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ABSTRACT 
 

This study investigates the frameworks and challenges of real-time data governance and 
compliance in cloud-native robotics systems, focusing on data integrity, cloud security, regulatory 
adherence, and cybersecurity risks. Using extensive datasets from the Amazon AWS Open Data 
Registry, the EU GDPR Enforcement Tracker, and Kaggle’s IoT dataset, the analysis explores 
cloud-native systems' data accuracy, security, and governance. Data were extracted through a 
standardized process: performance metrics, including latency and error rates, were gathered from 
Amazon AWS to assess system efficiency, GDPR violation records were analyzed from the EU 
Enforcement Tracker to understand compliance trends, and data volume and governance metrics 
from Kaggle’s IoT dataset were correlated to identify governance challenges. Together, these data 
sources provide comprehensive insights into how cloud-native systems can be optimized for real-
time operations. The study highlights the cloud security benefits and governance advantages 
inherent to cloud-native frameworks, such as real-time monitoring, automated threat detection, and 
data encryption, which collectively reduce unauthorized access risks while supporting operational 
efficiency. Findings indicate high data accuracy (0.51% error rate) and low latency (mean of 48.96 
ms) across systems; however, processing time variability (standard deviation of 28.61 ms) signals a 
need for further optimization in time-sensitive environments. The regression analysis of GDPR 
violations reveals a substantial penalty increase of €53,789.41 per violation, emphasizing the 
financial risks of non-compliance. Correlation analysis (r = 0.083 for data volume and                    
governance failures) suggests that external cybersecurity threats have a greater impact on 
governance than internal metrics, underscoring the importance of adaptive governance              
frameworks that support both data integrity and regulatory compliance in cloud-native robotics 
systems. 
 

 

Keywords: Real-time data governance; cloud-native robotics; GDPR compliance; cybersecurity; data 
integrity. 

 

1. INTRODUCTION  
 

The rapid advancement of robotics and 
autonomous systems has significantly 
transformed industries such as manufacturing, 
healthcare, and transportation, and central to this 
transformation is the integration of cloud-native 
technologies, which enable robotic systems to 
utilize cloud-based infrastructure for processing, 
decision-making, and data storage. Cloud 
infrastructure offers scalability, flexibility, and 
real-time data management capabilities, 
essential for robots operating in dynamic 
environments. However, these advancements 
also bring significant challenges in terms of data 
governance and regulatory compliance, 
particularly concerning data integrity, security, 
and privacy. According to Polamarasetti (2021), 
as cloud-native robotics systems grow in 
complexity, ensuring robust data                     
governance frameworks becomes increasingly 
critical. 
 

Data governance in cloud-native robotics 
systems involves managing large volumes of 
diverse data, including sensor inputs, operational 
metrics, and user interactions. The sheer volume 
and velocity of this data pose challenges in 
maintaining its quality, accuracy, and integrity.  

Anumbe et al. (2022) posit that these factors are 
crucial to ensuring that robotic systems make 
optimal real-time decisions. For example, 
Amazon Robotics relies on AWS to manage its 
robot fleets in fulfillment centers, where vast 
amounts of data are processed to streamline 
operations, and any issue with data accuracy or 
latency can have significant operational and 
decision-making consequences (Keung et al., 
2022). 

 
As robotics systems increasingly adopt cloud-
native architectures, concerns over data security 
and privacy become more pronounced. The 
distributed nature of cloud environments requires 
constant data exchange between robots and 
cloud servers, which exposes information to risks 
such as breaches, unauthorized access, and 
cyberattacks. Muhammad et al. (2023) reference 
the 2021 Tesla Model S hack as a case 
demonstrating the vulnerability of autonomous 
vehicles to cyber threats. Similarly, in 2022, data 
breaches at robotics companies in healthcare 
and manufacturing exposed sensitive data 
(George et al., 2024). These incidents showcase 
the need for strict security measures to protect 
real-time data in cloud-native robotics systems 
(Hossain et al., 2024). 



 
 
 
 

Val et al.; J. Eng. Res. Rep., vol. 26, no. 11, pp. 222-241, 2024; Article no.JERR.126182 
 
 

 
224 

 

In cloud-native robotics, robust governance 
frameworks serve as essential safeguards, 
ensuring data security, risk management, and 
operational stability (Hossain et al., 2024; Bakare 
et al., 2024). These frameworks not only uphold 
regulatory compliance but also bolster data 
integrity by implementing controls on data 
access, encryption, and lifecycle management. 
The application of cloud governance standards 
supports organizations in reducing vulnerabilities 
while enabling efficient, secure data flows in real 
time (Bakare et al., 2024; Radanliev, 2024). 
 
Bakare et al. (2024) also highlight the additional 
challenge of compliance with data protection 
regulations, such as the General Data Protection 
Regulation (GDPR) and the Health Insurance 
Portability and Accountability Act (HIPAA). These 
regulations impose strict standards on the 
handling of sensitive data, often collected by 
autonomous systems. For example, Tesla faced 
legal scrutiny in 2023 for collecting customer 
data, including dashcam footage, without proper 
consent. This illustrates the risks of non-
compliance, as Radanliev (2024) states that 
adherence to these regulations is essential to 
maintain legal compliance and public trust in 
cloud-native robotics. 
 
Scalability represents another key factor in the 
effective governance of cloud-native robotics 
systems. These systems are designed to handle 
fluctuating data volumes and operational 
workloads, allowing them to adapt to changing 
demands. Bathla et al. (2022) argue that 
Waymo's self-driving vehicles, which generate 
substantial amounts of data processed in the 
cloud, exemplify the need for scalability. 
However, the growing volume of data presents 
governance challenges. As data volumes 
expand, organizations must ensure that their 
capacity to manage and secure data grows 
accordingly. De Filipii et al. (2020) contend that 
failing to address these governance issues could 
compromise system reliability and security. 
 
Real-time data processing further complicates 
data governance in cloud-native robotics. These 
systems must process and act on data 
instantaneously, often in unpredictable 
environments, creating tension between the need 
for fast decision-making and the requirement for 
rigorous data oversight. Theodorakopoulos et al. 
(2024) suggest that this challenge is particularly 
relevant in systems like Amazon Robotics, which 
rely on real-time data to optimize operations. 
Without strong governance, data inaccuracies or 

delays could lead to operational inefficiencies 
and safety risks. Thus, according to Radanliev 
(2023), robust governance practices are 
essential for maintaining both accuracy and 
efficiency in real-time environments. 
 
Technologies such as artificial intelligence (AI), 
machine learning (ML), and edge computing are 
introducing new complexities to data 
governance. Though these technologies 
enhance the capabilities of robotics systems, 
they also present additional risks related to data 
accuracy and security. Dwivedi et al. (2021) posit 
that the rapid pace of technological advancement 
necessitates ongoing updates to governance 
frameworks to address these challenges.  
Without continuous reassessment, governance 
frameworks may become outdated, leaving 
systems vulnerable to emerging risks. 
 
Data integration and interoperability also pose 
significant challenges in cloud-native robotics, as 
these systems rely on diverse data sources, 
including cloud infrastructures and on-device 
sensors, which must work together seamlessly to 
support decision-making. However, ensuring the 
quality, consistency, and accuracy of this data is 
challenging due to potential issues such as 
sensor noise, network latency, and data 
anomalies. Radanliev (2024) argues that 
developing robust governance frameworks to 
manage the integration of diverse data streams 
is critical for maintaining data accuracy and 
consistency. 
 
Addressing these challenges requires a 
multifaceted approach that combines 
technological solutions, organizational policies, 
and regulatory compliance. Radanliev (2024) 
asserts that organizations must implement best 
practices in data governance, such as real-time 
monitoring, encryption, and automated data 
validation, to ensure the secure and efficient 
operation of cloud-native robotics systems. As 
these systems become increasingly integrated 
into various industries, Kaplan (2020) asserts 
that the development of advanced governance 
frameworks will be essential for mitigating risks 
and maintaining system reliability. 
 
The rapid adoption of cloud-native robotics 
systems introduces complex challenges for data 
governance frameworks, particularly in the face 
of escalating cybersecurity threats. As these 
systems handle vast, real-time data transfers 
between cloud and edge devices, they become 
highly susceptible to unauthorized access and 
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data breaches, which can lead to significant 
governance failures. Addressing these 
vulnerabilities requires a rethinking of current 
governance practices to prioritize both data 
security and compliance, ensuring operational 
integrity in cloud-native robotics environments. 
Therefore, this study aims to explore and 
evaluate the frameworks, challenges, and best 
practices for implementing real-time data 
governance and compliance in cloud-native 
robotics systems; the study achieves the 
following objectives:  
 

1. Examines the key principles of real-time 
data governance in cloud-native robotics 
systems. 

2. Analyses the regulatory frameworks and 
compliance standards that impact cloud-
native robotics systems. 

3. Identify and assess the challenges 
associated with integrating real-time data 
governance practices in cloud-native 
robotic operations and propose potential 
solutions to address these challenges. 

4. Develops a framework of best practices for 
implementing effective data governance 
and ensuring compliance in real-time 
cloud-native robotics systems. 

 

2. LITERATURE REVIEW  
 
Real-time data governance is essential for the 
efficient functioning of cloud-native robotics 
systems, ensuring the accuracy, security, and 
reliability of the data driving these technologies. 
In this context, data governance refers to a 
framework of policies, processes, and standards 
that manage data availability, usability, integrity, 
and security. Das and Mukherjee (2024) argue 
that given the dynamic nature of cloud-native 
robotics, where real-time decision-making is 
critical, maintaining data integrity and security is 
paramount because errors in data can result in 
flawed decisions, leading to operational 
inefficiencies and safety risks. Thus, real-time 
data governance plays a crucial role in mitigating 
such risks. 
 
The core principles of real-time data governance 
include ensuring data quality, integrity, accuracy, 
and security, and according to 
Theodorakopoulos et al. (2024), these factors 
guarantee that robotic systems can depend on 
consistent and uncorrupted data to function 
optimally. Konstas et al. (2023) posit that any 
deviation in data quality or accuracy may lead to 
faulty decision-making, thereby negatively 

impacting operations. Integrity, on the other 
hand, ensures that data remains consistent and 
untampered throughout its lifecycle. At the same 
time, security safeguards it against unauthorized 
access, especially in the face of increasing cyber 
threats targeting cloud-based systems (Mateen 
et al., 2023; Adigwe et al., 2024). 
 
A notable example of the importance of real-time 
data governance can be observed in Amazon 
Robotics, which utilizes cloud-native 
infrastructure to manage its robotic fleet in 
fulfillment centers. Sheu and Choi (2022) aver 
that these robots rely heavily on real-time data 
streams for tasks such as inventory management 
and order fulfillment and data errors, such as 
incorrect inventory counts or sensor anomalies, 
could disrupt operations, which emphasizes the 
need for robust data governance (Majeed & 
Hwang, 2024; Akinola et al., 2024). Aldoseri et 
al. (2023) note that Amazon employs data quality 
checks, anomaly detection algorithms, and real-
time validation techniques to mitigate these risks 
and maintain operational efficiency. 
 
The integration of emerging technologies such as 
artificial intelligence (AI), machine learning (ML), 
and edge computing has further enhanced the 
complexity of data governance frameworks 
(Bourechak et al., 2023; Arigbabu et al., 2024). 
Although AI and ML can automate data quality 
checks and optimize decision-making processes, 
they also introduce new challenges, particularly 
when it comes to ensuring that these models 
function correctly (Aldoseri et al., 2023; Whang et 
al., 2023; Arigbabu et al., 2024). Seng et al. 
(2022) contend that the effectiveness of these 
models depends on high-quality, accurate data. 
Moreover, edge computing, which processes 
data closer to its source to reduce latency, 
enhances real-time responsiveness but adds 
complexity to governance frameworks by 
increasing the number of data collection points, 
making secure oversight more challenging 
(Carvalho et al., 2021; Asonze et al., 2024). 
 
Cloud governance frameworks, including policies 
on data access, classification, and encryption, 
play an integral role in managing risks within 
robotics systems. Such policies provide 
standards that support data integrity, enhance 
transparency, and mitigate unauthorized access 
risks in cloud-native infrastructures (Carvalho et 
al., 2021; Chelliah & Surianarayanan, 2021). By 
setting these rules, organizations can better align 
their operations with compliance requirements, 
as well as secure data in distributed cloud and 
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edge environments where data transfers are 
rapid and frequent. As cloud-native robotics 
systems develop, the frameworks governing their 
data must evolve accordingly (Chelliah & 
Surianarayanan, 2021; Igwenagu et al., 2024). 
The vast volume and rapid generation of real-
time data by robotic systems intensify the 
challenges of maintaining consistent quality and 
security. Artificial intelligence (AI), machine 
learning (ML), and edge computing are offering 
opportunities to automate and improve 
governance processes, but they also require 
careful management to address the complexities 
they introduce. Johnson et al. (2024) argue that 
the scalability of governance frameworks is 
essential, as they must not only meet current 
demands but also accommodate the increasing 
complexity of real-time data environments, and 
this ensures that robotic systems continue to 
function efficiently and securely amid advancing 
technological developments (Licardo et al., 2024; 
Joeaneke et al., 2024). 
 

2.1 Cybersecurity in Cloud-Native Robo-
tics Systems 

 
Cybersecurity is a critical concern for cloud-
native robotics systems due to their increasing 
exposure to threats ranging from data tampering 
to unauthorized control of operations. These 
systems, with their interconnected structure and 
real-time data transmission, face heightened 
vulnerability to cyberattacks (Shandilya et al., 
2024; Uddin et al., 2024; Joeaneke et al., 2024). 
Tuyishime et al. (2023) argue that cloud-native 
systems' continuous data exchange between 
robots and cloud servers expands the potential 
attack surface, thereby increasing the risks of 
data breaches, unauthorized access, and 
operational failures. While this persistent flow of 
data is essential for real-time decision-making, it 
also presents significant security challenges 
(Silva et al., 2017; John-Otumu et al., 2024). 
 
The distributed nature of cloud-native systems 
further worsens their susceptibility to 
cyberattacks. Attackers can alter or intercept 
data before it reaches its intended destination, a 
scenario that can severely disrupt real-time 
applications (Udayakumar & Anandan, 2024; 
Marquis et al., 2024). According to Shahid et al. 
(2022), delays or inaccuracies in data 
transmission caused by such attacks can 
compromise decision-making processes, 
particularly in sensitive settings like healthcare, 
where a compromised robot transmitting patient 
data could lead to incorrect diagnoses or 

treatments. Therefore, Saurabh et al. (2024) 
contend that robust cybersecurity frameworks 
incorporating real-time monitoring and advanced 
intrusion detection systems (IDS) are essential to 
mitigate these risks. Encryption is another key 
component, ensuring data integrity and 
confidentiality by making it more difficult for 
attackers to manipulate or intercept sensitive 
information (Liu, 2022; Ogungbemi et al., 2024). 
 
The integration of artificial intelligence (AI) and 
machine learning into cybersecurity frameworks 
has marked a significant advancement in 
securing cloud-native robotics systems. AI-driven 
security systems, as Goswami (2024) avers, can 
analyze large volumes of real-time data and 
detect anomalies more efficiently than traditional 
methods. These systems learn from previous 
attack patterns, enabling them to anticipate 
future threats and provide proactive defense 
mechanisms (Tahmasebi, 2024; Okon et al., 
2024); machine learning models, as they 
continuously adapt to new attack strategies, offer 
a critical advantage in unpredictable 
environments, such as autonomous vehicles 
(Bathla et al., 2022; João et al., 2023). Joao et al. 
(2023) posit that AI-based security frameworks 
offer a faster and more adaptive defense against 
evolving cyber threats, which improves the 
protection of critical robotics operations. 
 
However, despite these advancements in 
security technologies, Kafhali et al. (2021) 
acknowledge that the implementation of these 
mechanisms can be challenging; standard 
practices such as encryption, multi-factor 
authentication, and key management are 
essential, yet integrating them into real-time 
systems often encounters obstacles related to 
latency and processing power (Khan et al., 2023; 
Oladoyinbo et al., 2024). Wang et al. (2022) 
contend that real-time encryption, while 
necessary for securing data, can slow data 
transmission, which is detrimental to time-
sensitive systems like industrial robots or 
autonomous vehicles. As the 2021 Tesla Model 
S hack demonstrated, failure to keep pace with 
evolving threats emphasizes the importance of 
continuously updating security mechanisms and 
applying multi-layered defense strategies to 
protect these systems from emerging risks 
(Muhammad et al., 2023; George et al., 2024; 
Olaniyi, 2024). 
 
Case studies in this field illustrate the successes 
and challenges of securing cloud-native robotics 
systems (Chelliah & Surianarayanan, 2021; Liu 
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et al., 2024; Olaniyi et al., 2024). Gundu et al. 
(2023) contend that Amazon Robotics, for 
instance, has successfully implemented robust 
encryption protocols and real-time IDS to secure 
its operations in fulfillment centers. On the other 
hand, the vulnerabilities exposed in the Tesla 
autonomous vehicle hack highlight the need for 
constant vigilance and the regular updating of 
security measures to address new threats. These 
examples, according to Abdelkader et al. (2024), 
highlight the importance of rigorous security 
testing and the implementation of comprehensive 
defense strategies to guard against cyberattacks. 
 
Cybersecurity in cloud-native robotics remains an 
ongoing challenge due to the real-time nature of 
data transmission and the increasing 
sophistication of cyberattacks (Kumari et al., 
2024; Olaniyi et al., 2023). While encryption, IDS, 
and AI-driven monitoring systems provide 
significant defenses, Sahu et al. (2024) argue 
that continuous improvements in both offensive 
and defensive cyber technologies are necessary 
to safeguard the integrity and confidentiality of 
these systems. 
 

2.2 Challenges in Integrating Real-Time 
Data Governance 

 
The integration of real-time data governance 
within cloud-native robotics systems presents 
several challenges, with cybersecurity remaining 
a primary concern. Muhammad et al. (2023) 
argue that the 2021 Tesla Model S hack 
exemplifies the serious risks cyberattacks pose 
to autonomous systems, emphasizing the need 
for robust data protection protocols. In real-time 
operations, any breach can immediately affect 
system functionality and public safety, as these 
systems rely heavily on continuous data 
transmission. Ensuring the confidentiality, 
integrity, and availability of such data is critical, 
and Radanliev (2024) contends that the dynamic 
nature of real-time data governance amplifies 
these risks, so systems must handle substantial 
volumes of data while adhering to strict security 
standards. 
 
Cloud-native robotics systems rely on a 
distributed architecture, often combining cloud 
computing with edge processing to optimize data 
flow and reduce latency. Within this framework, 
data governance is applied through multiple 
layers, including centralized cloud policies and 
decentralized edge protocols that regulate data 
transfer, storage, and access (Muhammad et al., 
2023; Radanliev, 2024; Bathla et al., 2022). 

Compliance challenges arise particularly in 
distributed systems, where data transfers 
between cloud servers and edge devices must 
adhere to stringent standards to prevent 
unauthorized access. Implementing these 
governance frameworks requires balancing data 
integrity and real-time responsiveness, especially 
under regulations such as GDPR. 
 
Scalability also poses a significant challenge in 
real-time data governance, particularly for 
systems managing large quantities of data. For 
example, Bathla et al. (2022) highlight that 
Waymo's self-driving vehicles generate vast 
amounts of real-time data, making it more difficult 
to maintain governance standards such as data 
accuracy and reliability. As systems scale, the 
speed at which data is processed becomes a 
concern, as it may affect the enforcement of 
governance protocols. Pestana and Sofou (2024) 
assert that real-time systems must balance the 
urgency of decision-making with the necessity of 
upholding governance standards, as delays in 
processing or data verification can lead to 
operational inefficiencies and, more critically, 
safety risks. The tension between speed and 
control, particularly in fast-paced environments, 
highlights the complexities of real-time data 
governance (Nudurupati et al., 2022; Olaniyi et 
al., 2024). 
 
Latency and reliability further complicate the 
implementation of real-time data governance in 
cloud-native robotics systems. Latency, defined 
as the delay between data transmission and 
processing, can have significant consequences 
for data accuracy and integrity (Khan et al., 2023; 
Oladoyinbo et al., 2024); Gundu et al. (2023) 
posit that this issue is especially critical in 
systems such as Amazon Robotics, where real-
time data processing optimizes operations in 
fulfillment centers (Angel et al., 2021). Delays in 
data transmission may lead to operational 
inefficiencies, such as inaccurate inventory 
counts or disruptions in order fulfillment 
processes. Angel et al. (2021) argue that 
reducing latency without compromising 
governance standards necessitates 
advancements in cloud infrastructure and 
governance frameworks. However, the challenge 
remains in balancing data accuracy with the 
speed required for real-time operations 
(Hartmann et al., 2019; Olateju et al., 2024). 
 
The integration of diverse data sources within 
cloud-native robotics systems introduces 
additional complexity to real-time data 
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governance. These systems often rely on 
multiple data streams, including those from 
sensors, cloud servers, and edge computing 
devices. Polamarasetti (2021) contends that 
while such integration supports operational 
efficiency, there are often risks related to data 
quality, consistency, and accuracy. 
Discrepancies in data formats or transmission 
speeds between sources can result in errors, 
ultimately affecting system performance (Mahin 
et al., 2021; Salami et al., 2024). Zhao et al. 
(2024) aver that inconsistencies in sensor data or 
delays in processing can cause autonomous 
systems to make inaccurate decisions, thereby 
the potential for operational failures. 
 
Addressing these challenges requires a diverse 
approach to real-time data governance. Chang et 
al. (2022) suggest that this includes the 
development of security protocols specifically 
tailored to real-time systems, improvements in 
cloud infrastructure to minimize latency, and the 
adoption of advanced data integration 
techniques to ensure data consistency and 
accuracy. Case studies, such as Amazon 
Robotics, demonstrate the importance of 
addressing governance challenges to avoid 
inefficiencies in operations (Muhammad et al., 
2023; George et al., 2024; Samuel-Okon et al., 
2024). As real-time data governance becomes 
increasingly critical in cloud-native robotics, 
Radanliev (2024) posits that advancements in 
cybersecurity measures and data integration 
technologies will be vital to mitigating                          
risks and enhancing the reliability of these 
systems. 
 

2.3 Best Practices for Data Governance 
and Compliance 

 
Establishing an effective data governance 
framework is critical for managing the 
complexities of real-time data in cloud-native 
robotics systems. These systems handle vast 
amounts of dynamic data, requiring governance 
frameworks that ensure data quality, integrity, 
security, and compliance with relevant 
regulations. According to Theodoropoulos et al. 
(2023), the growing complexity of cloud-native 
environments necessitates governance 
structures that can accommodate rapid data 
processing while maintaining strong protections 
against cybersecurity threats. Industry best 
practices emphasize the importance of real-time 
monitoring, data validation, and adherence to 
compliance standards to secure these systems 
(Daousis et al., 2024; Samuel-Okon et al., 2024). 

A comprehensive approach to data governance 
is essential, one that integrates regular audits, 
data validation processes, and continuous 
improvement strategies to adapt to both 
technological and regulatory changes. Suleski et 
al. (2023) posit that encryption, in conjunction 
with multi-factor authentication (MFA), is crucial 
for reducing the risks of unauthorized access and 
data tampering. The 2021 Tesla Model S hack 
highlights the importance of regular security 
assessments and proactive measures to mitigate 
potential threats. Pestana and Sofou (2024) 
argue that strengthening data protection through 
encryption and real-time monitoring enables 
organizations to detect and respond to threats 
before they escalate. 
 
The integration of automation, artificial 
intelligence (AI), and edge computing is 
becoming increasingly important in enhancing 
data governance frameworks (Radanliev, 2024; 
Ugonnia et al., 2024); automation simplifies 
routine governance tasks such as data validation 
and anomaly detection. AI-driven systems, as 
Sarker (2022) contends, can analyze vast 
amounts of real-time data and identify potential 
security risks more effectively than traditional 
methods. Moreover, AI’s ability to learn from past 
incidents improves threat detection, enabling a 
more proactive approach to cybersecurity; edge 
computing, which processes data closer to the 
source, reduces latency, and improves data 
security by limiting the transmission of sensitive 
information across networks. The combination of 
AI and edge computing offers a viable solution 
for managing real-time data governance by 
balancing the need for speed with strict security 
measures. 
 
In addition to technological solutions, 
organizational policies play a critical role in 
ensuring compliance with regulatory standards. 
Regulations such as the General Data Protection 
Regulation (GDPR) and the Health Insurance 
Portability and Accountability Act (HIPAA) 
impose strict requirements on data handling. 
Kaplan (2020) argues that these regulations 
necessitate clear data management policies that 
prioritize both security and transparency. Regular 
compliance audits, staff training, and well-defined 
incident response procedures are essential 
components to ensure organizations meet 
regulatory obligations and effectively protect 
sensitive data. 
 
Best practices for data governance in cloud-
native robotics systems revolve around several 
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key strategies. First, organizations should adopt 
scalable governance frameworks capable of 
accommodating growing data volumes without 
compromising oversight; Sargiotis (2024) posits 
that this can be achieved by implementing 
automated tools for real-time monitoring and 
anomaly detection. Second, integrating AI and 
edge computing can reduce latency while 
enhancing security, and encryption alongside 
MFA should be standard practice to protect 
sensitive data. Finally, establishing governance 
policies aligned with industry regulations ensures 
that organizations can securely manage real-time 
data while adhering to evolving standards. By 
implementing these best practices, organizations 
can address the challenges posed by scalability, 
security, and compliance in real-time cloud-
native robotics systems; this comprehensive 
approach not only improves data governance but 
also enhances system reliability, helping 
organizations mitigate risks and maintain 
operational efficiency in an increasingly complex 
technological environment. 
 

3.  METHODOLOGY 
 
This study uses a quantitative research design, 
relying on publicly available data to analyze real-
time data governance and regulatory compliance 
in cloud-native robotics systems. The 
methodology addresses the study’s objectives 
through targeted statistical techniques applied to 
specific datasets. 
 
For the first objective, performance data on 
latency, processing time, and error rates was 
sourced from the Amazon AWS Open Data 
Registry. Descriptive statistics were applied to 
summarize central tendencies, variability, and 
distribution. The mean (μ\muμ) was calculated 
as: 
 

𝜇 =
 1

𝑁
∑ 𝑥1

𝑛

𝑖=1

 

 
where n is the number of observations and 𝑥1 
each metric. Standard deviation (σ) was 
computed to measure variability: 
 

𝜎 =  √{
1

𝑛
∑ (𝑥𝑖 − 𝜇)2

𝑛

{𝑖=1}

}  

 
Additionally, kurtosis and skewness were 
calculated to assess the distribution's shape.  

Kurtosis was computed as: 
 

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠

=
𝑛(𝑛 + 1)

(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)
∑

(𝑥𝑖 −  𝜇)4

𝜎4

𝑛

𝑖=1

−  
3(𝑛 − 1)2

(𝑛 − 2)(𝑛 − 3)
 

 
and skewness as: 
 

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  
𝑛

(𝑛 − 1)(𝑛 − 2)
∑

(𝑥1 −  𝜇)3 

𝜎3

𝑛

𝑖=1

 

 
These measures provided a detailed 
understanding of data stability and potential 
outliers in system performance. 
 
For the second objective, data on GDPR 
violations and penalties was obtained from the 
EU GDPR Enforcement Tracker. A linear 
regression analysis was used to model penalties 
(yyy) as a function of violations (xxx) using the 
equation: 
 

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜖  
 
where β0 is the intercept, β1 the slope, and ϵ the 
error term. This quantified the financial impact of 
non-compliance with GDPR. 
 

For the third objective, which assessed data 
volume, latency, and governance failures, data 
from Kaggle's IoT and Cloud Data Governance 
Dataset was analyzed using Pearson’s 
correlation coefficient (r): 
 

𝑟 =
∑(𝑥𝑖 − 𝑥ˉ)(𝑦𝑖 − 𝑦ˉ)

√∑(𝑥𝑖 − 𝑥ˉ)2(𝑦𝑖 − 𝑦ˉ)2
 

 

This identified relationships between variables to 
highlight governance challenges in cloud-native 
robotics. 
 

4.  RESULTS AND DISCUSSION 
 

The analysis of cloud-native systems focused on 
performance metrics—latency, processing time, 
and error rates—to understand their role in real-
time data governance. 
 

The average latency was 48.96 ms with a 
standard deviation of 9.08 ms, indicating 
generally stable data transmission speeds 
necessary for real-time robotic operations. 
However, slight variability suggests potential 
delays in some instances (see Fig. 1). 
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Processing time averaged 200.67 ms with higher 
variability (standard deviation of 28.61 ms), 
indicating occasional fluctuations in data 
processing efficiency. This variability highlights 
the need for improvements in time-critical 
environments. The maximum observed 
processing time was 281.61 ms, which could 
affect operations requiring immediate response 
(see Table 1). 
 

The error rate remained low, averaging                     
0.51% with minimal fluctuations (standard 
deviation of 0.11%), demonstrating high                    
data accuracy and reliability, crucial for               
decision-making in real-time operations (see            
Fig. 2). 
 

Further analysis of the data distribution revealed 
that latency and error rates were consistently 
stable, as shown by skewness values close to 
zero and low kurtosis, indicating symmetrical and 
near-normal distributions. Processing time, 
however, showed more variation, reflected in 
higher standard deviation and broader spread 
(see Table 2). 
 

The Box Plot in Fig. 1 highlights the controlled 
range of latency and error rates, while 
processing time demonstrates greater variability. 
The Violin Plot in Fig. 2 shows the concentration 
of latency and error rate values around their 
means, reinforcing their stability, whereas 
processing time displays more spread. 

Table 1. Descriptive statistics for key cloud performance metrics.
 

Statistic Latency (ms) Processing Time (ms) Error Rate (%) 

Mean 48.96 200.67 0.51 
Standard Deviation 9.08 28.61 0.11 
Min 23.80 142.44 0.18 
Max 68.52 281.61 0.89 

 
Table 2. Additional metrics (standard deviation, kurtosis, and skewness) 

 

Metric Latency (ms) Processing Time (ms) Error Rate (%) 

Standard Deviation 9.08 28.61 0.11 
Kurtosis -0.10 0.28 -0.36 
Skewness 0.13 -0.02 0.02 

 

 
 

Fig. 1. Box Plot of latency, processing time, and error rate 
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Fig. 2. Violin plot showing the distribution for latency, processing time, and error rate 
 

This finding indicates that cloud-native robotics 
systems maintain strong data accuracy (low error 
rates) and generally consistent latency, which 
are essential for real-time governance. However, 
variability in processing time suggests potential 
areas for optimization to enhance system 
efficiency in time-sensitive environments. 
 

4.1 Regulatory Frameworks and Comp-
liance Standards that Impact Cloud-
Native Robotics Systems 

 
The analysis of regulatory compliance for cloud-
native robotics systems, based on GDPR 
violations and penalties, provides insights into 
the financial impact of non-compliance with data 
protection laws. The regression analysis 
demonstrates a clear relationship between the 
number of violations and the penalties imposed 
on companies. 
 
As shown in Table 3, the regression model 
reveals a slope of €53,789.41 for each additional 
violation, meaning that for every GDPR violation, 
the penalty increases by this amount. The 
intercept is -€888.24, suggesting a baseline 
penalty near zero in the absence of violations. 
 
This linear relationship is visualized in Fig. 3, 
where the scatter plot displays the actual 
penalties imposed on companies for various 
numbers of GDPR violations. The regression line 

(in red) indicates the predicted penalties, 
confirming the trend that higher violations result 
in significantly higher penalties. 
 
Table 3. Regression analysis results showing 

the relationship between GDPR violations 
and penalties 

 

Variable Coefficient 

Intercept -€888.24 
Violations €53,789.41 

 
The residual plot (shown in Fig. 4) highlights the 
differences between actual and predicted 
penalties, with most residuals clustering near 
zero. This suggests that the regression model is 
a good fit for predicting penalties based on 
violations. However, some residuals deviate 
slightly from zero, indicating areas where the 
model’s predictions were either slightly higher or 
lower than the actual penalties imposed. 
 
These findings demonstrate the significant 
financial consequences of GDPR violations for 
cloud-native robotics systems. The penalties 
increase steeply with each violation, highlighting 
the importance of strict data governance and 
compliance mechanisms. Failure to adhere to 
regulatory standards, such as GDPR, not only 
affects the legal standing of a company but also 
has direct financial implications that can 
accumulate quickly with repeated violations. 
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Fig. 3. Scatter plot of GDPR violations and penalties, with a regression line showing the 
positive correlation 

 

 
 
Fig. 4. Residual plot showing the differences between actual and predicted penalties for GDPR 

violations 
 

4.2 Challenges Associated with Integra-
ting Real-Time Data Governance 
Practices in Cloud-Native Robotic 
Operations 

 
The integration of real-time data governance 
practices in cloud-native robotic operations 
presents several challenges. The correlation 
analysis focused on understanding the 
relationships between data volume, system 

latency, and governance failures in these 
systems, providing insights into how these 
factors affect governance performance. 
 
As shown in Table 4, the correlation between 
data volume and governance failures is weak (r = 
0.083), suggesting that the volume of data 
handled by the system has minimal direct impact 
on governance failures. Similarly, the correlation 
between latency and governance failures is also 
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weak (r = 0.078), indicating that while higher 
latency may marginally contribute to governance 
failures, it is not a significant driver of failures. 
 
The heatmap in Fig. 4 provides a visual 
representation of the correlation matrix, where 
the colour intensity reflects the strength of the 
relationships between the variables. The 
heatmap confirms that there are no strong 
correlations between the variables, reinforcing 
the idea that neither data volume nor                     
latency plays a substantial role in governance 
failures. 
 
Additionally, a scatter matrix (see Fig. 5) was 
used to explore the relationships between these 
variables further. The scatter plots illustrate the 
spread of values for each pair of variables, with 
no evident patterns suggesting strong 

associations. This visual analysis supports the 
conclusion that these challenges are 
independent of one another in cloud-native 
systems. 
 
The bubble chart in Fig. 6 presents the 
relationship between latency and governance 
failures, with data volume represented by the 
size of the bubbles. The chart reinforces the 
weak correlation between latency and 
governance failures while demonstrating that 
varying data volumes do not significantly alter the 
pattern of governance failures. 
 
This finding indicates that while governance 
challenges (latency and data volume) are 
present in cloud-native robotic operations, they 
do not have a strong or direct impact on 
governance failures.  

 
Table 4. Correlation matrix of data volume, latency, and governance failures 

  
Data Volume (GB) Latency (ms) Governance Failures 

Data Volume (GB) 1.000 -0.150 0.083 
Latency (ms) -0.150 1.000 0.078 
Governance Failures 0.083 0.078 1.000 

 

 
 

Fig. 5. Heatmap visualizing correlations between data volume, latency, and governance 
failures 
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Fig. 6. Scatter matrix showing relationships between data volume, latency, and governance 
failures 

 

 
 

Fig. 7. Bubble chart showing latency vs. governance failures, with bubble size representing 
data volume 
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4.3 Discussion  
 
The findings from this study provide important 
insights into the real-time data governance 
challenges in cloud-native robotics systems, 
highlighting the regulatory compliance 
requirements that affect these operations. These 
results are analyzed within the context of the 
background and the existing literature, 
addressing the key areas of real-time data 
governance, regulatory frameworks, and the 
challenges associated with integrating 
governance practices in these systems. 
 
First, the findings on latency and error rates are 
consistent with the literature's emphasis on the 
critical role of real-time data transmission and 
accuracy in cloud-native robotics systems. The 
relatively low latency (mean of 48.96 ms) and 
error rates (0.51%) align with Anumbe et al. 
(2022), who argued that accurate and timely data 
processing is essential for optimal decision-
making in real-time environments. This supports 
the premise that cloud-native systems, such as 
those employed by Amazon Robotics, must 
maintain high data integrity and low latency to 
function effectively, as outlined by Keung et al. 
(2022). However, the observed variability in 
processing time (with a standard deviation of 
28.61 ms) suggests that there are instances 
where system responsiveness could be 
compromised, which could impact mission-critical 
operations like autonomous driving or real-time 
industrial robotics. This reflects concerns raised 
by Polamarasetti (2021), who noted that as 
cloud-native systems scale in complexity, 
processing efficiency must remain a priority to 
prevent operational delays. 
 
The results regarding regulatory compliance and 
penalties show a significant financial impact 
associated with GDPR violations, a finding that 
echoes much of the literature. The regression 
analysis revealed a steep increase in penalties 
with each additional violation, where the slope of 
€53,789.41 per violation confirms the argument 
made by Bakare et al. (2024) that non-
compliance with GDPR leads to substantial 
financial consequences for firms, especially 
those handling sensitive data in cloud-native 
environments. Hossain et al. (2024) also 
highlighted the importance of regulatory 
frameworks in protecting personal data, and the 
study’s findings emphasize this point by showing 
the rapid accumulation of penalties for multiple 
violations. This financial risk directly supports 
Radanliev’s (2024) argument that adherence to 

regulatory standards like GDPR is essential not 
only for avoiding fines but also for maintaining 
public trust. The residual plot further 
demonstrates that the model's predictions closely 
align with actual penalties, reinforcing the idea 
that non-compliance carries proportional financial 
risks, a point highlighted throughout the 
literature. 
 
Where this study offers additional insight is in the 
analysis of governance challenges related to 
data volume, latency, and governance failures. 
The correlation analysis revealed weak 
relationships between these variables, with data 
volume and governance failures showing a 
correlation of r = 0.083, and latency and 
governance failures having a correlation of r = 
0.078. These findings suggest that operational 
factors like data volume and latency may not 
directly drive governance breakdowns. This 
contrasts somewhat with Radanliev’s (2024) 
assertion that larger data volumes and higher 
latency can worsen governance issues, 
particularly as systems scale in complexity. 
 
However, the weak correlations observed here 
are consistent with the broader understanding 
that external factors, such as cybersecurity 
vulnerabilities and systemic issues, may play a 
more significant role in governance challenges 
than internal operational metrics alone. This 
perspective is reinforced by Muhammad et al. 
(2023), who argued that cybersecurity threats are 
often more critical in causing governance 
breakdowns. The example of the Tesla Model S 
hack, cited by Muhammad et al. (2023), 
exemplifies how external threats can destabilize 
governance frameworks even when factors like 
latency and data volume are well-managed. 
These findings suggest that while operational 
challenges must be addressed, the primary 
governance risks in cloud-native robotics 
systems may stem from broader external threats 
or system design issues rather than from internal 
operational metrics alone. 
 
The scatter matrix and bubble chart (Figs. 6 and 
7) further illustrate this lack of strong association 
between operational variables and governance 
failures, reinforcing the idea that the governance 
risks facing cloud-native robotics systems are 
multifaceted and likely stem from broader 
structural or external factors. This finding aligns 
with Polamarasetti’s (2021) call for a more 
comprehensive governance framework that 
considers not only operational performance but 
also system design and external security threats. 
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5. CONCLUSION AND RECOMMENDA-
TION 

 
This study highlights the complexities of real-time 
data governance and compliance in cloud-native 
robotics systems, emphasizing the importance of 
data integrity, low latency, and regulatory 
adherence. The analysis showed that cloud-
native systems generally maintain strong data 
accuracy and low error rates, which are essential 
for real-time decision-making. However, the 
variability in processing time suggests a need for 
further optimization in time-critical environments, 
and the findings also highlight the financial risks 
associated with non-compliance with regulatory 
frameworks, particularly GDPR, where violations 
can lead to significant penalties. Despite weak 
correlations between operational factors like data 
volume and latency with governance failures, the 
study reveals that external threats, such as 
cybersecurity vulnerabilities, may play a more 
critical role in governance breakdowns than 
internal metrics alone. As a result, cloud-native 
robotics systems require a more holistic 
approach to data governance that considers both 
internal performance and external risks. The 
findings of this study impresses the need for 
adaptive and future-oriented data governance 
frameworks that respond to the specific demands 
of cloud-native robotics. By identifying the critical 
role of external cybersecurity threats in 
governance stability, this research highlights 
areas where existing frameworks may be 
insufficient and suggests paths for enhancement. 
As industries increasingly rely on real-time cloud-
based operations, the study’s insights into data 
governance and compliance set a foundation for 
future strategies aimed at strengthening both 
data integrity and regulatory adherence in cloud-
native robotics, contributing to a safer and more 
resilient technological landscape.Therefore, the 
following are recommended: 
 

1. Organizations should implement 
continuous performance monitoring 
systems that focus not only on latency and 
error rates but also on variability in 
processing times to identify and mitigate 
potential delays in real-time operations. 

2. Compliance with data protection 
regulations, such as GDPR, must be 
prioritized, with regular audits and staff 
training to minimize violations and avoid 
steep financial penalties. 

3. A more robust cybersecurity framework is 
necessary to protect cloud-native robotics 
systems from external threats, including 

real-time monitoring and proactive threat 
detection mechanisms. 

4. Cloud-native robotics systems should 
adopt flexible governance frameworks that 
are scalable and adaptable to emerging 
technologies like AI and edge computing, 
ensuring data integrity and security as the 
systems evolve. 
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