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Abstract

Time, raw materials and labour are some of the finite resources in the world. Due to this, Linear
Programming* (LP) is adopted by key decision-markers as an innovative tool to wisely consume
these resources. This paper test the strength of linear programming models and presents an
optimal solution to a diet problem on a multi-shop system formulated as linear, integer linear and
mixed-integer linear programming models. All three models gave different least optimal values, that
is, in linear programming, the optimal cost was GHS15.26 with decision variables being continuous
(R+) and discrete (Z+). The cost increased to GHS17.50 when the models were formulated as
mixed-integer linear programming with decision variables also being continuous (R+) and discrete
(Z+) and lastly GHS17.70 for integer linear programming with discrete (Z+) decision variables. The
difference in optimal cost for the same problem under different search spaces sufficiently establish
that, in programming, the search space undoubtedly affect the optimal value. Applications to most
problems like the diet and scheduling problems periodically require both discrete and continuous
decision variables. This makes integer and mixed-integer linear programming models also an
effective way of solving most problems. Therefore, Linear Programming* is applicable to numerous
problems due to its ability to provide different required solutions.
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1 Introduction

Linear Programming* is popularly used by key decision-makers as an innovative tool when dealing
with limited resources. Since the dawn of operation research, the practical application of Linear
Programming* (LP) has extended significantly [1]. Linear programming (lp) have it search space to
be continuous (R+). Sometimes, decision makers look for specific results from different search spaces
(discrete, continuous or both). If the required solution is discrete (Z+), then the decision maker
will be dealing with integer linear programming (ilp). In other cases, the results could be discrete
and continuous which falls under mixed-integer linear programming (MILP). Fig. 1 illustrate the
link between these three programming models under Linear Programming*. In this paper, Linear
Programming* (LP) will be used to classify the set of [linear programming (lp), integer linear
programming (ilp) and mixed-integer linear programming (milp)] models.

Under each specified category, different techniques such as the general and dual simplex method,
interior point method and the branch-and-bound method exist for computing their models. With
the help of a computer software, inbuilt solvers such as CPLEX, Gurobi, and MINOS can be used
to compute complex and large-scale problems.

According to Mangasarian andWolberg [2], linear programming during the 90’s was used to diagnose
breast cancer at the University of Wisconsin Hospital in Madison. Out of the 166 case processed,
the use of linear programming was able to successfully diagnose 165 patients. This is an empirical
evidence that dates the application of linear programming.

Gilmore and Gomory addressed various issues faced by the paper industry such as how to balance
the number of machines available when order are filled up. Their work suggested that, linear
programming can help rectified this difficulties especially when there exist limited resources [3].

The application of linear programming in economics has been in existence over the past few decades.
Linear programming have been compared to the econometric approach to measure cost efficiency
in banking [4]. According to Samuelson [5], economist previously used marginal equalization as
a rule for defining equilibrium but with the emergent of linear programming they realized a fault
with their assumption. In electric power transmission network, linear programming plays a very
important role in minimizing the circuit miles [6].

Dantzig over 50 years ago first solved linear programming problems using the simplex method
he developed. As reported by Gonzaga [7], the simplex method was and still the most widely
used algorithm for solving simple linear programming problems. The interior point method used
to solve both linear and non-linear programming is mostly done by eliminating the inequality
constraints and incorporating them to a logarithmic barrier function. This method has shown
superior computational performance when used to solve linear and quadratic programming [8].

In this paper, a diet problem is formulated as a linear programming problem and solved using
a multiple shop system. The formulated linear models are reformulated as integer and mixed-
integer linear programming models for comparison based on objective value. There will also be
discussion on the practical applicability of linear programming models. This paper is structured in
five sections. Section 2 gives a brief description of linear programming, integer linear programming
and mixed-integer linear programming. The models are organized in section 3 and the last two
sections inhabits our results and conclusion respectively.
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Fig. 1. A Venn Diagram Illustration of the link between LP, lp, ilp and milp

2 Materials and Methods

2.1 Linear programming

Linear programming (lp) has been used extensively throughout the years with its applications
in economics, health, engineering, supply chain and many more [9]. The key concept of linear
programming finds applications in almost all aspect of life such as; personal diet planning to
maximize certain nutrient [10], minimization of transportation cost of goods from warehouse to
retail customers [11]. Linear programming is branch of Operation Research that seeks to select the
best method and deals with the application of scientific models in decision making. One important
factor of linear programming is the size of the problem which is essentially the number of unknown
variables and constraints. This factor measures the complexity of the problem [12].

Equation (2.1) is used as a point of reference in instantly comprehending what is meant by a linear
function.

y(x) = Ax+ b (2.1)

where, y(x) is the dependent variable, x is the independent variable, A is the gradient and b is a
constant (Intercept when x = 0).

A linear function is a polynomial function where the degree of the independent variable is zero or one
and there exists no cross-multiplication between the independent variables [13]. A similar concept
is applied to linear programming but in this case, the objective function and the constraints assume
the linear format [9]. In linear programming the search space is the set of all likely results that
satisfies the objective function as well as all the constraints. The search space for an LP problem
is a convex set. Equation (2.2) represent the canonical form of an LP.

minimize/maximize cTx

Subject to Ax ≤ b

xj ≥ 0, xj ∈ R+

(2.2)

In linear programming, there are case where multi-objectives exist [14]. Sometimes, accurate
decision values can be attained by simultaneously solving multiple objective functions.
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A shop attendant can decide to minimize the time spent in serving a customer and at the same time
maximize the number of product purchased by the customer. A delivery company can minimize
transportation cost and maximize delivery speed simultaneously.

Linear programming offers various domain of solution according to the specification of the decision
marker. If a solution satisfies all the constraints of the LP, then the solution is said to be feasible.
An optimal solution is a feasible solution where the objective function has reached its minimum or
maximum value and there is no other feasible solution to either minimize or maximize the objective
function [15].

2.2 Integer linear programming

Integer programming has it feasible or search space from the set of integers [7]. Integer programming
can generally be written as:

minimize/maximize cTx

subject to Ax ≥ b,Bx ≥ d,

xj ≥ 0 , xj ∈ Z

(2.3)

where the b and d are the right hand vectors, c the coefficient vector of the decision variables, and
A and B are the matrices of the constraints [16].

A popular method for solving an integer linear programming problems is the branch and bound
method proposed by LAND and DOIG with it’s first appearance in the work of Little et al. [17]. The
Branch and bound is a term originated from performing two operations (Branching and Bounding)
[18].

In ILP, some problems are difficult to solve with the brute-force method due to the nature of some of
their constraints. Lagrangian Relaxation (LR) can be used to approximate such a difficult problem
by relaxing the constraint [19]. András Prékopa in 1979 worked on the first computer code in using
the Lagrangian method to solve a scheduling problem [20]. Again, Wang and other colleagues in
1995 published a detailed article on the short-term power generation scheduling using an augmented
Lagrangian Relaxation with the aim of minimizing the power system operation cost [21].

2.3 Mixed-integer linear programming

A practical mixed-integer linear programming problem is a linear programming problem that
has some of its decision variables to be integer values at the optimal solution while others can
equally be non-integers [22]. Therefore, mixed-integer linear programming is also an integer linear
programming with non-integer decision variables. In 2002 Richards et al. published an article
titled “Spacecraft Trajectory Planning with Avoidance Constraints Using Mixed-Integer Linear
Programming”. This group from Massachusetts Institute of Technology (MIT) with the aim
to avoid collision of spacecrafts introduced avoidance constraints forming a mixed-integer linear
programming. Their models were solved using the CPLEX solver in AMPL [23]. Mixed-integer
linear programming follows the pattern of Integer Programming in Equation (2.3) above but not
all decision variables will take integer solution at the optimal level.

minimize/maximize cTx

subject to Ax ≥ b,Bx ≥ d,

xi,j ≥ 0 , xj ∈ R , xi ∈ Z

(2.4)
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3 Models Formulation

3.1 Practical scenario

Consider a pregnant woman who has to visit the supermarket before heading to the clinic. On her
previous visit, the doctor recommended to her a new diet for a healthy foetus development. In this
scenario, the decision-maker (pregnant woman) wants to

1. minimize the cost of the items bought from the market.

2. satisfy each nutrients requirement based on the new diet plan.

It will be assumed that the supermarkets are in the same vicinity. Sufahani similarly used linear and
integer programming to solve the diet planning for eczema patient drawing a successful conclusion
that linear and integer programming approach will produce an optimal and feasible solution [24].

3.2 Nomenclature

Sets:

• S = Supermarkets.

• F = Food products.

• N = Nutrients

Supermarkets:
Three supermarkets will be used in this scenario (Supermarket 1, Supermarket 2, Supermarket 3).

Food Items:
Table 1 contains all the food items disposable to the pregnant woman at each supermarket.

Table 1. List of available food items

Egg Milk Chicken Banana

Orange Tomatoes Wheat Salmon

Carrot Sardine Yoghurt Seal

Nutrients:
According to The American College of Obstetricians and Gynaecologists (ACOG), Table 2 are the
key vitamins and minerals needed during pregnancy [25].

Table 2. List of essential nutrients for foetus development

Parameter Description Parameter Description

vitA vitamin A required vitC vitamin C required

vitD vitamin D required iron Iron required

cal Calcium required B12 vitamin B12 required

Model parameters:
XCost = represent the cost of each food product. This cost will be indexed on the supermarkets
and food items.

XNutrient = represents the amount of nutrients available from each food item. This parameter
is indexed on food and nutrient.
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XRecom = amount of recommended nutrients indexed on the nutrient set.

XMax = the maximum amount of daily consumable food item.

Model variables:
XBuy = decision variables indexed on the supermarket and food item.

3.3 Optimization models

The optimization models are formulated as a linear programming models.

3.3.1 Objective function

The objective is to minimize the cost of food purchased.

minimize Cost:
∑

s∈S,f∈F

Xs,f
Cost ∗X

s,f
Buy

3.3.2 Constraints

In order to meet the doctor’s diet recommendation, it is good that the required nutrients are satisfied
irrespective of the cost involved. XNutrient is the amount of nutrients each food product can provide
as seen from Table 4.

In order to meet the recommended nutrients, the sum of each nutrient provided by each food
purchased should be greater or equal to the required nutrients (XRecom) listed in Table 3.

Subject to Vit A:

Vit A:
∑

s∈S,f∈F

Xf,V itA
Nutrient ∗X

s,f
Buy ≥ XV itA

Recom

Subject to Vit C:

Vit C:
∑

s∈S,f∈F

Xf,V itC
Nutrient ∗X

s,f
Buy ≥ XV itC

Recom

Subject to Vit A:

Vit D:
∑

s∈S,f∈F

Xf,V itA
Nutrient ∗X

s,f
Buy ≥ XV itD

Recom

Subject to Vit A:

Iron:
∑

s∈S,f∈F

Xf,Iron
Nutrient ∗X

s,f
Buy ≥ XIron

Recom

Subject to Vit A:

Cal:
∑

s∈S,f∈F

Xf,Cal
Nutrient ∗X

s,f
Buy ≥ XCal

Recom

Subject to Vit A:

B12:
∑

s∈S,f∈F

Xf,B12
Nutrient ∗X

s,f
Buy ≥ XB12

Recom

The above constraints can be put together as a single constraint;

Subject to Nutrient:

∀n ∈ NUTRIENT:
∑

s∈S,f∈F

Xf,n
Nutrient ∗X

s,f
Buy ≥ Xn

Recom
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The following constraints are the boundary constraints on each food product.

subject to Egg:

Egg:
∑
s∈S

Xs,Egg
Buy ≤ XEgg

Max

subject to Milk:

Milk:
∑
s∈S

Xs,Milk
Buy ≤ XMilk

Max

subject to Chicken:

Chicken:
∑
s∈S

Xs,Chicken
Buy ≤ XChicken

Max

subject to Banana:

Banana:
∑
s∈S

Xs,Banana
Buy ≤ XBanana

Max

subject to Orange:

Orange:
∑
s∈S

Xs,Orange
Buy ≤ XOrange

Max

subject to Tomato:

Tomato:
∑
s∈S

Xs,Tomato
Buy ≤ XTomato

Max

subject to Wheat:

Wheat:
∑
s∈S

Xs,Wheat
Buy ≤ XWheat

Max

subject to Salmon:

Salmon:
∑
s∈S

Xs,Salmon
Buy ≤ XSalmon

Max

subject to Carrot:

Carrot:
∑
s∈S

Xs,Carrot
Buy ≤ XCarrot

Max

subject to Sardine:

Sardine:
∑
s∈S

Xs,Sardine
Buy ≤ XSardine

Max

subject to Yoghurt:

Yoghurt:
∑
s∈S

Xs,Y oghurt
Buy ≤ XY oghurt

Max

subject to Seal:

Seal:
∑
s∈S

Xs,Seal
Buy ≤ XSeal

Max

Putting together the limits on each food product will yield;

subject to Limit:

∀f ∈ FOOD:
∑
s∈S

Xs,f
Buy ≤ Xf

Max

Subject to Non-negativity:
∀f ∈ FOOD, s ∈ SHOP: Xs,f

Buy ≥ 0
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3.4 Optimization data

Table 3. The amount of daily recommended nutrients

vitA 770 RAE
vitC 85 mg
vitD 15 mcg
iron 27 mg
cal 1000 mg
B12 2.6 mcg

Table 4. The amount of each nutrient available from each food

cal(mg) iron (mg) vitA (RAE) vitC ( mg) vitD (mcg ) B12(mcg)

Egg(49.6g) 25 0.6 85 0 0.7 0.56
Milk(200ml) 369 0.3 104 0 2.9 2.8
Chicken(75g) 0 0.4 20 0 0.2 0.24
Banana(119g) 6 0.3 8 10 0 0
Orange(131g) 52 0.1 8 70 0 0
Tomato(170.1g) 12 0.3 52 16 0 0
Wheat(125ml) 10 5.3 0 0 0 0
Salmon(75g) 5 0.4 47 0 17 4.35
Carrot(61g) 20 0.2 367 4 0 0

Sardine(106g) 405 3.1 34 0 2.5 9.48
Y oghurt(200mL) 191 0.2 0 0 0.2 0.58

Seal(75g) 0 17.6 11 0 0 0

Table 5. The cost of food product (Ghana Cedis) at various supermarkets (SM) and
allowable consumable food item

XCost SM 1 SM 2 SM 3 XMax

Egg(49.6g) 0.5 0.5 0.6 1
Milk(200ml) 3 3.5 3.2 1
Chicken(75g) 2 2 2 2
Banana(119g)) 0.5 0.5 0.5 4
Orange(131g) 0.5 0.5 0.5 2

Tomatoes(170.1g) 0.4 0.45 0.45 2
Wheat(125ml) 2 1.5 1.5 1
Salmon(75g) 2 2 2 2
Carrot(61g) 1 1 1 2

Sardine(106g) 3.5 4 3.8 1
Y ogurt(200mL) 1.8 1.8 1.8 1

Seal(75g) 3 3.5 3.5 1

4 Results and Discussion

4.1 Linear programming (lp)

The models were computed in AMPL using the CPLEX solver. Table 6 shows the optimization
solution under the linear programming models.
The cost was evaluated to be GHS 15.26 computed in 5 dual simplex iterations. The computational
time was 0.109375s. Using the solution space of R+ in linear programming problems the decisions
variables are relaxed to assume decimals or whole values to achieve feasibility and optimality.
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Table 6. The amount of food purchased at various supermarkets (SM)

XBuy SM1 SM2 SM3

Egg 0 1 0
Milk 1 0 0

Chicken 0 0 0
Banana 0 0 0
Orange 0 0 2

Tomatoes 0 0 0
Wheat 0 0.87936 0
Salmon 0.51992 0 0
Carrot 0 0 1.35031
Sardine 1 0 0
Yogurt 0 0 0.306809
Seal 1 0 0

4.2 Integer-linear programming (ilp)

In the linear programming problem above, the minimum cost was GHS 15.26, but since we can
not have decision variables for amount of Salmon, Yogurt and Carrot to buy taking continuous
values, we change the search space of all the decision variables is changed to integer solution space.
Therefore,

Subject to Integer:
∀f ∈ FOOD, s ∈ SHOP: Xf,s

Buy ∈ Z

Table 7. The amount of food purchased at various supermarkets (SM)

XBuy SM1 SM2 SM3

Egg 0 0 0
Milk 1 0 0

Chicken 0 0 0
Banana 0 0 0
Orange 0 1 0

Tomatoes 1 0 0
Wheat 0 0 1
Salmon 0 0 1
Carrot 0 2 0
Sardine 1 0 0
Yogurt 0 0 1
Seal 1 0 0

In solving the linear models as an integer linear programming models, the solution got rid of all
continuous values. The new cost of all food items purchased was GHS 17.70. 8 MIP simplex
iterations were used within a computational time of 0.09375s. In integer linear programming, if an
optimal solution rendering a minimum cost falls between two integer values such as 2 and 3, the
integrality constraint discarded all decimals and decide on choosing 2 or 3.

4.3 Mixed-integer linear programming (milp)

Now let’s assume that the supermarkets use scale and Wheat is actually measured in decimals.

Subject to Integer:
∀f ∈ FOOD, s ∈ SHOP: Xf,s

Buy ∈ Z
Subject to Non-Integer:
for wheat ∈ FOOD, s ∈ SHOP: XWheat,s

Buy ∈ R
So relaxing one decision variable XWheat,s

Buy reduces the objective function by placing it between
linear programming and integer linear programming. The cost was GHS 17.50. 11 MIP simplex
iterations were used within a computational time of 0.15625.
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Table 8. The amount of food purchased at various supermarkets (SM)

XBuy SM1 SM2 SM3

Egg 0 0 0
Milk 1 0 0

Chicken 0 0 0
Banana 0 0 0
Orange 0 1 0

Tomatoes 1 0 0
Wheat 0 0.867925 0
Salmon 0 0 1
Carrot 0 2 0
Sardine 1 0 0
Yogurt 0 0 1
Seal 1 0 0

In a review work by Vielma, it was concluded that mixed-integer linear programming result in
a more capable and/or smaller formulation for a wide class of problems [26]. Dooren in another
review established that linear programming remain an essential tool for environmental optimization
which exhibits considerable potential for finding solutions to varieties of diet problems [27].

5 Summary and Conclusion

A summary of the objective values, computational time and number of iterations exhibited by LP,
ILP and MILP is summarize in Table 9.

Table 9. Comparison between LP, ILP, MILP

Criteria LP ILP MILP

Objective Value (GHS) 15.26 17.7 17.5
Algorithm Dual Simplex MIP Simplex MIP Simplex

Number of Iterations 5 8 11

Now comparing linear programming, integer linear programming and mixed-integer linear programm-
ing in terms of objective value, it was realized that linear programming offered the least cost due
to the fact that in searching for minimum optimal solution, it has less restriction on the search
space. Again, mixed-integer linear programming exhibited a cost above the linear programming
but below integer linear programming. The reason for this is similar to the explanation given above
for linear programming. In mixed-integer linear programming not all but some of the decision
variable (XWheat,s

Buy ) was relaxed while others were restricted to integer solution. These relaxed
variables helped to minimize the objective value while assuming decimal values. Lastly, integer
linear programming had the highest objective function value due to the high restriction on all the
decision variables. In view of this, linear programming problems will always render a least cost due
to it flexible search space.

From the above results, it was seen that mixed-integer linear programming and integer linear
programming had the highest number of iterations. This indicate that mixed-integer linear progra-
mming and integer linear programming involved more steps than linear programming. This was
due to the integer restriction imposed on some of the variables. The reason being that, extra steps
were involved in making the decision variables integer after reaching optimality.
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5.1 Conclusion

In this paper, the strength of linear programming was experimented using a diet problem on a
multi-shop system. To test that linear programming can provide different solutions required by
key decision-makers, a diet problem was used. The problem was first formulated as a linear
programming (lp) model and reformulated into an integer linear programming (ilp) and mixed-
integer linear model programming (milp) for different solutions. The difference in optimal cost for
the same problem under different search spaces establish that, in programming, the search space
affect the optimal value. The result also suggested that, linear programming can provide different
suitable solutions. This achievement indicates that, integer and mixed-integer linear programming
models are also effective in solving most real life problems. In the considered diet problem, the
pregnant woman will spend GHS 17.50 to meet the required nutrients. The cost is lower in the
case of linear programming but the decision variables value for the linear programming in this case
are not realistic. Therefore integer or mixed-integer linear programming will be the appropriate
approach. Based on the conclusions by [24, 27, 26], it can be establish that since integer and mixed-
integer linear programming are special solution approach or subset of LP, Linear Programming*
is therefore applicable to numerous problems due to its robustness and unique ability to provide
different required solutions.
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