk WSM system have discrete k-points, called Weyl points, where conduction
and valence band touch with each other linearly, as can be seen in Fig.2. Besides that, there are
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gapless conducting surface states, localized only within the surface of the WSM. We see that a
graphene Hamiltonian does not have any σz term due to inversion symmetry (IS). Disregarding IS, if
we add a mσz term, graphene spectrum get gapped out. But in a similar 3D WSM bulk Hamiltonian
H “ c0pkqσ0 ` σxvxpx ` σyvypy ` σzvzpz, such gaping out is not possible as degeneracies at Weyl
nodes are accidental in nature and they are not outcome of the symmetries. This makes them more
robust. One can only shift the position of those Weyl nodes but can not knock them out, unless pairs
of nodes with opposite chiralities are made to coincide [2, 1].

While talking about chiralities one should again
go back to see what that really means. A
three dimensional Dirac equation is represented
via 4 ˆ 4 matrices γµ (µ : 0, .., 3) that obey
Clifford algebra (see Introduction section) among
themselves. The Dirac equation for a spin- 1

2

massive particle is given as

piv~γµ
Bµ ´mv2qψ “ 0. (9)

Here in our condensed matter context, we put
velocity to be v, the Fermi velocity of the
electrons, as opposed to c that was used in
Eq.7. Also comparing with Eq.6, we get the the
Hamiltonian density to be

H “ ψ:Hψ “ ´iv~ψ̄γ.∇ψ `mv2ψ̄ψ. (10)

Here ψ is a 4 ˆ 1 complex spinor (i.e., a four-
element column matrix with complex entries) and
ψ̄ “ ψ:γ0.

Form of the γ matrices depend on the
representation considered. In the representation
where γ0 “ σ0 b τx and γi “ σi b iτy, the
Hamiltonian becomes

H “

„

´vσ.p mv2σ0

mv2σ0 vσ.p

ȷ

(11)

where p denotes the momentum operator. Thus
γ matrices are the outer product of Pauli
matrices τ and σ (for spin and orbital subspaces
respectively) given as,

σ0, τ0 “

„

1 0
0 1

ȷ

. σ1, τx “

„

0 1
1 0

ȷ

.

σ2, τy “

„

0 ´i
i 0

ȷ

. σ3, τz “

„

1 0
0 ´1

ȷ

.

For Weyl fermions, one has m “ 0 that makes
H block-diagonal with 2 ˆ 2 non-zero sub-blocks
given by ˘vσ.p. It is under this massless
condition, H commutes with the chirality operator

γ5 “ i Πd
i“0γ

i
“ iγ0γ1γ2γ3

pin 3Dq (12)

and the Weyl spinors become chiral. In the
representation considered, we obtain γ5 “ ´σ0b

τz (this would become an identity matrix in even
spatial dimensions [1]). In 3D, there are two
chiral eigenstates, termed as right-chiral and left-
chiral and the Hamiltonian is more conveniently
expressed as χvσ.p with chirality χ “ ˘1. It
signifies that Weyl fermions possess a definite
chirality - either left or right. In this case, it simply
means the direction of σ and p are either parallel
or anti-parallel [1].

4.1 WSM spectrum within
minimal models

The form of the Hamiltonian 11 (for m “ 0) refers
to definite but opposite chirality Weyl fermion
pairs. When they appear at same k-points, they
merge to become a Dirac point with overall zero
chirality (see the cartoon in Fig.2(a)-(b)). Dirac
points are protected by symmetry and can be
undone by symmetry breaking. for example
in graphene, IS breaking causes dispersion
spectrum to be gapped thereby removing the
Dirac points from the spectrum. But a WSM
phase appears when time reversal breaking
(TRB) or inversion breaking (IB) perturbations
can not remove the gaplessness of the spectrum
but only shift the positions of the touching points.
At that point, the Weyl point pairs, that made up
the Dirac point, separate out to exist individually,
each of the pair bearing opposite chiralities [2, 1].

At those band touching points, the Berry
curvatures are singular. Thus the WP’s can be
interpreted as monopoles corresponding to the
Berry curvatures in the momentum space. The
charge of the Weyl node is given by the quantized
Berry flux (a surface integral) around this point
and is proportional to the Chern number (with an
additional sign factor denoting the chirality).

Now consider m is a varying parameter of the
Weyl Hamiltonian (do not confuse m with mass,
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which is already zero in Weyl fermion case)
[21, 22]. Let the doubly degenerate DP’s occur
at k “ k0 for m “ m0 making the system a
Dirac semimetal. This coincidence of the DP’s
is a result of symmetries and can be separated
via breaking corresponding symmetries. We will
look at the type of symmetries later. For now,
let’s consider that we get two separated gapless
points (after separation, the DP becomes a WP
pair) at, say k and k1 (close to k0) when the
varying parameter changes its value from m0 to
m. Any two band (valence and conduction bands
here) Hamiltonian, that is a function of both k and
m, can be written as

Hpk,mq “ a0pk,mqσ0 `
ÿ

i

aipk,mqσi. (13)

So the energy eigenvalues will be Epk,mq “

a0pk,mq ˘
a

ř

i aipk,mq2. Thus at m “ m0,
aipk0,m0q “ 0 for the two bands to meet there.
Similarly, we should also have aipk,mq “ 0. The
point k being close to k0, we can Taylor expand
and get aipk,mq “ rBai{Bkj |k0,m0pkj ´ k0jq `

Bai{Bm|k0,m0pm ´ m0qsσi “ 0. Without loss of
generality we can choose m0 “ 0 and choose
WSM phase to appear only for m ą 0. So
the nontrivial solution gives Det[Bai{Bkj |k0,m0 ]=0.
A thorough calculation [21] shows that one
need to go to at least one higher order in
Taylor’s expansion to get a meaningful result and
accordingly a typical Hamiltonian obtained in this
way can be written as

Hpk,mq “ γpk2x ´mqσ1 ` vpkyσ2 ` kzσ3q (14)

Fig. 3. Typical bulk (a,b) and surface (b) states of the model for WSM. Bulk Fermi surface and
surface Fermi arcs are also shown for a typical (c) small and (d) large Fermi energy (EF ).

Figures are taken from Ref. [21].
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4.2 Bulk and Surface States
In the above Hamiltonian, bulk WSM phase
appears for 0 ă m ă k2x,max. This is
so as gapless Weyl points can occur only at
p˘

?
m, 0, 0q points in the bulk spectrum. A WSM

phase breaks either TRS or IS or both (though
in this particular case it breaks TRS alone),
which need to be carefully found out (as this is
the approximate continuum model and not the
full lattice model [23]). Whenever two merged
WP’s of opposite chirality get separated by some
lack of symmetry, we get two WP’s. Thus in a
WSM, the number of WP’s are even. If TRS is
broken, the minimum number of possible WP’s
is 2. However, if IS is broken but TRS retained,
there will be Kramer’s partner for each k vector.

Kramer’s theorem says that for a fermionic
system with TRS, there always remains at least
a two-fold degeneracy. Those two degenerate
states, related via TRS, are called Kramer’s
partner of each other.

So for each of the positions k1 and k2 where WP’s
are produced out of a doubly degenerate DP,
there will be a Kramer’s partner where another
WP should be situated. Thus the minimum
number of WP’s become 4. We should also
remember that a TRS broken, IS preserved WSM
contain Weyl nodes at same energies while a
further IS breaking disrupts the degeneracy of the
nodes [24].

We see that WSM has Weyl points in an
otherwise gapped bulk energy spectrum. Now if
we consider a finite geometry of such materials,
we find existence of surface states, i.e., states
localized only at the boundary surface of the
material (see Fig.3). For the model considered, it
can be shown that surface states exists for k2x ă

m. They connect the conduction and valence
bands. So they are gapless. Moreover, the
surface states feature Fermi arcs (Fig.3(c)-(d))
joining the bulk Fermi pockets (for low energy)
arising out of two WP of opposite chiralities [21].

In general, Fermi arc means open, unclosed
contour in k-space where the dispersion energy
is same as the Fermi energy. In our case, if
we imagine a constant energy cut (consider that
to be the Fermi energy) within the dispersion
spectra, the bulk-dispersion cone coming out of a
WP will produce a closed loop. These are called

Fermi pockets. Additionally, that energy cut in the
surface-dispersion spectra gives line segments
joining those Fermi pockets. These lines are the
Fermi arcs as shown in Fig. 3.

4.3 Type I and Type II WSM

We should mention here that the k-dependent
term a0pk,mq in the Hamiltonian equation-13
can add interesting modification to the Weyl bulk
spectrum. In absence of any k dependence
there, the density of state (DOS) at the node
energy, is vanishingly small and the Fermi
surfaces are just discrete Weyl points. But an
adequate k dependence induces a crystal field
anisotropy in the band dispersion near a WP [1]
and can tilt the Weyl cones creating electron and
hole pockets at the node energy. The cartoon in
Fig. 4. illustrates such different situations. In
the former case with zero DOS at the Weyl node,
we get what is called a type I WSM while in the
latter case, that supports Fermi pockets at node
energy, is named as type II WSM [25]. One phase
transits to the other one via a transition called
Lifshitz transition [26].

Layered transition-metal dichalcogenide WTe2
was the first predicted type-II WSM[25, 27]. But
as the surface Fermi arcs there were short in
length, another compound MoTe2 was proposed
later where Fermi arc length is much longer and
thus easily detectable in angle-resolved photo-
emission spectroscopy (ARPES) [3]. Also in
MoTe2, Weyl nodes situate much closer to Fermi
energy and thus Weyl physics are observed as
low energies.

4.4 Why Topological ?

At this stage, we may wonder what is topology to
do with this topic and why these WSM phases are
called topological. Naively speaking, topology
describes the state of an object that can not
change via any continuous transformation. For
example, a circle and a square can be deformed
to each other and that’s why they fall within
same topological class. However, a donut with
a hole within represent a different topology. We
define a quantity called “topological invariant” that
remains the same in one particular topology. We
already discussed that conducting edge states in
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a 2D TI are topological and the corresponding
topological invariants are called Chern numbers.
To change the currents corresponding to those
edge states, we need to change the topology by
altering the Chern number, which is a quantized
number (only integers, in this case). Hence
those edge states are very robust against small
impurities or doping. Similarly, the band-touching
Weyl points in a 3D WSM bulk energy spectrum
present a topologically robust feature. Unlike in
the 2D case, here we compute a closed surface
integral of the Berry curvature surrounding a Weyl
point. This is called the chiral charge for in
3D, the Berry flux (i.e., surface integral of the
Berry curvature) acts like a magnetic field [1]
(see Fig. 2c). It also stands for the topological
invariant in the system. Thus each Weyl point
carry with themselves a topologically invariant
chiral charge and in case when two Weyl points of
opposite chirality merge with each other, it gives
a Dirac point whose overall chirality is zero. So

the value of topological invariant becomes zero
as well (making the system topologically trivial).
Therefore, within the same topological class, the
opposite-chirality WP pair can only be shifted (via
tuning of system parameters) but not removed
from the spectrum.

WSM also feature topological surface states
characterized with Fermi arcs. Fermi arcs are
open lines in k-space that connects surface-
projected Weyl points with opposite chirality [28].
Fermi arcs are not like usual Fermi surfaces that
are closed surfaces in the momentum space.
In a WSM, the Chern numbers are proportional
to the chiral charges of the Weyl nodes. They
are topologically protected and hence conserved
in each WP. However, interesting modification
comes in presence of an electric (E) and
magnetic (B) field. This is called chiral anomaly.
We will discuss this briefly in the following
section.

Fig. 4. (a) Type I and (b) type II Weyl semimetals. Figures are taken from Ref.[29].

4.5 Presence of Electromagnetic Field - Chiral Anomaly
By Noether’s theorem[30], there is always a conserved current (consider a four-vector Jµ) associated
with a continuous global symmetry. Writing it out mathematically, a current conservation, in the
four-vector language, implies BµJ

µ “ 0. This leads to the equation of continuity and thereby the
conservation of charge

ş

J0d3x.

Now the axial vector current of the Dirac theory is given by, Jµ
5 “ ψ̄γµγ5ψ. So in a WSM With chiral

symmetry, we should have BµJ
µ
5 “ 0 and consequently, the conservation of chiral charge at the Weyl

nodes [26]. This charge, apart from a prefactor, is the Chern number C at that WP in the WSM.
This can be shown to be same as a closed surface integral of Berry curvature in k-space around
the WP. That’s why Weyl nodes act like magnetic monopoles corresponding to Berry curvature in
the momentum space. The non-zero chiral charge is an outcome of the band touching at WP and
singularity of the Berry curvature there.
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However a coupling to external gauge field
(coming from electromagnetic fields) changes the
situation. It invokes canonical momentum to the
problem modifying the Weyl equation to be

iγµ
pBµ ` iAµqψ “ 0 (15)

where Aµ is the electromagnetic four potential.
This modifies the axial current conservation
relation to be BµJ

µ
5 “ 1

8π2F
µνFµν with Fµν “

pBµAν ´ BνAµq. Written in terms of the electric
(E) and magnetic (B) field, this gives

BµJ
µ
5 “

1

4π2
E.B (16)

in 3D. This is the essence of chiral anomaly
which points to non-conservation of chiral charge
at individual Weyl nodes (producing nodal/valley
polarizations with source and sink of charges [1])
and results in chiral flow between the nodes of
opposite chiralities, when external electric and
magnetic field, not perpendicular to each other,
remains present.

In 1 spatial dimension, there is effectively no
magnetic field [31] and electric field alone
creates the chiral anomaly. But in 3D,
electrodynamics allows the presence of both
E & B [31]. Magnetic field creates Landau
levels that disperse only along B direction
(and degenerate along directions normal to it).
However, only the zeroth Landau level is chiral
with charge propagation along/opposite to the
field direction and velocities being reversed for
opposite chirality Weyl nodes [32]. For this, the
3D problem is effectively like a 1D problem with
electrons propagating along the magnetic field
lines forming chiral 1D channels.

5 SUMMARY AND DISCUS-
SIONS

Let us now summarize as well as highlight
the utility of studying and finding the Weyl
semimetals. What makes them special? The
first thing to note that this is a major discovery
in the hunt for Weyl fermions. WSM are the
electronic condensed matter systems to show
the existence of Weyl fermions. For long,
Neutrinos were thought of as possible candidate
for Weyl fermions until recent discovery that
found Neutrinos also to possess some mass (and

hence disqualified to be a Weyl fermion). Thus
the recent discoveries of WSM materials had
a huge and deep impact in the science
community.

In a WSM, we find that the Berry curvature
of the WSM Bloch bands, which is like a
magnetic field in momentum space, produces
topologically robust magnetic monopoles due to
the presence of Weyl nodes in the bulk energy
spectrum. Furthermore, in presence of non-
orthogonal electric and magnetic field, a WSM
exhibits chiral anomaly which in turn can give rise
to negative magnetoresistance. All these exotic
behaviors make a WSM very special in the field
of quantum condensed matter leading to rapid-
fire researches in recent times.

Now the discussion remains as to which are
the WSM materials and what restrictions we
need to provide to those materials in order to
witness the Weyl physics there. It turns out that
one needs to find WSM, with all Weyl nodes
related by symmetry and close to the Fermi
energy EF . They also need to be far apart in
the k-space and with no non-topological bands
close by so that the Weyl nodes can be easily
singled out for probing and experimenting. In
2015, the compounds TaAs, TaP, NbAs and
NbP were found to show WSM behavior with
Fermi arcs observed in Angle Resolved Photo-
emission Spectroscopy (ARPES) measurements.
Pyrochlore Iridates like Y2Ir2O7 or HgCr2Se4
have also been predicted as WSM materials.

Lastly, we want to add that a WSM is highly
mobile due to its gapless spectrum. They
possess topologically protected Weyl points,
surface Fermi arcs and are chiral possessing
spin-momentum locking with spins aligned/ anti-
aligned with the momentum directions. These
days, Weyl semimetals are turning out to be
a rapidly evolving field of study in condensed
matter as a WSM can be used in a plethora of
spintronic, chiral or valleytronic applications.

6 CONCLUSION

Starting from graphene, we have come a long
way in dealing with Dirac physics and topology
in condensed matter systems. Being a recent
entrant in that league, Weyl semimetals are sure
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to lead us to many more surprises in coming
days with its novel topological characteristics and
useful variations engineered therefrom.
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