
________________________________________ 
 
*Corresponding author: Email: ysunilkumar40@gmail.com; 

 

Asian J. Prob. Stat., vol. 26, no. 5, pp. 1-18, 2024 

 
 

 

Asian Journal of Probability and Statistics 

 
Volume 26, Issue 5, Page 1-18, 2024; Article no.AJPAS.116749 
ISSN: 2582-0230 

 

 
_______________________________________________________________________________________________________________________________________ 

 

Almost Unbiased Estimators for Population 

Coefficient of Variation Using Auxiliary 

Information 
 

Rajesh Singh a, Rohan Mishra a, Anamika Kumari a  

and Sunil Kumar Yadav a* 
 

a Department of Statistics, Institute of science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, 

India. 

 

Authors’ contributions 

 

This work was carried out in collaboration among all authors. All authors read and approved the final 

manuscript. 

 

Article Information 
 

DOI: 10.9734/AJPAS/2024/v26i5614 

 
Open Peer Review History: 

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers,  peer review 

comments, different versions of the manuscript, comments of the editors, etc are available here: 
https://www.sdiarticle5.com/review-history/116749 

 

 

Received: 29/02/2024 

Accepted: 03/05/2024 

Published: 08/05/2024 

__________________________________________________________________________________ 
 

Abstract 

 
The objective of the paper is to propose an almost unbiased ratio estimator for the finite coefficient of 

variation (CV). In this paper, we have proposed an exponential ratio type and log ratio type estimators for 

estimating population coefficient of variation. Two real data sets and one simulation study is carried out in 

support of the theoretical results. Mean squared error and Percent relative efficiency criteria is used to assess 

the performance of the estimators. It has been shown that the proposed class of estimators are almost unbiased 

up to the first order of approximation. Also proposed estimators are better in efficiency to other estimators 

consider in this study. 
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1 Introduction  
 

Research of Cochran [1] is generally associated with the idea of incorporating auxiliary information to improve 

estimator’s efficiency. Using auxiliary information, we can improve the accuracy or efficacy of estimators by 

incorporating more data with the sampled data. Researchers might be enabled to reduce variability in samples 

and provide more precise estimates of population parameters by utilizing auxiliary information. The basic 

principles for this methodology were established by Cochran [1] and it is now commonly employed in many 

different kinds of domains, such as survey sampling, econometrics, and statistics. 

 

Ratio and product estimators are widely used in survey sampling and other fields where auxiliary information is 

available and can be utilized to improve the accuracy and efficiency of estimators. When there is a positive 

correlation between an auxiliary variable and the study variable of interest, Cochran [2] established the concept 

of ratio estimators as an approach to utilize auxiliary information. Ratio estimators calculate ratios among the 

study variable's sample means or totals and the auxiliary variables, taking into consideration any known 

population variables. Ratio estimators enable us to analyze an estimated value with other known information to 

estimate a value more accurately. To get more accurate estimates, they consider the correlation between various 

variables. For example, we may accurately estimate the total income of a neighborhood if we know the average 

income of that neighborhood and the population of the entire city. This can be done by using a ratio estimator. 

By utilizing more information, this approach increases the precision of our estimations. 

 

On the other hand, Robson [3] and Murthy [4] proposed “the product estimator, which is another method for 

incorporating auxiliary information into estimation. The product estimator involves forming the product of the 

study variable and the auxiliary variable and then using this product as the basis for estimation”. Similar to ratio 

estimators, the product estimator seeks to capitalize on the association between the auxiliary variable and the 

study variable to enhance the precision of the estimates. Number of authors, including Solanki et al. [5], Ray 

and Sahai [6], and Srivastava and Jhajj [7], have made significant contributions to “the utilization of auxiliary 

information for estimating population parameters such as the population mean, variance, standard deviation, and 

other related statistics”. Some important works illustrating use of auxiliary information at estimation stage are   

Singh et al.  [8], Singh and Kumar [9], Malik and Singh [10] etc.  

 

Very less work has been done for estimating population coefficient of variation. Das and Tripathi [11] were first 

to suggest “an estimator for the coefficient of variation when samples were chosen using simple random 

sampling without replacement (SRSWOR)”. Other researchers, such as Patel and Rina [12], have also explored 

into this area. Breunig [13] suggested “an almost unbiased estimator of the coefficient of variation”. 

Additionally, Rajyaguru and Gupta [14] explored “estimating the coefficient of variation under different 

sampling methods like simple random sampling and stratified random sampling”. Adejumobi and Yunusa [15] 

proposed “ratio estimators for finite population variance with the use of known parameters”. Yunusa et al. [16] 

proposed “logarithmic ratio type estimator for the estimating population coefficient of variation”. Audu et al. 

[17] proposed “three difference-cum-ratio estimators for estimating finite population coefficient of variation”.  

 

In this paper, using exponential and log type estimators we have proposed an almost unbiased estimator for 

estimation of population coefficient of variation utilizing information on a single auxiliary variable in 

SRSWOR. 

 

Let's consider a finite population P = (P1, P2, P3, ....., PN) of size `N` and each unit are uniquely defined. Let Y 

and X defined as study and auxiliary variable and Yi and Xi are the values corresponding their unit i (i = 1, 2, 3, 

......., N). 

 

Let us consider a SRS of size n drawn from the population of `N` units and corresponding unit Yi and Xi.    

 

1

1 N

i

i

Y Y
N =

=   and 
1

1 N

i

i

X X
N =

=   are the population means of the study and auxiliary variables Y and X, 

 

2 2

1

1
( )

( 1)

N

y i

i

S Y Y
N =

= −
−
  is the population variance of the study variable Y, 
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2 2

1

1
( )

( 1)

N

x i

i

S X X
N =

= −
−
  is the population variance of the auxiliary variable X, 

 

1

1
( )( )

( 1)

N

xy i i

i

S X X Y Y
N =

= − −
−
  is the population covariance of the auxiliary and study variable Y and 

X, 
 

1

1 n

i

i

y y
n =

=    and  
1

1 n

i

i

x x
n =

=    are respectively the  sample means of the study and auxiliary variables Y and 

X. 
 

2 2

1

1
( )

( 1)

n

y i

i

s y y
n =

= −
−
  is the sample variance of the study variable y, 

 

2 2

1

1
( )

( 1)

n

x i

i

s x x
n =

= −
−
 is the sample variance of the auxiliary variable x. 

 

Let us define sampling errors for both mean and variance of study and auxiliary variables as 
 

0

y Y
e

Y

−
= , 1

x X
e

X

−
= , 

2 2

2 2

( )y y

y

s S
e

S

−
= , 

2 2

3 2

( )x x

x

s S
e

S

−
=  such that  

 

0(1 )y Y e= + , 
1(1 )x X e= + ,  

2 2

2(1 )y ys S e= + ,  
2 2

2(1 )y ys S e= + , 
2 2

3(1 )x xs S e= +
 

 

0 1 2 3( ) ( ) ( ) ( ) 0E e E e E e E e= = = = , 

 

2 2

0( ) yE e C= , 
2 2

1( ) xE e C= , 
2

2 40( ) ( 1)E e  = − , 
2

3 04( ) ( 1)E e  = − , 

 

0 1( ) y xE e e C C= , 
0 2 30( ) yE e e C = , 

0 3 12( ) yE e e C = , 

 

1 2 21( ) xE e e C = ,  1 3 03( ) xE e e C = , 2 3 22( ) ( 1)E e e  = − . 

 

Here,
1

(1 )f
n

 = −  ,  
n

f
N

=  , f is known as sampling fraction, 
yC  and  xC are the population coefficient 

of variations of study variable Y and auxiliary variable X, respectively, defined as,  
y

y

S
C

Y
=  and 

x
x

S
C

X
= .  

  is the correlation coefficient between X and Y. 

 

In general form, 
 

1

( ) ( )

(N 1)

N
r s

i i

i
rs

y y x x

 =

− −

=
−


 and  

/2 /2

20 02( )

rs
rs r s




 
= . 

 

2 Existing Estimators 
 

Usual estimator 0t for estimating Cy is given by  
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0t =
y

y

s
C

y



=                                                                                                                                       (1) 

 

The bias of the estimator 0t   is given by: 

 

2

0 40 30

1 1
( ) ( 1)

8 2
y y yBias t C C C  
 

= − − − 
 

                                                                        (2) 

 

The Mean square error (MSE) expression of the estimator 0t  is given by: 

 

2 2

0 40 30

1
( ) ( ( 1) )

4
y y yMSE t C C C  = + − −                                                                                    (3) 

 

Archana and Rao [18] introduced estimators 1t  and 2t  for calculating the finite population coefficient of 

variation as follows: 
 

2

1 2

x
y

x

S
t C

s

 
=  

 
                                                                                                                            (4) 

 

2

2 2

x
y

x

s
t C

S

 
=  

 
                                                                                                                          (5) 

 

The bias of the estimators 1t  and 2t  are, respectively, given as 

 

2

1 40 30 12 04 22

1 1 1
( ) ( 1) ( 1) ( 1)

8 2 2
y y y yBias t C C C C     
 

= − − − + + − − − 
 

                        (6) 

 

2

2 40 30 22 12

1 1 1
( ) ( 1) ( 1)

8 2 2
y y y yBias t C C C C    
 

= − − − + − − 
 

                                       (7) 

 

MSE of the estimators 1t  and 2t  are,  respectively, given as 

 

2 2

1 40 30 12 04 22

1
( ) ( 1) 2 ( 1) ( 1)

4
y y y yMSE t C C C C     
 

= + − − + + − − − 
 

                            (8) 

 

2 2

2 40 30 12 04 22

1
( ) ( 1) 2 ( 1) ( 1)

4
y y y yMSE t C C C C     
 

= + − − − + − + − 
 

                           (9) 

 

3 Proposed Almost Unbiased Estimator 
 

Let, 

 

0 yt C= ,

2

1 2

x
y

x

S
t C

s

 
=  

 
,

2

2 2

x
y

x

s
t C

S

 
=  

 
                                                                                           (10) 
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such that 0t  , 1t  , 2t  L  , where L  denotes the set of all possible estimators for estimating the population 

coefficient of variation 
yC . 

 

By definition, the set L  is a linear variety if 
 

2

0

g i i

i

t g t L
=

=                                                                                                                      (11) 

 

2 2

0 1 22 2

x x
y y yg

x x

S s
t g C g C g C

s S

   
= + +   

     
 

For

2

0

1i

i

g
=

= , ig R                                                                                                            (12) 

 

where ig  (i = 0, 1, 2) denotes the statistical constants and R denotes the set of real numbers. 

 

Table 1. Members of the proposed family 
gt  of estimators 

 

0g  1g  2g  Estimators 

1 0 0 
yC



 

0 1 0 2

2

x
y

x

S
C

s

 
 
 

 

0 0 1 2

2

x
y

x

s
C

S

 
 
 

 

 

To obtain the bias and MSE of the estimator
gt , we write 

gt  in the form of error terms as 

 

gt = ( ) ( ) ( )
1/2 1

2 0 0 1 2 3

3

1
1 1 1

(1 )
yC e e g g g e

e

−   
+ + + + +  

+  

                                           (13) 

 

Expanding the right hand side of equation (13) and retaining terms up to second powers of e’s, we have 
 

gt =

2 2

0 0 2 0 2 2 1 2 3

2

1 2 0 3 1 2 2 3 1 3

1 1 1
1 ( )

2 2 8

1
( ) ( )

2

y

e e e e e e g g e

C

g g e e g g e e g e

 
− + + − − − − 

 
 + − − − +
  

                                                     (14) 

 

Subtracting 
yC and then taking expectation both sides, we get the bias of the estimator 

gt , up to the first order 

of approximation as 
 

2

40 30 1 2 12

1 04 1 2 22

1 1
( 1) ( )

8 2
( )

1
( 1) ( ) ( 1)

2

y y y

g y

C C g g C

Bias t C

g g g

  



 

 
− − − + − 

=  
 + − − − − 
 

                                         (15) 
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From equation (15),  

 

We have 

 

( ) 2 0 1 2 3

1
( )

2
g y yt C C e e g g e

 
−  − − − 

 
                                                                            (16) 

 

where, 

 

 1 2( )g g− =H.                                                                                                                         (17) 

 

Squaring both sides of equation ( 16) and then taking expectation, we get MSE of the estimator 
gt , up to the 

first order of approximation, as 

 

2 2 2

40 30 12 04 22

1
( ) ( 1) 2 ( 1) ( 1)

4
g y y y yMSE t C C C HC H H     

 
= + − − + + − − − 

 
         (18) 

 

Which is minimum when  
 

( )

( ) ( )
1222

04 04

11

2 1 1

yC
H



 

−
= −

− −
.                                                                                               (19) 

 

Putting this value of 
( )

( ) ( )
1222

04 04

11

2 1 1

yC
H



 

−
= −

− −
in equation (2.18) we get the Min. MSE of the estimator 

gt  

as 
 

2 2 2

40 30 12 04 22

1
. ( ) ( 1) 2 ( 1) ( 1)

4
g y y y yMin MSE t C C C HC H H    

 
= + − − + + − − − 

 
              (20) 

 

From equation (17) and (19) 

 

we have, 
 

1 2( )g g− =
( )

( ) ( )
1222

04 04

11

2 1 1

yC
H



 

−
= −

− −
                                                                               (21) 

 

 From equation (12) and (17), we have only two equations in three unknowns. It is not possible to find the 

unique values for ig ’s , (i = 0, 1, 2). In order to get unique values of ig ’s , we shall impose the linear 

restriction. 

 
2

0

( ) 0i i

i

g B t
=

=                                                                                                                        (22) 

 

Such that  

 

0 0 1 1 2 2( ) ( ) ( ) 0g B t g B t g B t+ + =                                                                                          (23)  

 

where ( )iB t  denotes the bias in the 
thi estimator. 
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Equations (2.12), (2.17) and (2.23) can be written in the matrix form as 
 

0

1

0 1 2 2

1 1 1 1

0 1 1

( ) ( ) ( ) 0

g

g H

B t B t B t g

    
    

− =
    
        

                                                        (24) 

 

From the system of equation (2.24 ) , we get the unique values of 
ig ’s ( i=0, 1, 2) as 

 

2 1 2 1
0

2 1 0

( ) ( ) ( ) ( )

( ) ( ) 2 ( )

B t B t HB t HB t
g

B t B t B t

+ − −
=

+ −
                                                                                (25) 

 

2 0 0
1

2 1 0

( ) ( ) ( )

( ) ( ) 2 ( )

HB t B t HB t
g

B t B t B t

− −
=

+ −
                                                                                           (26) 

 

0 0 1
2

2 1 0

( ) ( ) ( )

( ) ( ) 2 ( )

HB t B t HB t
g

B t B t B t

− −
=

+ −
                                                                                            (27) 

such that  
 

0 1 2 1g g g+ + =                                                                                                                     (28) 

 

Use of these ig ’s ( i=0, 1, 2) remove the bias up to terms of order 
1( )o n−

 
 

3.1 Another almost unbiased estimator 
 

In this section we propose another almost unbiased estimator 
1gt  for coefficient of variation. For this we have 

taken three estimators 0m , 1m  and 2m  which are defined as 

 

0 0( )ym C t= =                                                                                                                       (29) 

 

The bias of the estimator 0m  is given by: 

 

2

0 40 30

1 1
( ) ( 1)

8 2
y y yBias m C C C  
 

= − − − 
 

                                                                 (30) 

 

The Mean square error (MSE) expression of the estimator 0m is given by: 

 

2 2

0 40 30

1
( ) ( ( 1) )

4
y y yMSE m C C C  = + − −                                                                       (31) 

 

The exponential and logarithmic estimator for estimating population coefficient of variation is given as follows-  
 

2 2

1 2 2
exp x x

y

x x

S s
m C

S s

 −
=  

+ 
                                                                                                        (32) 

 

2

2 2
1 log x

y

x

s
m C

S

   
= +  

   

                                                                                                     (33) 



 
 

 

 
Singh et al.; Asian J. Prob. Stat., vol. 26, no. 5, pp. 1-18, 2024; Article no.AJPAS.116749 

 

 

 
8 

 

The bias of the estimators 1m  and 2m  are respectively given as 

 

2

1 40 30 12 04 22

1 1 1 3 1
( ) ( 1) ( 1) ( 1)

8 2 2 8 4
y y y yBias m C C C C     
 

= − − − + + − − − 
 

                (34) 

 

( )2

2 40 30 22 12 04

1 1 1 1
( ) ( 1) ( 1) 1

8 2 2 2
y y y yBias m C C C C     
 

= − − − + − − − − 
 

                 (35) 

 

MSE of the estimators 1m  and 
2m  are respectively given as 

 

2 2

1 40 30 12 04 22

1 1 1
( ) ( 1) ( 1) ( 1)

4 4 2
y y y yMSE m C C C C     
 

= + − − + + − − − 
 

                  (36) 

 

2 2

2 40 30 12 04 22

1
( ) ( 1) 2 ( 1) ( 1)

4
y y y yMSE m C C C C     
 

= + − − − + − + − 
 

                     (37) 

 

0m , 1m and 2m  L , where L  denotes the set of all possible estimators for estimating the population 

coefficient of variation 
yC . 

 

By definition, the set L  is a linear variety if 

 
2

1

0

g i i

i

t l m
=

=  L                                                                                                                   (38) 

 

1 0 0 1 1 2 2gt l m l m l m= + +                                                                                                          (39) 

 

2 2 2

1 0 1 22 2 2
exp 1 logx x x

y y yg

x x x

S s s
t l C l C l C

S s S

    −  
= + + +    

+        
 

For 

2

0

1i

i

l
=

=  , il R                                                                                                              (40) 

 

where il  (i = 0, 1, 2) denotes the statistical constants and R denotes the set of real numbers. 

 

Table 2. Members of the proposed family 
1gt of estimators 

 

0l  1l  2l  Estimators 

1 0 0 
yC  

0 1 0 2 2

2 2
exp x x

y

x x

S s
C

S s

 −
 

+ 
 

0 0 1 2

2
1 log x

y

x

s
C

S

   
+  

   
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To obtain the bias and MSE of the 
1gt , we write 

1gt  in the form of error terms as 

 

( ) ( )  
1/2 1 3

1 2 0 0 1 2 3

3

1 1 exp 1 log(1 )
2

g y

e
t C e e l l l e

e

−   −
= + + + + + +  

+  

                             (41) 

 

Expanding the right hand side of (41) and retaining terms up to second powers of e’s we have         

 

2 2

0 0 2 0 2 2 1 2 3

1

2

1 2 3 1 2 0 3 1 2 2 3

1 1 1 1
1 ( )

2 2 8 2

3 1 1 1 1
( ) ( ) ( )
8 2 2 4 2

g y

e e e e e e l l e

t C

l l e l l e e l l e e

 
− + + − − − − 

=  
 + − + − − −
  

                                              (42) 

 

Subtracting 
yC from both sides of  equation  (42) and then taking expectation, we get the bias of the estimator 

1gt , up to the first order of approximation as 

 

2

40 30 1 2 12

1

1 2 04 1 2 22

1 1 1
( 1) ( )

8 2 2
( )

3 1 1 1 1
( )( 1) ( ) ( 1)
8 2 4 2 2

y y y

g y

C C l l C

Bias t C

l l l l

  



 

 
− − − + − 

=  
 + − − − − − 
 

                                      (43) 

 

From (42), we have 

 

( )1 2 0 1 2 3

1 1

2 2
g y yt C C e e l l e

  
−  − − −  

  
                                                                          (44) 

 

where, 

 

1 2 1

1

2
l l H− =                                                                                                                          (45) 

 

Squaring both sides of equation (43) and then taking expectation, we get MSE of the estimator 
1gt , up to the 

first order of approximation, as 

 

2 2 2

1 40 30 1 12 1 04 1 22

1
( ) ( 1) 2 ( 1) ( 1)

4
g y y y yMSE t C C C H C H H     

 
= + − − + + − − − 

 
           (46) 

 

which is minimum when  

 

( )

( ) ( )
1222

1

04 04

11

2 1 1

yC
H



 

−
= −

− −
.                                                                                               (47)  

 

Putting the value of 
( )

( ) ( )
1222

1

04 04

11

2 1 1

yC
H



 

−
= −

− −
in equation (46) the minimum MSE value of the estimator

1gt is given by 
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2 2 2

1 40 30 1 12 1 04 1 22

1
. ( ) ( 1) 2 ( 1) ( 1)

4
g y y y yMin MSE t C C C H C H H     

 
= + − − + + − − − 

 
           (48) 

 

From equations (45) and (47), we have  

 

1 2

1

2
l l

 
− 

 
=

( )

( ) ( )
1222

1

04 04

11

2 1 1

yC
H



 

−
= −

− −
                                                                           (49) 

 

From equation (38) and (45), we have only two equations in three unknowns. It is not possible to find the unique 

values for il ’s , i = 0, 1, 2. In order to get unique values of il ’s , we shall impose the linear restriction. 

 
2

0

( ) 0i i

i

l B m
=

=                                                                                                                       (50) 

 

such that  

 

0 0 1 1 2 2( ) ( ) ( ) 0l B m l B m l B m+ + =                                                                                        (51) 

 

here ( )iB m  denotes the bias in the 
thi (i=0,1,2) estimator. 

 

Equations (40), (45) and (51) can be written in the matrix form 

 

0

1 1

2
0 1 2

1 1 1
1

1
0 1

2
0

( ) ( ) ( )

l

l H

l
B m B m B m

 
    
    − =
    
       

 

                                                  (52) 

 

where, 

 

0( )B m , 1( )B m and 2( )B m are defined in equation (31), (34) and (35).              

 

From the system of equation ( 52) , we get the unique values of il ’s ( i=0, 1, 2) respectively as 

 

2 1 1 2 1 1

0

2 1 0

1
( ) ( ) ( ) ( )

2
1 3

( ) ( ) ( )
2 2

B m B m H B m H B m
l

B m B m B m

+ − +

=

+ −

                                                                            (53) 

 

1 2 0 1 0
1

2 1 0

( ) ( ) ( )

1 3
( ) ( ) ( )

2 2

H B m B m H B m
l

B m B m B m

− −
=

+ −

                                                                                    (54) 

 

1 0 1 1 0

2

2 1 0

1
( ) ( ) ( )

2
1 3

( ) ( ) ( )
2 2

H B m H B m B m
l

B m B m B m

− −

=

+ −

                                                                                  (55) 
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where, 
 

0 1 2 1l l l+ + =                                                                                                                           (56) 

 

Use of these il ’s ( i=0, 1, 2) remove the bias up to terms of order 
1( )o n−

. 

 

4 Theoretical Efficiency Comparision 
 

In this section, efficiency conditions of 
gt  and 

1gt  over sample coefficient of variation 0t , 1t , 2t , 1m  and 2m  

are established. 
 

4.1 Efficiency comparison for the estimators 
gt
 

 

(i). 
gt  is more efficient than 0t  

 

. ( )gMin MSE t  < 0( )MSE t
 

 

2

40 302

2

12 04 22

1
( 1)

4

2 ( 1) ( 1)

y y

y

y

C C
C

HC H H

 


 

 
+ − − 

 
 + + − − − 

< 
2 2

40 30

1
( ( 1) )

4
y y yC C C  + − −                  (57) 

 

(ii). 
gt  is more efficient than 1t  

 

. ( )gMin MSE t  < 1( )MSE t
 

 

2

40 302

2

12 04 22

1
( 1)

4

2 ( 1) ( 1)

y y

y

y

C C
C

HC H H

 


 

 
+ − − 

 
 + + − − − 

< 

2

40 302

12 04 22

1
( 1)

4

2 ( 1) ( 1)

y y

y

y

C C
C

C

 


  

 
+ − − + 

 
 + − − − 

         (58) 

 

(iii). 
gt  is more efficient than 2t  

 

. ( )gMin MSE t  < 2(t )MSE
 

 

2

40 302

2

12 04 22

1
( 1)

4

2 ( 1) ( 1)

y y

y

y

C C
C

HC H H

 


 

 
+ − − 

 
 + + − − − 

< 

2

40 30 122

04 22

1
( 1) 2

4

( 1) ( 1)

y y y

y

C C C
C

  


 

 
+ − − − 

  + − + − 
        (59) 

 

(iv). 
gt  is more efficient than 1m

 
 

. ( )gMin MSE t  < 1(m )MSE
 

 

2

40 302

2

12 04 22

1
( 1)

4

2 ( 1) ( 1)

y y

y

y

C C
C

HC H H

 


 

 
+ − − 

 
 + + − − − 

< 

2

40 30
2

12 04 22

1
( 1)

4

1 1
( 1) ( 1)

4 2

y y

y

y

C C

C

C

 



  

 
+ − − 

 
 + + − − − 
 

                  (60) 
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(v). 
gt  is more efficient than 2m

 
 

. ( )gMin MSE t  < 2MSE(m )
 

 

2

40 302

2

12 04 22

1
( 1)

4

2 ( 1) ( 1)

y y

y

y

C C
C

HC H H

 


 

 
+ − − 

 
 + + − − − 

< 
2

40 30 122

04 22

1
( 1) 2

4

( 1) ( 1)

y y y

y

C C C
C

  


 

 
+ − − − 

  + − + − 

         (61) 

 

4.2 Efficiency comparison for the estimators 
1gt  

 

(i). 
1gt  is more efficient than 0t  

 

1
. ( )gMin MSE t < 0( )MSE t

 
 

2

40 30 1 122

2

1 04 1 22

1
( 1) 2

4

( 1) ( 1)

y y y

y

C C H C
C

H H

  


 

 
+ − − + 

 
 + − − − 

 < 
2 2

40 30

1
( ( 1) )

4
y y yC C C  + − −             (62) 

 

(ii). 
1gt  is more efficient than 1t  

 

1
. ( )gMin MSE t  < 1( )MSE t

 
 

2

40 30 1 122

2

1 04 1 22

1
( 1) 2

4

( 1) ( 1)

y y y

y

C C H C
C

H H

  


 

 
+ − − + 

 
 + − − − 

 < 

2

40 302

12 04 22

1
( 1)

4

2 ( 1) ( 1)

y y

y

y

C C
C

C

 


  

 
+ − − + 

 
 + − − − 

           (63) 

 

(iii). 
1gt  is more efficient than 2t  

 

1
. ( )gMin MSE t  < 2( )MSE t

 
 

2

40 30 1 122

2

1 04 1 22

1
( 1) 2

4

( 1) ( 1)

y y y

y

C C H C
C

H H

  


 

 
+ − − + 

 
 + − − − 

 < 

2

40 30 122

04 22

1
( 1) 2

4

( 1) ( 1)

y y y

y

C C C
C

  


 

 
+ − − − 

  + − + − 
      (64) 

 

(iv). 
1gt is more efficient than 1m

 
 

1
. ( )gMin MSE t   < 1(m )MSE

 
 

2

40 30 1 122

2

1 04 1 22

1
( 1) 2

4

( 1) ( 1)

y y y

y

C C H C
C

H H

  


 

 
+ − − + 

 
 + − − − 

 < 

2

40 30
2

12 04 22

1
( 1)

4

1 1
( 1) ( 1)

4 2

y y

y

y

C C

C

C

 



  

 
+ − − 

 
 + + − − − 
 

         (65) 
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(v). 
1gt  is more efficient than 2m

 
 

1
. ( )gMin MSE t   < 2MSE(m )

 
 

2

40 30 1 122

2

1 04 1 22

1
( 1) 2

4

( 1) ( 1)

y y y

y

C C H C
C

H H

  


 

 
+ − − + 

 
 + − − − 

 < 
2

40 30 122

04 22

1
( 1) 2

4

( 1) ( 1)

y y y

y

C C C
C

  


 

 
+ − − − 

  + − + − 

        (66) 

 

5 Empirical Study  
 

In this section, we will carry out empirical study to demonstrate the performance of the proposed estimator over 

existing ones using two real data sets.  
 

Population 1: [Source: Murthy [19], p.399] 
 

 X: Area under wheat in 1963, Y: Area under wheat in 1964  N=34, n=15 , xC = 0.72,  

 

yC =0.75,  =0.98, 21 =1.0045, 12 =0.9406, 40 =3.6161, 04 =2.8266, 30 =1.1128,  

 

03 =0.9206, 22 =3.01133, Y =199.44, X =208.88   

 

Population 2: [Source: S. Singh [20], p.1116]  
 

X: Number of fish caught in year 1993, Y: Number of fish caught in year 1995                                                          
 

  N = 69, n=40 , xC = 1.38, 
yC =1.35,  =0.96, 21 =2.19, 12 =2.3, 40 =7.66, 04 = 9.84,                        30

 
 

=1.11, 03 =2.52, 22 =8.19, Y =4514.89, X =4591.07. 

 

Table 3. Values of ig ’s (i=0,1,2) 

 

S.N.                   Scalars Population I  Population II 

1                       0g  3.23672 -0.01106 

2                       1g  -1.03618 0.533243 

3                       2g  -1.20054 0.477814 

Using these values of ig ’s (i=0,1,2) given in the Table, one can reduce the bias to the order 
1( )o n−

 in the estimator 
gt  

 

Table 4. Values of il ’s ( i =0,1,2) 

 

S.N.                    Scalars Population I  Population II 

1.                       0l  0.631909 1.677949 

2.                       1l  0.354966 -0.41501 

3.                       2l  0.013126 -0.26294 

Using these values of il ’s (i=0,1,2) given in the Table, one can reduce the bias to the order 
1( )o n−

 in the estimator 
1gt  

 



 
 

 

 
Singh et al.; Asian J. Prob. Stat., vol. 26, no. 5, pp. 1-18, 2024; Article no.AJPAS.116749 

 

 

 
14 

 

Table 5. Biases of the existing estimators and proposed estimators 

 

                                                             Population 1                                       Population 2 

Estimators Bias Bias 

0t (= 0m ) -0.00508 0.003414986 

 

1t  0.037569 

 

0.121857921 

 

2t  0.003308 

 

0.01036553 

 

1m  0.009865 

 

0.046962269 

 

2m
 

-0.02221 

 

-0.05233121 

 

gt  0 

 

0 

 

1gt  
0 0 

 

 

Table 6. The MSE and PRE of the existing and the proposed estimators 

 

Estimators MSE PRE 

0t (= 0m ) 0.03808827 100.00 

1t  0.188603 20.1948 

2t  0.2261359 16.84297 

1m  0.071025 53.62631 

2m
 

0.226136 16.84309 

gt  0.037568 101.3844 

1gt  
0.037568 101.3844 

 

Table 7. The MSE and PRE of the existing and the proposed estimators 

 

Estimators MSE PRE 

0t (= 0m ) 0.008003 100.00 

1t  0.03365 23.78054 

2t  0.05890 13.58789 

1m  0.01128 70.94231 

2m  0.05886 13.59669 

gt  0.00697 114.8289 

1gt  0.00697 114.8289 

 

6 Simulation Study 
 

In this section we have done simulation analysis.      

 

The following steps have been used for the simulation:   
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1.  We have generated bivariate random observations of size N=1000 units from a bivariate normal 

distribution with parameters x =3, x =4, and 
y =5, 

y = 9 and ⍴ = 0.95. 

 

2.  Sample of sizes n = 150, 200 and 250 have been selected from this simulated population. 

 

3.  Sample statistics that is the sample mean, sample variance, and the values of the suggested and existing 

estimators of population CV are calculated for these samples. 

 

4. Steps (3) and (4) are repeated m=10,000 times.           0( )
( ) *100

( )

MSE t
PRE estimator

MSE estimator
=

 
 

Table 8. Values of Scalars by which one can reduce the bias of the estimator 

 

Scalars N=1000,   n=150 N=1000,   n=200 N=1000,   n=250 

0g  5.882077 6.881528 6.355966 

1g  -2.23049 -2.69344 -2.45441 

2g  -2.65159 -3.18809 -2.90156 

( )1 2g g−  0.421105 0.494646 0.447154 

H =  H1 0.4211047758 0.4946458684 0.4471535012 

Using the values of ig ’s (i=0,1,2) given in the table, one can reduce the bias to the order 
1( )o n−

 in the estimator 
gt  

 

Table 9. Values of Scalars by which one can reduce the bias of the estimator 

 

Scalars N=1000,   n=150 N=1000,   n=200 N=1000,   n=250 

0l  0.622759 0.450548 0.534127 

1l  0.53223 0.696065 0.608684 

2l  -0.15499 -0.14661 -0.14281 

1 2

1

2
l l

 
− 

 
 

0.421105 0.494646 0.447154 

H =  H1 0.4211047758 0.4946458684 0.4471535012 

Similarly using the values of il ’s (i=0,1,2) given in the table, one can reduce the bias to the order 
1( )o n−

 in the estimator 

1gt  

Table 10. Biases of the existing estimators and proposed estimators 

 

Estimators N=1000,   n=150 N=1000,   n=200 N=1000,   n=250 

Bias Bias Bias 

0t (= 0m ) 0.000372935 0.000286 0.000142 

1t  0.00428133 0.002819 0.001959 

2t  -0.00277411 -0.00177 -0.00135 

1m  0.001483199 0.000926 0.000639 

2m
 

0.006591748 0.005272 0.003254 

gt  0 0 0 

 
0 0 0 

 

1gt
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Table 11. MSE and PRE values of existing and proposed estimators. 

 

Estimators N=1000,   n=150 N=1000,   n=200 N=1000,   n=250 

MSE PRE MSE PRE MSE PRE 

0t (= 0m ) 0.001688 100.00 0.001355 100.00 0.000793 100.00 

1t  0.002342 72.08397 0.001386 97.73829 0.000992 79.97066 

2t  0.00932 18.11233 0.007178 18.87754 0.004357 18.20195 

1m  0.000979 172.381 0.000639 212.0795 0.000422 187.9839 

2m
 

0.00932 18.11233 0.007178 18.87754 0.004357 18.20195 

gt  0.000953 177.043 0.000639 212.1073 0.000417 190.3548 

1gt  
0.000953 177.043 0.000639 212.1073 0.000417 190.3548 

 

7 Discussion 
 

We have proposed two almost unbiased estimators 
gt  and 

1gt for the estimation of population coefficient of 

variation utilizing information on a single auxiliary variable in srswor and compared them with  some existing 

estimators. From Table 5 we observe that in the class of estimators 
gt  , the estimator 2t  is least biased followed 

by the estimator 0t  and the estimator 1t  has the highest bias. Our proposed class of estimators 
gt  is almost 

unbiased for the proper choices of the constants ( 0,1,2)ig i = . Similarly, from the Table 5 we observe that for 

the class of the estimators 
1gt , the estimator 0m  is least biased, followed by the estimator 1m  and 2m  has the 

highest bias. Our second proposed class of estimators 
1gt  is almost unbiased for the proper choice of constants 

( 0,1,2)il i = . From Table 6 and Table 7, we observe that for population.1 and population.2 , the proposed 

class of estimators 
gt  and 

1gt  are having highest PRE. In the simulation study from Table 11 we observe that 

the proposed class of estimators 
gt  and 

1gt  are having highest PRE. 

 

8 Conclusion 
 

In this paper we have proposed almost unbiased estimators for population coefficient of variation 
yC . We have 

derived the bias and MSE expressions up to the first order of approximations for the estimators considered in 

this paper. In efficiency comparison section, we have derived the conditions under which our proposed class of 

estimators 
gt  and 

1gt  will be better than the estimators considered in this paper.  
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