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Abstract: With the increased use of composites in aircraft, many new successful contributions to the
advancement of the structural health monitoring (SHM) field for composite aerospace structures
have been achieved. Yet its application is still not often seen in operational conditions in the aircraft
industry, mostly due to a gap between research focus and application, which constraints the shift
towards improved aircraft maintenance strategies such as condition-based maintenance (CBM).
In this work, we identify and highlight two key facets involved in the maturing of the SHM field
for composite aircraft structures: (1) the aircraft maintenance engineer who requires a holistic
damage assessment for the aircraft’s structural health management, and (2) the upscaling of the SHM
application to realistic composite aircraft structures under in-service conditions. Multi-sensor data
fusion concepts can aid in addressing these aspects and we formulate its benefits, opportunities,
and challenges. Additionally, for demonstration purposes, we show a conceptual design study for a
fusion-based SHM system for multi-level damage monitoring of a representative composite aircraft
wing structure. In this manner, we present how multi-sensor data fusion concepts can be of benefit to
the community in advancing the field of SHM for composite aircraft structures towards an operational
CBM application in the aircraft industry.

Keywords: aircraft components; composite structures; condition-based maintenance; data fusion;
health management; structural health monitoring

1. Introduction

The use of composite structures in the aerospace industry has increased over the past
decades with newer aircraft such as the Airbus A350 or Boeing 787 made largely (respec-
tively 53% [1] and 50% [2]) of composite material. This development can be attributed
to its mechanical properties, which include a high strength-to-weight ratio and corrosion
resistance. Consequently, the use of composite structures in aircraft can lead to reduced
operational costs due to less fuel consumption and fewer maintenance activities [3]. Al-
though many advantages can be retrieved by using composite structures for aircraft, their
behavior also poses a challenge; in particular, the inspection and monitoring of damage
in the aircraft structure become more challenging, as damage may be present internally
but not identifiable upon visual inspection of the outside layers of the aircraft structure
during maintenance procedures. Furthermore, even if signs of damage are seen upon the
surface, for example, in terms of barely visible impact damage, their size might not be
representative of the actual extent of damage in the inside layers of the composite [4–7]. Ad-
ditionally, the damage mechanisms and their growth behavior are complex, which makes
the prediction of damage growth in composite aircraft structures under loading challenging.

In the aircraft industry, such unknowns must be controlled and damage must be
detected before it compromises the structural integrity of the composite component in the
aircraft, which is commonly achieved by setting predefined inspection intervals as part
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of the aircraft maintenance strategy. Additionally, structural parts may be over-designed,
leading to greater aircraft weight, or are preventively replaced during maintenance after a
specified time interval. These fixed-time-interval and preventive maintenance programs
in the aircraft industry can lead to unplanned maintenance activities, comprehensive in-
spections when no damage is present, or unnecessary replacement of undamaged parts.
To mitigate these aspects, a condition-based maintenance (CBM) strategy can be imple-
mented which can provide both cost and time benefits with an estimated benefit of over
700 million Euros per year for the European aviation industry alone [8]. In a CBM approach,
maintenance actions are decided based on the actual health state of the aircraft structure:
only if a structure requires repair or replacement are maintenance actions conducted. Con-
sequently, this requires an indication of the aircraft structure’s health state. Therefore, CBM
in the aircraft industry for structural applications relies on structural health monitoring
(SHM) techniques, which consider permanently installed sensor networks to collect data
for health management consisting of detecting and monitoring damage. Thereby, sensor
data is used to assess the presence of damage in the aircraft’s structural part, predict future
damage growth, and decide on further maintenance actions for the given aircraft.

Applying SHM in the aerospace industry has not yet fully matured [9] and especially
its application to composite structures is challenging. For a realistic aircraft maintenance
scenario, one must consider the needs of the maintenance engineer at the final application:
what type of health management information is required to make further maintenance
decisions for an aircraft? For example, as we will discuss in this work, this requires a full
damage diagnostic on all four SHM levels rather than a single level, that is: (1) damage
detection, (2) damage localization, (3) damage type identification, and (4) damage severity.
For aircraft maintenance considerations, the next step beyond damage diagnostics should
also be incorporated, i.e., damage prognostics, in which the remaining useful life (RUL) of
an aircraft structure is estimated based on the collected sensor data. Namely, the aircraft
maintenance engineer must know whether there is damage present in a given aircraft,
as well as its characteristics and future impact on the performance of the entire aircraft.
Additionally, in an in-service scenario, large complex composite aircraft structures will
be monitored under realistic loading conditions, which requires reliable, probabilistic,
and upscalable algorithms. Requirements and intended functions of an SHM system for the
aircraft industry have been collected and discussed in detail in SAE standard ARP6461 [10].

In this work, we dive further into the challenges of monitoring complex composite
aircraft structures using SHM. We argue that a multi-sensor data fusion approach is required
and is beneficial for applications in the aerospace industry. Namely, it can, amongst others,
lead to a more complete image of the present damage, reduce ambiguity, and increase
confidence in the results [11,12]. Although studies on data fusion in the broader sense of
SHM have been performed [13], research into their application to composite structures with
an aerospace application has not. In this work, we approach ideas in a conceptual manner
and the need for researching multi-sensor data fusion for SHM of composite structures in
aerospace applications is argued.

This paper is structured as follows. First, in Section 2, we identify gaps that must be
addressed in order to apply SHM methodologies to composite aircraft structures. We assess
the concepts of upscaling by addressing several considerations for applications to aircraft
components and the concept of an integral health management assessment consisting of
diagnostics and prognostics required for maintenance applications. Next, in Section 3,
the concept of multi-sensor data fusion is introduced and its opportunities, advantages,
and limitations are further elaborated upon. Section 4 considers the application of multi-
sensor data fusion techniques for SHM of composite aircraft structures by discussing new
opportunities, practicalities, and considerations. In Section 5, we demonstrate the first
indications of how multiple SHM techniques and data fusion concepts can be incorporated
by presenting a high-level design of a conceptual SHM system for a complex multi-stiffener
composite aircraft wing structural component. Lastly, Section 6 concludes this work and
provides an outlook.
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2. Challenges in Applying SHM in the Aircraft Industry for Composite
Aircraft Structures

In the aerospace industry, the composite structures incorporated in aircraft are on a
component level. Yet most research focuses on lower-level structures as small research
coupons. When contemplating a successful application of SHM to such aircraft structures,
several gaps in research can be identified that must be addressed. In this section, we discuss
two main aspects limiting the current progress in its implementation in the aircraft industry.
The first, covered in Section 2.1, discusses the application of SHM techniques to realistic,
larger, and more complex composite component aircraft structures and the requirements
on the SHM methodologies emerging from such new applications. The ability to obtain
a holistic damage assessment (Section 2.2) is hindered by the second aspect of intrinsic
capacities of the SHM techniques that, on their own, do not match the requirements from the
application to aircraft composites given in a CBM implementation in aircraft maintenance
(Section 2.3). Lastly, in Section 2.4, we commence with our vision on why multi-sensor data
fusion is required in the field of SHM for composite aircraft structures.

2.1. Upscaling

Aircraft structures are made from an assembly of a large number of components and
subcomponents. Yet most SHM methodologies are developed in research labs on research
structures. These works are often comprised of small coupons or panels—either flat or
stiffened—while fewer studies consider applications on a scale similar to those structural parts
used in the aircraft industry; for example, on a subcomponent level, such as on multi-stiffener
panels, or on the component level, such as on a wingbox or in-service application [9,14].
Consequently, this leads to minimal research into applying SHM methodologies developed at
composite coupon or element level to composite aircraft structures at the (sub)component level.
In addition to application to higher structural levels, more realistic loading conditions must be
considered at these higher levels: most research related to aircraft structural (sub)components
focuses on quasi-static loads or impacts under room environmental conditions, while studies
involving fatigue loading, different environmental conditions, or combined loading cases,
such as impact with fatigue loads under elevated temperatures, are limited even though these
are precisely the conditions during aircraft operations.

In structural design and testing for aircraft structures, a building-block approach is
commonly employed. Such a building-block approach (commonly illustrated using a
pyramid) consists of coupons at the bottom level and the complexity of structural elements
increases as we move towards higher levels. The pyramid in essence describes a strategy
in which many tests are performed on the lower levels involving generic elements and
fewer tests are performed on higher levels involving non-generic components and full-scale
structures (e.g., a wing structure). Here, the assumption is made that the lower levels
are simplified representations of the higher levels and that gathered knowledge can be
transferred from one level to the next. Thereby, both costs and risks in the aircraft structural
design and testing process can be reduced.

For future applications of CBM in the aircraft industry, health management methodolo-
gies must be developed that are considerate of and applicable to larger and more complex
aircraft structures and components. Therefore, we propose to also follow a building-block
approach for SHM, indicated in Figure 1. Namely, for the implementation of SHM con-
cepts in the aircraft industry, a similar approach must be established: the developed SHM
methodologies and results obtained at lower coupon levels should be translatable and
representative of its application on the higher levels. Moreover, developments and knowl-
edge gathered on the lower levels are key in the study of the next. In essence, we aim
at developing methodologies on the lower levels in laboratories using large sample sizes
and at applying these to the higher levels under in-service scenarios with minimal re-
development.This can be done by defining homogeneous populations on single levels and
heterogeneous populations comprising multiple levels [15–17]. For homogeneous popula-
tions comprising a single structural type on a single level, current research studies involving
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sensor and diagnostic and prognostic methodology development are commonly applicable.
The definition of a homogeneous population allows for the inclusion of various artificial
intelligence techniques as (semi-)supervised learning algorithms to combine knowledge
obtained from multiple same-type structures. As such, it involves the development and
training of diagnostic and prognostic methodologies on subsets of the population and their
subsequent application on similar structures in the same domain [18–20]. For heteroge-
neous populations consisting of multiple structural types and levels, artificial intelligence
techniques such as transfer learning can be of aid, allowing the knowledge gathered in a
source domain to be utilized in new and different target domains, in this case, knowledge
gathered on the lower-level structures and applied to higher-level structures [21–23].

Figure 1. Structural health monitoring (SHM) pyramid approach for upscaling composite aircraft
structures based on the building-block approach for structural testing.

As only a small amount of research has been performed into the application and
development of SHM techniques to structural aircraft components of the higher levels,
we must point out several considerations that must be made before such a building-block
approach for SHM for upscaling aircraft structures can be implemented. These are similar
to those seen for heterogeneous populations: geometry, material, and topology [22]. In this
work, the changes in structural geometry and the differences in structural aspects in higher-
level components in the aircraft application and their impacts on SHM applications are of
interest as they are variable between the different levels in the building-block approach.
Each of these two aspects is discussed separately next.

2.1.1. Changes in Structural Geometry

When considering the application of an SHM technique to a (sub)component aircraft
structure, it needs to be recognized that we are dealing with a changing structure with
respect to the conditions at its original development. Firstly, there is a change in its
dimensional growth: component level structures have larger dimensions than those for a
lower-level coupon. This may affect the performance of the SHM methodologies related to
both the sensor capacity and the SHM technique.

Originating from the aircraft’s different dimensions, the first point of attention is the
spatial coverage of the selected SHM technique. A sensor might be capable to monitor
damage only in a limited area; for example, in the case of acoustic emission (AE), its signals
attenuate over a distance. Hence, when damage occurs at a large distance from the sensor,
it might go unnoticed. Thus, when applying such techniques in a damage monitoring
system of an aircraft with a changing structural dimension, it consequently means that
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one must now also consider whether the chosen sensors are capable of monitoring the full
structure of interest. Therefore, the exploration of a sensor placement optimization study
must be considered in the design of an aircraft component’s SHM system and is crucial
in the upscaling of SHM applications to component-level aircraft structures. For example,
in the case of employing AE sensors, one must ensure that the AE sensor network provides
sufficient coverage over the full structure, taking into account attenuation aspects and
varying AE signal characteristics [24,25].

Similarly, when changing a structure’s geometry, the performance of an SHM method-
ology can be affected. For example, the damage state can be assessed on a local or on a
global level. At a local level, sensors record local changes in structural properties and must
therefore be placed near hotspots (e.g., fiber Bragg gratings (FBG) for strain measurements).
For its application in (sub)components, this requires identification of these hotspots, for ex-
ample at joint locations between different parts of a wingbox or at the nose region with
high risk of impacts, or the—much less efficient, high-cost, and high-weight—application
of many sensors throughout the structural parts if sensor topology is not optimized. At a
global level, the response of the entire structural part is considered to assess the presence
of damage. Yet, where a small damage on a coupon level might cause changes in the
global behavior of that coupon, its effect on the response of e.g., a wingbox segment or
multi-stiffener panel can be minimal, resulting in challenges when one tries to detect such
minimal changes in an aircraft structural application [26].

2.1.2. Effects of New Structural Aspects

In the upscaling towards a full aircraft structure, not only changes in terms of geometry
are observed, but the structures now also contain assembly details and consist of several
sub-elements. This results in additional geometrical boundaries, which can influence the
effectiveness of the applied SHM methodologies. Hence, when we are considering the
application of SHM to aircraft components in the health management system, we need
to analyze how such boundaries or assembly details may affect the diagnostic and prog-
nostic results and how their methodologies may require adjustments: a simple and direct
application will not always work. For example, when considering damage localization
in a structural aircraft component using AE, the presence of an assembly detail such as a
bolt may influence the path of an AE wave, thereby potentially affecting the localization
results [27]. Similarly, the placement of piezoelectric transducers (PZT) for guided wave
(GW) applications on different planes and curved structures in a fuselage segment poses
new challenges as it can alter the wave propagation [28]. Based on the structural parts and
sensing technologies, a sensor network configuration must be designed accordingly, with
sensors being optimally placed by taking into account such structural aspects. Namely,
it needs to be considered whether the health management system should be constructed
based on sub-elements, each having their own damage monitoring system including sep-
arate sensors for each sub-element, or whether the structural elements can be monitored
using a single sensor network covering the full aircraft structure. Optimal sensor placement
studies that take into account such structural boundaries can improve the design of the
sensor network as, for example, shown by Thiene et al. [29] and Soman et al. [30] for GW
applications involving various boundaries and structural complexities.

2.2. Integral Damage Assessment

For CBM applications in the aircraft industry, it is of essence that a full view of
the health state of the aircraft structure be available and that details of present damage
be provided. Airline maintenance engineers require information ranging from whether
damage is present up to whether maintenance actions are required [10]. For instance, only
knowing that damage exists without having further knowledge of whether it is located
in a primary or secondary structural member or on its size and severity is insufficient in
the in-service environment of an aircraft. Moreover, having information on the current
damage state of the aircraft structure without having the ability to estimate its RUL does not
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allow one to make effective maintenance decisions when a CBM approach is implemented.
Therefore, CBM requires us to look at an integral damage assessment that includes both
damage diagnostics and prognostics. In the field of SHM, commonly, four diagnostic levels
are distinguished:

1. Damage detection;
2. Damage localization;
3. Damage type identification; and
4. Damage severity.

This can be followed by a next step, namely, damage prognostics in which one aims
to determine the RUL of the structure up to a predefined state [31]. For implementing
SHM for CBM in the aircraft industry, it is thus of interest that systems are developed
that address all aspects: from damage detection up to RUL estimation in order to support
enriched maintenance decisions.

In recent years, a variety of SHM techniques and approaches have been proposed to
monitor composite structures and to perform damage diagnostics and prognostics. Yet an
integrated health management framework including both diagnostics and prognostics has
not yet been demonstrated. Most studies in which SHM techniques are applied focus on
the assessment of a single SHM level. Focus lies on, for example, developing new method-
ologies using current or new SHM technologies (e.g., as seen in [32,33]) or on improving
current methodologies (e.g., as seen in [34,35]). Research devoted to assessment on all
SHM levels or on combining diagnostics and prognostics is uncommon [36]. Additionally,
studies on damage assessment under realistic combined loading cases with complex failure
mechanisms (e.g., impact damage combined with fatigue loads) are limited. Instead, the
focus is often narrowed down to a single damage assessment at a single SHM level (e.g.,
as seen in [37–41]). The focus of these studies is not surprising, as we can argue that
each SHM technique has its own inherent capacity that limits a full-covering application
including a holistic damage assessment. Yet, as outlined in the SAE standard ARP6461 [10],
the latter is precisely what is needed when implementing an SHM system for aircraft
structures. In the next section, we will dive further into this by discussing the strengths
and limitations of different SHM techniques.

2.3. Intrinsic Capacity of SHM Techniques

Several SHM techniques have been used to perform SHM of composite structures
including, but not limited to, vibration-based methods [42–45], AE [27,36,40,46], optical
fiber (OF) sensing [47–50], and GW [51–53]. When considering damage assessment in
composite structures, each sensing technique has its own capacities. This can mean that
a certain technique can only be employed to gather information on specific diagnostic
levels or prognostics, but also that only certain types of damage can be identified. These
aspects differ per SHM technique: some are sensitive to matrix cracks, while others only
identify larger delaminations; some provide local damage localization with high resolution,
while others only provide global monitoring. An extensive review of the different SHM
techniques and their advantages and limitations, as well as their intrinsic capacities, was
presented by Amafabia et al. [37], and we refer the reader to this work for further details
regarding these features. Next, we further discuss and illustrate these aspects and the
differences among SHM techniques.

The strength of a certain technique for an individual SHM level can clearly be seen
when evaluating vibration-based methods for aircraft applications of SHM. Vibration-
based methods are based on detecting changes in the global response of the structure ,
thereby making them suitable for the detection of damage (diagnostic level 1) [44]. Various
vibration-based approaches have been employed to identify changes in SHM datasets
for structural damage detection, ranging from modal-based and time-series approaches
to machine learning and deep learning techniques, including unsupervised learning for
novelty detection and trained classifiers [54,55]. However, the method is not equipped for
precise damage localization since it assesses the structure as one entity. This means that
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vibration-based data can provide information that the aircraft wing is damaged, but not
to what extent or in which segment. Another example of level-specific SHM can be seen
when assessing AE for damage monitoring. While AE has shown its strengths in damage
detection (level 1) and type identification (level 3), additional challenges are faced when
using it for precise damage localization (level 2). Although methods are being developed
in order to allow for more precise damage localization in composite structures, the inherent
anisotropy of composite aircraft structures poses challenges [27].

In addition to SHM techniques having an inherent capacity related to specific diag-
nostic or prognostic levels, we must also consider that not all techniques can be used to
monitor all damage types in composite structures [37]. Damage in a composite can be
composed of a variety of different damage types, each with its own impact on the integrity
of the structure. In this regard, the detection of matrix cracking using the previously
mentioned vibration-based damage detection methods is difficult. Namely, the presence
of matrix cracks will only have a minimal impact on the overall structural behavior and
likely be undetectable when using a vibration-based damage detection technique. For the
previous example of an aircraft wing, this means that the local presence of a matrix crack
has no substantial influence on the global wing’s response. Meanwhile, when an AE-based
damage monitoring technique is used, it is possible to detect and identify matrix cracks as
AE is sensitive to matrix cracking.

Additionally, when considering the final structural application, in our case, composite
aircraft structures, certain SHM techniques can be more appropriate than others. Namely,
based on its application, different needs are established for each SHM level. A way in which
the application influences the requirements can for example be seen when considering
the moment of detection. If the damage caused by unexpected impact events, such as a
tool-drop during maintenance or a hailstone impact, must be observed at their moment
of occurrence, it requires a continuous monitoring approach and one might select the
inclusion of a passive SHM technique over an active one. On the other hand, if there
is a need to monitor structural degradation over a longer time period, such as after a
set number of operational flights, one might choose a different technique that does not
require continuous monitoring, but instead relies on fixed-interval measurements to allow
for time-wise comparisons. A third example in which the aerospace application poses
requirements on the to-be-used SHM technique originates from the minimum damage size
that should be detected. Namely, certification documents can indicate at which damage
size further maintenance actions are required. Consequently, the SHM methodologies
incorporated in the aircraft’s health management system must be able to detect and assess
the damage state in the structural part before reaching this critical limit, thereby imposing
lower-level requirements for each damage assessment level. In essence, for any SHM
methodology to be a viable damage monitoring method for a given application, it must
fulfill the corresponding imposed requirements coming from its application [10].

2.4. The Need for Multi-Sensor Data Fusion

In the previous two sections, we elaborated upon and discussed the limitations of
sensing techniques for application to composite aircraft structures, as well as the aspects of
upscaling techniques towards such aircraft components. We have seen how each sensing
technique has an intrinsic capacity and how a CBM application might pose requirements
on the to-be-employed SHM techniques for the aircraft industry. Moreover, we took a
closer look at the application of SHM techniques and methodologies to larger and complex
component aircraft structures, and how these considerations and challenges might affect
the application of the SHM techniques. Next, we bring these two aspects together and
discuss the complexity of applying SHM for composite structures in aircraft and introduce
our vision of the need for multi-sensor data fusion concepts.

The damage formation in composite aircraft structures used in aircraft during opera-
tion is complex and may consist of a variety of different damage types, including matrix
cracking, delaminations, fiber–matrix interface debonding, fiber pull-out, and fiber break-
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age. Furthermore, when upscaling to larger composite aircraft structures in realistic and
complex loading scenarios as seen during flight, additional failure modes become probable,
such as impact damage, damage in joints, or stiffener–skin debonding in stiffened panels.
Moreover, the probable failure scenarios might differ between subcomponents in the larger
aircraft structure with outer parts being more susceptible to impact damage. Additionally,
due to the larger dimensions of the aircraft, the presence of multiple damages at various
locations becomes a realistic scenario.

When considering a CBM implementation involving composite aircraft structures, one
must consider all of the previously mentioned aspects: a variety of structural components
and a variety of damage modes, as well as the need to include a holistic damage assessment
incorporating both diagnostics and prognostics. The aircraft’s health management system
used in a CBM implementation must be able to address and handle the entire range of
mixtures between structural parts and damage types. It must provide its diagnostic and
prognostic estimates and conclusions with high reliability, high confidence, completeness,
and following certification guidelines. Moreover, due to the high safety levels in the aircraft
industry, high requirements are placed on such an SHM system: deviations from the true
conditions must be minimal and should certainly not have any fatal consequences.

Based on our rhetoric earlier in this section, we can safely conclude that a methodology
based on a single SHM technique will not be able to handle such a broad set of requirements
pertinent to the aircraft industry. The design of the SHM system should not be led by the
SHM technique but rather by the application [10]. There is no ‘one size fits all’; instead,
a combination—a fusion—of SHM techniques and methods must be studied. SHM systems
must be designed that are capable of dealing with this wide range of variety: systems in
which each SHM technique does what it does best and provides the appropriate results for
an aerospace implementation.

For a composite aircraft structure, this might, for example, require an SHM system
that consists of multiple sensing techniques: a vibration-based method for global damage
detection, OF strain sensing for local and precise measurements of delamination growth,
and GW for impact damage sizing. In order to obtain such a system, multi-sensor data
fusion concepts are required, in which data from different sensors are combined in order to
obtain a comprehensive damage diagnostic and prognostic assessment. Next, before contin-
uing our discussion on the possible application and implementation of fusion techniques
in the field of SHM for composite aircraft structures, we first provide a background on the
concepts of multi-sensor data fusion in the next section, Section 3.

3. Multi-Sensor Data Fusion Concepts

The concepts of multi-sensor data fusion aim at combining data from multiple sensors
to obtain an improved outcome with respect to when each sensor is employed individually.
Hereby, advantages such as expanded coverage, increased confidence and reduced ambi-
guity, and redundancy can be expected [11,12]. Before diving further into the opportunities
created by applying multi-sensor data fusion techniques, it needs to be established what
we exactly mean by fusion, which will be discussed first in Section 3.1. This is followed by
Section 3.2, in which two ways of categorizing fusion approaches are considered. Lastly,
Section 3.3 considers the advantages and challenges of applying fusion techniques in more
detail, thereby laying the ground for Section 4 in which the application of multi-sensor data
fusion in the field of SHM for composite aircraft structures is considered.

3.1. Definition of Fusion

Fusion can occur on a variety of levels and from a variety of sources, leading to a
variety of terms and type specifications. Several of these terms, for example, sensor fusion,
data fusion, and multi-sensor data fusion, are used by researchers, often in an interchange-
able manner. Moreover, a variety of definitions for the term fusion exists in literature, yet
each one describes a similar underlying concept [56]. In this work, we define the concept
of fusion by combining two definitions, namely that proposed by Bostrom [56] and by
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Dasarathy [57], and present it as follows:

“Fusion is the study of efficient methods for automatically or semi-automatically
transforming information from different sources and different points in time into
a representation that provides effective support for human or automated decision
making”, “such that the resulting decision or action is in some sense better [...] than
would be possible, if these sources were used individually without such synergy ex-
ploitation.” [56,57]

In this study, the focus lies on the fusion of sensor data obtained from multiple sensors,
which can include sensors from either similar or different SHM techniques. We will refer to
this concept using the terms ‘multi-sensor data fusion’ or ‘fusion’ in short. Note that in this
regard, we do not focus on the aspects of single-sensor temporal-based fusion, in which
data from a single sensor at different time instances are fused, though the application of
such methodologies can be inherent to the considered SHM subjects.

3.2. Fusion Characterization

Fusion techniques can be conceptually assessed in different manners and no single
course exists due to the variety of applications. For example, one can classify based
on sensor relations [58], input–output relations [59], or representation level [60], or by
considering different fusion models such as the JDL model [61], Boyd model (OODA
loop) [62], or Omnibus model [63]. Where the latter are of less interest, the first two
categorizations are highly applicable to the topics discussed in this work and are therefore
considered in more detail next.

3.2.1. Fusion Characterization Based on Sensor Relations

Durrant-Whyte [58] presented a classification of sensor fusion techniques based on
the relations between sensors. This resulted in three classes, illustrated in Figure 2, and de-
fined as:

1. Competitive. In competitive fusion, the sensors are used in a competitive fashion
with the sensor outputs providing information on the same part of a system. By com-
paring them, confidence in the output can be increased and robustness is obtained.
An example is two temperature sensors providing independent measurements on the
same system.

2. Complementary. In complementary fusion, sensors are complementary and their
outputs provide information on different parts of a system. Combining them results
in a more complete image of the damage state of a structure. An example is the
monitoring of strain at different locations using several FBGs; their combination
allows for strain monitoring of a complete region of an aircraft structure.

3. Cooperative. In cooperative fusion, sensor data from different sensors are combined
to obtain information that cannot be obtained when using a single sensor. An ex-
ample is digital image correlation (DIC) in which two cameras are used to obtain a
3-dimensional field assessment.



Aerospace 2022, 9, 183 10 of 26

Figure 2. Data fusion characterization based on sensor relations.

3.2.2. Fusion Characterization Based on Input–Output Relations

Dasarathy [59] classified fusion techniques based on the input–output relation. The clas-
sification consists of five levels, defined as follows and summarized in Table 1:

1. DAI-DAO. Raw data, as directly obtained from multiple sensors, are combined
resulting in new fused datasets.

2. DAI-FEO. Raw data from multiple sensors are combined to derive fused features.
3. FEI-FEO. A set of features are combined to form one or multiple new features.
4. FEI-DEO. A set of features are combined in order to obtain an output set on the

decision level.
5. DEI-DEO. Multiple decisions are fused to obtain a new output on the decision level.

Table 1. Data fusion characterization based on input–output relation.

Name In Out

DAI-DAO Data Data
DAI-FEO Data Features
FEI-FEO Features Features
FEI-DEO Features Decisions
DEI-DEO Decisions Decisions

3.3. Benefits and Challenges of Multi-Sensor Data Fusion

A range of advantages can be obtained by applying fusion concepts rather than using
a single sensor. These advantages may include [11,12]:

• Completeness. Different sensors can provide information on different aspects of the
considered structure, hence by fusing their measurements, a more complete image of
the considered structure can be obtained.

• Redundancy. Using multiple sensors can provide redundancy in case they are em-
ployed in a redundant or competitive manner. As such, the negative effects of sensor
failure on the results can be mitigated.

• Improved confidence. The confidence in the results can be increased when several
measurements confirm one another.

• Reduced ambiguity. Fusing data and results can lead to a smaller number of possi-
ble explanations.

• Improved spatial coverage. Spatial coverage can be extended when using multiple
sensors to cover a larger area.

• Improved temporal coverage. Temporal coverage can be improved when sensors are
used for measurements at times when other sensors are unavailable.
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• Increased system reliability. The inclusion of the aforementioned benefits, such as
the redundancy of multiple sensors, can result in an increase in the overall SHM
system reliability.

Although the application of multi-sensor data fusion can bring several benefits, it also
brings additional challenges. These are related to the combination of different datasets or
to the consideration of additional fusion processes and aspects in the SHM system design.
These challenges may include [12,64]:

• Data heterogeneity. Different sensors may record measurements of different properties.
• Spatial alignment. Measurements may be recorded in different coordinate systems,

thereby requiring spatial alignment for fused assessment.
• Temporal alignment. Measurements may be recorded at different time instances,

thereby requiring temporal alignment for fused assessment.
• Sensor reliability. Missing or erroneous data from faulty sensors may affect the

fused results.
• Conflicting data. Measurements of the same property or information derived from

different sensor measurements may be conflicting.
• Data dimensionality. By including additional sensors, the size of the datasets can grow

rapidly, which may require the inclusion of processes aiming at dimensionality reduction.
• Propagation of measurement aspects. Each sensor measurement may have different

levels of, e.g., accuracy, uncertainty, or noise. The propagation of these aspects into
the fused results must be considered.

• Sensor network design. Sensor locations can affect diagnostic or prognostic perfor-
mance, thereby requiring the inclusion of optimal sensor placement studies.

• Selection of fusion methodology/design of fusion process. A wide range of fusion
approaches is available, requiring one to take additional steps into account in the
design of the SHM system (e.g., level of fusion, selection of fusion algorithms).

All in all, although the application of multisensor data fusion can lead to a variety of
advantages, it can also pose challenges and lead to additional design and processing steps.
Nonetheless, with proper preparation and design of the fusion system, one can obtain
several benefits with respect to employing a single sensor. Considerations of its application
in the field of SHM for composite aircraft structures are discussed in the next section.

4. Application of Multi-Sensor Data Fusion for SHM of Composite Aircraft Structures

In this section, we take the previously introduced fusion concepts and consider them
for SHM applications in composite aircraft structures. Hereby, we focus on changes in the
considered aircraft structure (i.e., the upscaling to larger and more complex component
structures) and on the possibilities for holistic damage assessment using multiple techniques
required in the health management system, as discussed in Section 2. The benefits of using
multi-sensor data fusion approaches for SHM of composite aircraft structures are unfolded
and several important additional considerations are outlined.

This section is organized as follows. First, in Section 4.1, the concepts of fusion are
employed to address SHM upscaling for complex aircraft structures. Next, in Section 4.2,
we outline additional points of attention induced by applying fusion techniques, such as
practical and methodological considerations.

4.1. Upscaling

The upscaling to component structures required for applying SHM in the aircraft
industry leads to new requirements for the SHM system, as well as new opportunities
in combination with the application of fusion techniques. Here, we discuss these in
Sections 4.1.1 and 4.1.2, respectively.

4.1.1. New SHM Requirements from Upscaling

The application of an SHM system to composite aircraft structures imposes several
new requirements on such a health management system, specifically on its sensors and
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methodologies. These were discussed in Section 2.1, in which we identified aspects such as
spatial coverage and presence of assembly details. In upscaling to larger, more complex
composite structures including curvature and assembly details, the first aspect to consider
is the spatial coverage of the sensor. It is likely that more sensors of the same type will be
required to cover the complete area. In a multi-sensor setting, these can form a network
in which each sensor monitors a specific area, thereby obtaining an ensemble by fusing
their data in a complementary manner. Dependent on the technique and application,
it can be chosen to allow single-sensor areas to overlap or be adjacent to one another.
When a structure consists of multiple elements, such as a wingbox (shown in Figure 1)
consisting of multiple ribs and stringers, it can also be decided to place sensors on each
of its elements for individual monitoring and subsequently fuse their data for a complete
component assessment.

A second aspect to consider when dealing with component-level aircraft structures
are new assembly details such as bolts and new boundaries for which the inclusion of
fusion concepts in SHM can be of great benefit. These regions are often considered to
be critical areas for the structural integrity of the component and by including multi-
sensor data fusion, a design for an SHM system can be made that monitors such hotspots
specifically in addition to the damage monitoring of the complete component. One can
consider placing additional sensors near such regions, for example, by placing sensors
near the wing-to-fuselage joint, or, more specifically, by placing sensors near a stiffener to
monitor potential disbonding between a stiffener and skin. Subsequently, by employing a
complementary fusion approach, both local regions of interest as such joints and the full
structural component can be monitored simultaneously for damage growth as part of the
health management system.

Both aspects instill the need to perform optimal sensor placement studies, ensur-
ing that full coverage is achieved in terms of spatial coverage and damage monitoring.
The definition of full coverage for a given SHM technique can be fluid in such conditions,
dependent on the application case. Namely, in a multi-type sensor setting, the synergy of
multiple SHM techniques can provide a full damage image whereas the individual sensing
technique only comprises part of the required scope. The need for studies into sensor
placement and their optimization in combination with multi-type sensing approaches for
SHM is discussed in more detail in Section 4.2.1.

4.1.2. New SHM Opportunities from Upscaling

The upscaling to larger aircraft structures also provides several opportunities for SHM
methodologies. A variety of aspects, originating from those discussed in Section 3.3, are
identified, including opportunities for redundancy, completeness of the damage assessment,
higher confidence, and system reliability. Each of these is discussed next.

Redundancy
Firstly, for component aircraft structures, it is possible to include redundancy in SHM

systems. Due to the larger structure, space is available, especially with respect to research
type structures such as coupons, to include more sensors than the minimum needed
to perform damage diagnostics or prognostics. Thereby, it allows for redundancy: if a
sensor fails for whatever reason or provides erroneous data during flight, a diagnostic
and prognostic assessment can still be obtained using the remaining sensors. This can be
of benefit, especially for in-service applications in an operational aircraft. In the aircraft
industry, the safety levels are high and a failing sensor resulting in missing data can be
unacceptable. Yet, as the inclusion of more sensors might also lead to increased weight,
an optimization study on the number and the location of sensors must be conducted in
which a trade-off is made between, on the one hand, the increase in aircraft weight and cost
and, on the other hand, the obtained benefits such as increased redundancy, completeness,
and confidence for the aircraft health management system. For example, such a study was
partially conducted for SHM of a metallic fuselage structure by Dong and Kim [65].

Completeness
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Secondly, as the composite aircraft component structure comes with a larger spatial
area, an opportunity for improved damage assessment arises. Namely, it allows for the
use and implementation of multiple types of SHM techniques. As discussed in Section 2.3,
not all SHM techniques have similar capacities. Thus, when considering a holistic damage
assessment on all four diagnostic SHM levels and prognostics as required for a CBM appli-
cation in the aircraft industry, it can be resourceful to combine multiple SHM techniques
using fusion approaches rather than spending efforts to improve a single SHM technique
to assess all levels, even when their intrinsic capacity might not allow it. In this manner,
the fusion of multiple SHM techniques can lead to completeness in the damage assessment,
thereby using the strength of each technique to its fullest, and to full coverage of the
information needed by the aircraft maintenance engineer during flight operations.

Additionally, it needs to be considered that different SHM techniques monitor different
damage types. If the requirements of the given structural part in the aircraft state that
multiple damage types must be monitored, an improved assessment can be obtained by
fusing the SHM data from two techniques, given the appropriate sensor placement for
their function. This is, for example, demonstrated by Broer et al. [36] who fuse AE and
OF measurements to obtain a full four-level diagnostic assessment for stiffened composite
aircraft wing panels subjected to both impact and fatigue loads. A multi-sensing approach is
also shown by Romano et al. [66], who combine GW and OF measurements for a completer
diagnostic assessment of impact and disbond damage in a similar stiffened composite panel.

Confidence
The use of multiple sensors—either similar or varying types—also allows for improved

confidence in the damage assessment results provided by the aircraft’s health management
system. If sensor data collected by independent sensors confirm one another in either
the diagnostic or prognostic results for a specific structural part, a higher degree of con-
fidence can be obtained. Moreover, for damage diagnostic level 4 ‘severity assessment’
and prognostic RUL estimation, a fusion of sensor data from two techniques monitoring
different damage types into a single health indicator (HI), for example, by means of an
FEI–FEO fusion, allows for immediate assessment of both. The benefits of this are shown
by Eleftheroglou et al. [67], who combine AE and DIC features into a single metric for
RUL estimation.

Reliability
With the previously three mentioned opportunities arising from upscaling from re-

search samples to larger and complex aircraft structures, that is, (1) redundancy, (2) com-
pleteness, and (3) confidence, an additional SHM system benefit can be obtained in terms of
reliability. Aspects such as the redundancy of multiple sensors and robustness against con-
flicting results and interference cause the overall SHM system’ reliability to improve. Final
diagnostic and prognostic results will be less affected by the failure of a single sensor or by
its erroneous data as data from the remaining sensors can be used for substitution, thereby
ensuring high reliability over a longer operational period of the aircraft’s in-service time.

4.2. SHM System Complexity: Practical and Methodological Considerations

When upscaling SHM systems using fusion-based techniques in its application to
(sub)component aircraft structures, the SHM system’s complexity will generally increase
with higher-level structures. Multiple SHM techniques and sensors will be involved
that must work together—without interference—in a single health monitoring system
of the aircraft. Moreover, the fusion of sensor data for diagnostics and prognostics is
accompanied by additional challenges, amongst others, in terms of heterogeneous data
and data alignment. In this section, we lay out these considerations and categorize them
according to their topic, namely related to (1) practicalities, and (2) methodologies and
results, and discussed separately next.



Aerospace 2022, 9, 183 14 of 26

4.2.1. Practical Considerations

When implementing fusion techniques in an SHM system for aircraft structures,
several practical aspects must be addressed. A variety of aspects, originating from the
challenges discussed in Section 3.3, are identified, including data (mis)alignment, acqui-
sition conditions, interference,sensor topology, and data dimensionality. Each of these is
discussed next.

Data alignment
A first consideration to recognize when performing multi-sensor data fusion is data

alignment in terms of both spatial and temporal aspects. Sensors take measurements in a
local coordinate frame and might consider a different acquisition frequency. Consequently,
it is required to transform those measurements to a general reference frame before per-
forming data fusion. Note that this step can be required both for same-type sensors and
for different-type sensors. An example of the need for spatial alignment can be seen when
sensors are placed on different elements of the component, needing transformation to
the common reference frame to assess the entire structural component or even aircraft
structure. An example of the need for temporal alignment can be seen when different
SHM techniques employ a different measurement interval that requires the adjustment
into a common time-based measurement system; for example, when one technique takes
measurements every hour during flight while another technique takes measurements only
during taxiing. Lastly, any applied windowing procedures as part of the methodological
approach must consider the acquisition settings of the individual SHM techniques and
their coherence.

Acquisition conditions
A second aspect to consider is that certain SHM methodologies require similar loading

and environmental conditions when taking sequential measurements. For example, GW
signals are affected by changes in the measurement conditions such as temperature changes,
which can have a significant influence on the performance of the damage models [68].
Hence, if the temperature during measurements cannot be controlled, as is ordinarily the
case when an aircraft is used in operation, one must implement additional compensation
steps in the SHM methodology, such as the one shown by Yue and Aliabadi [69], who devel-
oped a GW temperature variation compensation technique. Alternatively, methodologies
can be developed that can handle SHM data collected under different environmental or
operational conditions, such as the method presented by Vitola et al. [70], who developed
a methodology involving principal component analysis and numerous classifiers (nearest
neighbor, decision trees, and support vector machines) for damage detection by training
the classifiers using GW data collected under various temperature conditions. Furthermore,
transfer learning concepts can aid to limit the number of testing conditions by defining
suitable populations (Section 2.1).

In addition to having to take this into account when designing their health manage-
ment system for the aircraft structure including its incorporated methodologies, one should
also consider this in the aspects of fusing several SHM techniques. Multiple measurements
might have to be made at a similar time or shortly after one another; hence, it might be
preferable if the different techniques are designed to work under similar conditions. For ex-
ample, if one SHM technique is designed to take its active measurements during the taxiing
phase of the aircraft’s flight schedule, it can be practical to define similar requirements
for the second SHM technique. In this manner, combined with the potential inclusion of
compensation techniques into the SHM methodologies, the additional complexity in the
SHM methodologies of the health management system can be minimized.

Interference
This brings us to a third point, namely, that it should also be considered how mea-

surements of one technique might interfere with those of another technique used in a joint
SHM system of an aircraft. For instance, when monitoring an aircraft component both
using GW and AE, the former can be picked up by sensors of the latter system. Hence,
when considering a fusion of the two in a single monitoring system, one must consider
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additional preprocessing steps for AE or a temporal pause in the AE data acquisition during
GW measurements. Moreover, physical changes arising from a sensor failure may lead to
false damage detection by other sensors. In a multi-sensor approach for SHM, this can be
mitigated by including sensor self-diagnosis steps or sensor failure detection algorithms
allowing one to recognize the difference between sensor failure and damage presence. This
could be done based on the collected sensor data, for example, by directly evaluating signal
characteristics or by using unsupervised algorithms for outlier detection [71,72].

Sensor topology
With an increasing number of sensors in an SHM system for larger and more complex

aircraft structures, the importance of sensor topology optimization increases. Namely, it
is not feasible nor practical to apply a large number of sensors as this will directly lead
to greater weight and cost, which is undesirable in applications in the aircraft industry.
Moreover, it will lead to additional complexity in diagnostic and prognostic methodology
development in various aspects, for example, by imposing even higher demands on data
dimensionality reduction techniques, as discussed in the next practical aspect.

Yet, a too low number of sensors, a non-optimized sensor topology configuration,
or an ineffective fusion of different sensing techniques, may lead to reduced performance
of the diagnostic and prognostic methodologies and thereby of the overall SHM system
for the CBM application. Especially in multi-type sensing approaches, complications may
arise; for example, if the location of an OF is moved for the benefit of placing a PZT sensor,
the OF will no longer be able to indicate the presence of damage at its original location,
creating a risk for damage detection performance if not properly compensated for. As such,
optimal sensor placement studies are essential, taking into account the effects of multi-
type sensing systems and their combined configuration, while ensuring effective damage
monitoring capabilities.

Opportunities for effective sensor placement have been demonstrated by various
studies, thereby reducing the number of sensors, optimizing sensor locations, while si-
multaneously ensuring the effectiveness of damage monitoring [73,74]. Compared to
single-type sensor applications, the use of multi-type sensors in a fusion setting can com-
plicate the optimization process due to the increased number of potential configurations
and additional constraints [75]. Although their number is limited, various research has
already shown successful sensor topology optimization in cases involving multi-type
sensors while avoiding redundancy and providing accurate damage assessment [76–78].
Furthermore, with the increased underlying complexity of these multi-type sensor sur-
veys, the application of data-driven artificial intelligence techniques can be of benefit in
terms of higher efficiency, flexibility, and computational costs, compared with traditional
approaches [79–81].

Data dimensionality
A last practical aspect that needs to be noted is data dimensionality. Including multiple

sensors or even multiple SHM techniques, in large aircraft structures, combined with long-
term damage monitoring during flight operations, can cause the size of datasets to grow
exponentially. Moreover, the high dimensionality of data does not always lead to an
improved depiction and may even reduce the performance of the methodologies (curse
of dimensionality). In this regard, one has to consider the inclusion of dimensionality
reduction into the health management system. During the design of the SHM system,
the implementation of data dimensionality reduction can be performed at any instance,
dependent on its application. For example, it may occur directly after the sensor data
are obtained by extracting and storing only predefined features, or it may occur after
some initial processing. Numerous approaches ranging from feature selection to feature
extraction are available for this purpose. On the one hand, feature selection minimizes
the number of features by selecting the ones that are the best fit for a given objective. It
is commonly categorized into filter (based on statistical measures as information gain
or Fisher score), wrapping (dependence on the machine learning algorithm, includes
various selection and elimination approaches as sequential forward selection or backward
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elimination and genetic algorithms), or embedded methods (integration of feature selection
within the machine learning algorithm, includes LASSO and decision trees as random
forest) [82]. On the other hand, feature extraction considers the transformation of features
into new representative features in lower-dimensional spaces using, for example, principal
component analysis or linear discriminant analysis [20].

Additionally, one needs to consider the storage of historical data—which information
is needed for future damage assessments, which parts are of no further interest, and for
which parts only limited information extracted from the initial dataset is required. In this
regard, the selected diagnostic and prognostic methodologies are of great importance
and should be taken into account when designing the data dimensionality reduction
approach, as such considerations heavily depend on the employed SHM techniques and
methodologies, which also pose requirements on the required stored datasets. We can
provide an example by looking at the hyper-feature developed for a prognostic RUL
model. Eleftheroglou et al. [67] designed a hyper-feature from DIC strain and AE data for
composite coupons. After initial data processing to form the hyper-feature, the originally
extracted features from the DIC and AE data are no longer required for RUL estimations
in the prognostic model. Instead, only the hyper-feature values have to be stored and, by
doing so, dataset sizes can be controlled.

4.2.2. Methodology and Results

In addition to practical considerations, several aspects must be addressed regarding
the employed methodologies and results when implementing fusion techniques in a health
management system for the aircraft structure. These aspects are related to data heterogene-
ity, the design of the fusion process, and the differences in data properties from various
SHM subsystems. Each of these is discussed next.

Data heterogeneity
Firstly, if one includes multi-sensor data fusion, one might retrieve either homoge-

neous or heterogeneous data. Methodologies must be selected to fuse these data and
adaptations to diagnostic or prognostic methodologies may be needed, potentially requir-
ing the development of new methods and the creation of new features. Especially when
considering the fusion of heterogeneous data, this is of importance—a translation into a
similar unit might not be viable. In this regard, normalization and standardization steps
can be of interest, though this may have a downside of requiring a priori knowledge of
the potential value ranges and distributions for each sensor. For certain machine learning
algorithms, such as regression or distance-based algorithms, these processing steps are
essential as their diagnostic and prognostic performance will otherwise be affected.

The inclusion of multi-sensor data fusion also provides new opportunities for the
extraction of enhanced features based on heterogeneous data for diagnostic and prognostic
purposes through cooperative fusion compared to single-type technique-based features.
By using training and test datasets, (semi-)supervised learning algorithms can be employed
to optimize feature extraction methods based on objective functions with respect to manu-
ally designed features [83]. The combination of prognostic applications with heterogeneous
data from multi-type sensing approaches sees additional complexity, as a fused feature
must fulfill three crucial objectives defined as monotonicity, trendability, and prognos-
ability [84]. As such, powerful deep learning tools are receiving increased attention, and
various techniques have been applied for feature extraction, including autoencoders and
neural networks [85].

Design of fusion process
A design for the fusion approach is required: fusion can be performed on several

levels, as characterized by Dasarathy [59] and discussed in Section 3.2.2. If we want to
fuse data from similar type sensors throughout an aircraft’s structural component, we
can perform the fusion at every level, ranging from raw-level to decision-level fusion.
However, when the SHM system involves multiple sensor types of which data must
be fused, the raw data fusion levels are no longer feasible. Instead, only a feature or
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decision level fusion is applicable. Moreover in terms of feature-level fusion, various
approaches for designing features are available, ranging from hand-crafted to artificial
intelligence-aided solutions. Due to the complexity induced by considering multi-type
data sources, powerful mathematical tools such as machine or deep learning are attractive
for feature-level fusion, as discussed in the previous paragraph on the consideration of
data heterogeneity. Similarly, the complexity of designing decision-level fusion approaches
may increase through the presence of additional and potentially conflicting data sources,
and can be mitigated through the use of intelligent fusion algorithms, for example, based
on fuzzy logic, adaptive neuro-fuzzy inference, or Dempster–Shafer theory, as shown by
Mikhail et al. [86] and Sun et al. [87].

One must consider, based on the specific goal and methodology for the given aircraft
component, what the best level of fusion for their SHM subsystem case may be. Note
that this may deviate between different types of components in the full aircraft structure.
Such considerations imply the need for optimization studies that consider the objective
or methodological performance to assist in the appropriate selection. In a similar manner
as for feature selection and feature extraction, the inclusion of multi-sensor data fusion
induces additional complexity and the use of data-driven artificial intelligence techniques
may lead to increased effectiveness, simplicity, and computational efficiency.

Data Properties and Conflicting Data
Another aspect of fusing data is that the data from different sensors might be of

different quality. For instance, one technique can provide measurements with higher
confidence, noise levels might be different, or measurement data might be erroneous. These
aspects need to be considered when fusing data because they may affect the diagnostic
and prognostic results. Moreover, one might consider the measurements of one sensor
to be of higher value, requiring the need for a weight-based fusion method in which
measurements of one sensor have a higher influence on the final damage assessment results
and consequently the decisions made in the aircraft health management system. The
importance of one sensor over the other for a given diagnostic or prognostic function might
not always be evident, and the employment of artificial intelligence approaches might
provide clarification. For example, it may be observed that value changes in one sensor
data feature have a large effect on the result, while other feature data or data coming from
other sensors have minimal influence on the outcome of the learning model, and as such
are closely related to the concepts of feature selection.

One might also encounter conflicting data or information: a strategy must be designed
to approach such cases. For example, data from a sensor might indicate the presence of
impact damage in the aircraft nose, while data from a sensor used in a competitive fashion
detect no such impact damage in the same aircraft noise region; or data from one sensing
technique indicate the presence of damage in a certain region, while data from another
type of sensing technique do not. In the design of the aircraft structure’s SHM system,
the handling of such cases must be managed by assessing sensor reliability, sensor specifi-
cations, uncertainty, and error mitigation processes. In these aspects, the consideration of
probabilistic diagnostic and prognostic methods is essential [88].

5. SHM Framework Design for Composite Aircraft Structures

In this section, we aim to showcase what a fusion-based SHM framework might look
like for aircraft structural component monitoring by proposing a first framework towards a
full-level diagnostic and prognostic damage assessment. We develop a conceptual SHM
system for composite aircraft structures assessing all levels using multi-sensor data fusion
techniques. In this framework, we employ multiple SHM techniques in a fusion setting, in
which each technique is used to its fullest capacity. Note that the proposed framework is
discussed on a high level in a conceptual manner, and merely serves to demonstrate the
first indications of the enhanced capabilities of a multi-sensor-based SHM system. To fully
unleash its potential, in-depth research studies are crucial that consist of experimental
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campaigns, detailed diagnostic and prognostic methodology development, and validation
exercises [8,36,50,72,89–98], which are beyond the scope of this work.

The case structure of consideration is a multi-stiffener composite panel: a generic
representative aircraft wing structure in which skin–stiffener debonding and impact dam-
ages are critical damage cases similar to those seen in-service. Next, we first discuss some
of the requirements on the SHM systems that stem from the in-service application and
embodiment of such a component in the aircraft structure. In Section 5.2, we present the
SHM framework and discuss the fusion of selected SHM techniques to allow for a holistic
damage assessment that can be feasible for incorporation in a health management system
for a full aircraft structure.

5.1. Case Study

In this subsection, we present the case study that will be employed to demonstrate
the multi-sensor data fusion SHM framework for composite aircraft structures in the next
subsection. The case structure under consideration is a multi-stiffener composite panel,
which is a generic representation of a realistic composite aircraft wing structure (of which
the design is derived from a wing structure by Embraer) and is shown on the left of
Figure 3. It was selected for this work as an example, as it will serve in future works as the
main case study for the implementation of such a fusion-based framework in a laboratory
setting [8,98]. As part of the full aircraft structure during operation, these types of structures
experience fatigue loads and changes in environmental conditions including humidity and
temperature changes. For these types of composite wing components, critical in-service
damage cases are skin–stiffener debonding, as well as unexpected foreign-object impact
damages such as tool drops and weather events [99].

Figure 3. Multi-stiffener composite panel sensorized with multiple SHM techniques as part of a
multi-sensor data-fusion-based framework for SHM of aircraft structures. The composite panel is a
generic representation of a composite aircraft wing structure. The different SHM sensors are indicated
in both the photo and the schematic of the composite panel using colors and symbols. Additionally,
the critical in-service damages are displayed, where the symbols indicate which SHM technique is
employed to monitor which damage.

From the case study, several requirements can be derived that have an impact on the
design of the SHM framework, mainly stemming from the needs set by the maintenance
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engineer during operational conditions to enable decision-making on further maintenance
actions. Firstly, there is the general requirement for obtaining a full-level damage assess-
ment, which originates from the in-service aerospace application, as discussed in Section 2.2.
This means that all four diagnostic levels must be assessed: (1) damage detection, (2) dam-
age localization, (3) damage type identification, and (4) damage severity, as well as the
prognostic level: RUL estimation. Secondly, there is a requirement to assess various dam-
age types, namely, impact damage, disbonds, and fatigue degradation. Thirdly, there
is a requirement to monitor the full component as fatigue degradation and unexpected
foreign object impacts may occur at every location in the panel, given that the skin acts
as an outside layer. On the other hand, the skin–stiffener disbond can only occur at the
stiffener feet.

5.2. SHM Framework

For the considered case study of a composite wing structural component, we have
designed a conceptual SHM framework, presented in Figure 4, that is capable of assessing
all four diagnostic levels and prognostics. It employs sensor data from four different
SHM techniques, namely, (1) vibration-based method, (2) AE, (3) GW, and (4) distributed
strain sensing, which are also indicated in Table 2, including their sensor types, locations,
and purpose with respect to the damage assessment, as well as in Figure 3, in which the
sensing techniques are linked to the to-be-expected in-service damage types. Combined,
the four sensing techniques are capable of providing a complete image of the damage state
of the considered structure as prescribed by the requirements of the aircraft structural health
management system. Here, multi-sensor data fusion is the key: each technique provides
different information that, when combined, leads to a complete damage assessment within
the structure. The general steps to obtain a full image of the damage state, following the
procedure depicted in Figure 4, are described next.

Table 2. SHM techniques employed for damage state assessment of multi-stiffener composite aircraft
wing structure.

SHM Technique Sensor Type Sensor Location Diagnostic and
Prognostic Purpose

Vibration Optical fibers containing fiber
Bragg gratings Skin Anomaly detection

Acoustic emission Acoustic emission sensors Skin

Global location, damage type
identification, health indicator

(HI) for severity and
prognostics

Guided waves Piezoelectric transducers Skin and stiffener
Precise skin damage

localization and sizing, HI for
severity and prognostics

Distributed strain sensing Optical fibers Stiffener foot
Precise disbond localization

and sizing, HI for severity and
prognostics
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Figure 4. Conceptual SHM framework design for the damage monitoring of a generic representative
composite aircraft wing structure. The framework indicates a damage monitoring system that can
be used for damage detection up to damage prognostics as part of an aircraft’s structural health
management system for condition-based maintenance (CBM) purposes.

5.2.1. Step 1: Anomaly Detection

The first step in the SHM system is to detect anomalies using a vibration-based method.
In Figure 4, this is shown on the top left of the framework. Such a first step is required
to decide on the needs for further, more detailed, analysis: only if there are signs of dam-
age, there is an interest in performing further inspection steps as part of the maintenance
procedure. In our case, anomalies are detected using FBGs by subjecting the structure to
vibrations. In a laboratory setting, such vibrations are artificially induced using an actuator.
However, during service, the natural vibrations of the aircraft, for example, those caused
when starting the engines, can be exploited to assess the full wing structure. The mea-
surements during these vibrations are compared to initially made baseline measurements,
and significant changes in the structural response can be an indication of the presence of
damage. Due to the inherent nature of this technique, it will solely provide an indication,
and for more details on the potentially present damage, additional SHM techniques are
required, as discussed next.

5.2.2. Step 2: Global Damage Location

Only when an anomaly is detected using the vibration-based technique, it is necessary
to consider in more detail the damage characteristics, including where the damage is
located, the identification of the damage type, and how severe the damage is. On the
other hand, if no damage is detected, no unnecessary further inspections are required.
If damage is detected and a larger component is under consideration, such as in our case
study, it is of importance to obtain a global indication of the damage location. Namely,
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a multitude of sensors are attached to the structure (e.g., multiple OF sensors for strain
measurements and PZTs for GW assessment), and it is required to know which sensor
measurements should be employed for further damage analysis to avoid unnecessary
evaluations of undamaged regions and to minimize the size of the collected datasets. In a
full-scale aircraft application, one might also consider this as first identifying the damaged
(sub)component in the full aircraft structure before more in-depth investigation. In our
framework, the damage localization is performed using AE measurements that can be
used to provide a global location of the damage, thereby allowing for the selection of the
appropriate sensor in the damaged region for follow-up analyses. This can be combined
with an AE damage classification step in which the type of damage is identified being, in this
case, either damage to the skin or skin–stiffener disbond, thereby obtaining knowledge on
both diagnostic level 2 (localization) and level 3 (type identification). Subsequently, this
information can be employed to select the appropriate next step in the SHM framework.

5.2.3. Step 3: Detailed Damage Assessment: Skin Damage and Disbond

In the next step, after identifying and approximately localizing the damage in the
structure, the appropriate techniques and sensors can be selected for a close-up assessment.
On the one hand, in case the damage is classified as being skin damage, the GW technique
can be activated to perform a scan using guided ultrasonic waves and thereby detect,
localize, and size the damage in the skin. On the other hand, in case the damage is classified
as a skin–stiffener disbond, fiber optic strain measurements (OF sensors are located along
the stiffener foot) are employed to more precisely localize the disbond and provide a size
estimate. There is also a possibility of a combined case: namely, an impact occurring near
one of the stiffener locations resulting in both skin damage and skin–stiffener disbond.
In the latter case, a fusion of both techniques is required: where the OF sensors provide skin–
stiffener disbond assessment, they will miss any damage present in the skin farther from
the stiffener. The latter will require a GW assessment. Hence, for a complete impact damage
assessment in such cases, a fusion of GW and OF data results is required for impact damage
localization and sizing. As such, incorporating both GW and OF measurements in the SHM
system allows for the collection of detailed characteristics of the propagating damage.

5.2.4. Step 4: Damage Severity

The penultimate step assesses diagnostic level 4 ‘damage severity’ in which the severity
of the damage state of the structure is estimated and, thus, so is its influence on the structural
integrity state of the given aircraft component. For this indication of the damage state in our
case study, measurement data of the AE, GW, and OF sensors is fused on a feature level to
form a new HI. Here, it is hypothesized that a feature-level fusion will lead to a new feature
that is more sensitive to damage than a feature extracted from a single type measurement.
As each technique assesses a different aspect of the structural damage state, a fusion will
allow a full inclusion in the severity assessment. Furthermore, its fusion can result in
greater confidence in our diagnostic severity assessment. The advantages of a feature-level
fusion into a HI have already been discussed by Broer et al. [36], Eleftheroglou et al. [67],
and Galanopoulos et al. [93].

5.2.5. Step 5: Prognostic RUL Estimates

After assessing all diagnostic levels and now having a full image of the damage state
in the aircraft structure, a CBM approach requires the following indication: ‘if this is the
current damage in the composite component and it is continued to be used during oper-
ation of the aircraft, what is its RUL?’ Note that here, RUL is provided with respect to a
predetermined state: for example, this state can be a final failure, a given degradation state,
or a preset damage size. As input to a prognostic model, HIs can be used, either similar to
those used for damage severity or specifically designed for prognostics. For prognostics,
the HIs have to fulfill three characteristics, namely, monotonicity, prognosability, and trend-
ability [67]. Similar to the HI of level 4, we hypothesize that a fusion of all three SHM
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techniques (AE, GW, OF) will allow for an improved and more complete assessment of
the health state with enhanced RUL estimates. The RUL estimate can then be used within
the aircraft health management system for informed decisions on the need for any further
maintenance actions such as repair or replacement, as well as cost-friendly and risk-free
scheduling of such maintenance activities.

6. Conclusions

This work assists in the move towards CBM in the aircraft industry by presenting a
discussion on how multi-sensor data fusion concepts can aid in the maturing of SHM for
composite aircraft structures. Two current challenges needed for CBM implementation in
the aircraft industry were considered: (1) upscaling to (sub)component composite aircraft
structures and (2) assessing all damage diagnostic levels and prognostics in a holistic
damage assessment. The concepts behind multi-sensor data fusion and its benefits for
SHM of composite aircraft structures were analyzed and a conceptual case study into its
application was presented. The following conclusions can be drawn:

• So far, the current challenges for CBM for aircraft structures have not yet been fully
addressed, which hinders its progress towards in-service application. Many points
of attention cannot always be assessed using current research approaches in the
field of SHM for composite aircraft structures, ranging from a simple feature such as
spatial coverage to dealing with new boundaries and assembly details in structural
components, and ranging from the maintenance engineer’s needs to have a full
damage assessment on each diagnostic level and their interconnection to the intrinsic
capacities of each SHM sensing technique;

• Multi-sensor data fusion concepts can be beneficial in addressing challenges in ma-
turing the field of SHM for composite aircraft structures towards CBM inclusion in
the aircraft industry. Multi-sensor data fusion can aid in upscaling to more realistic
composite aircraft structures by, amongst others, increasing spatial coverage and
leading to multi-damage type assessment, and in obtaining a holistic damage assess-
ment on all diagnostic levels and prognostics. Implementing fusion approaches also
provides new opportunities, including the possibility of redundancy and diagnostic
and prognostic performance increases. Including fusion concepts in an aircraft SHM
system also comes with several points of attention, ranging from practical issues,
such as multi-type optimal sensor placement and data dimensionality reduction, to
methodological aspects, such as handling heterogeneous data and selecting appropri-
ate fusion methodologies;

• The potential of a multi-sensor fusion-based approach towards composite aircraft
structures was demonstrated using a conceptual case study on a generic representative
composite aircraft wing structure. The capacity of each SHM technique can be used
most optimally in a synergetic system consisting of multiple techniques, thereby
achieving a holistic damage assessment on all diagnostic and prognostic levels. To fully
distill the benefits and implementation of the multi-sensing framework, a detailed
exercise including methodology development and experimental validation is essential
and should be the topic of future research studies;

• Future research on developing methodologies for SHM with the aim of inclusion in
the aircraft industry should strongly consider the final application. When moving
to more realistic composite aircraft structures and operational flight environments,
fusion concepts can be of assistance in this regard. No single fusion methodology can
be recommended since its selection highly depends on the application characteristics,
the considered component, the SHM techniques, and the user requirements; instead,
a fusion-based SHM system for an aircraft structure must be designed for the problem
at hand.

It is foreseen that applying fusion concepts in the field of SHM for composite air-
craft structures will pave the way for its move towards a CBM implementation in the
aircraft industry.
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