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Abstract 
The trace elements chemistry of Bartlett Pond, a small shallow wetland pond 
in Laredo, Southern Texas, was sampled to evaluate the dynamics of trace 
elements impacts on water quality and ecosystems ecology of the pond. Two 
types of fish (bass and tilapia) were also sampled to see the trace element ac-
cumulation in different parts of their body. The concentrations of trace ele-
ments in water samples were found in the following order: Fe � Sb > Pb > As � 
Co > Tl > Cr > Cd within Bartlett Pond. Overall, the water quality of the pond 
is unacceptable for drinking and any other purposes as trace element concen-
trations (e.g. As, Cd, Co, Cr, Pb, Fe, Sb and Tl) are exceedingly higher (sever-
al fold) than the WHO and US EPA guidelines. Predictive and correlation 
analysis shows that most trace elements exhibit a strong positive correlation 
among them indicating the same anthropogenic sources and biogeochemical 
processes regulate these trace elements within the pond. Distributions of the 
trace elements in water exhibit different shapes mostly as positively skewed 
distribution for As, Cd, Co, Cr, and Tl, symmetrical distribution for Fe and 
almost symmetrical distribution for Pb and Sb. Concentrations of As, Co and 
Tl accumulated much higher in different parts of the Bass than Tilapia fish. 
The concentrations of As, Tl, Co, and Sb appeared significantly higher in dif-
ferent parts of the body of both Bass and Tilapia than the maximum SRM 
certified values. Accumulation of these contaminants in fish tissues pose in-
creased health risks to humans who consume these contaminated fish although 
fishing is prohibited. Anthropogenic activities in the region primarily degrade 
the whole pond ecosystem ecology of the Bartlett Pond and waters of this 
pond to be not recommended for any use. These findings may be useful for 
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the scientific community and concerned authorities to improve understand-
ing about these precious natural resources and conservation of the ecosystem 
ecology. 
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Ecology 

 

1. Introduction 

Wetlands play a vital role in hydrologic cycle and regulating chemical composi-
tion of surface waters and these ecosystems constitute about 6% of total global 
land area [1] [2] [3]. Wetlands are the most biologically diverse of all ecosystems 
serving as a home to wide range of plants and animals, habitat for variety of fish 
and wildlife, help to purify water, flood control, shoreline stability, water re-
charging, ground water supply and supporting society in various ways including 
ecosystems services [4] [5] [6]. 

Natural wetlands have high and long-term capacity to filter pollutants, sedi-
ments and nutrients and keep the ecosystems ecology of any landscape healthy 
so they can be considered to be the kidneys of the earth [7] [8] [9]. According to 
Holgerson and Raymond [10], there are 547 million to 3.19 billion ponds glo-
bally based on an estimate although significant uncertainty surrounds pond num-
bers at national to international scales in different regions. Freshwater system is 
a habitat for diverse set of organisms and about 15% of all animal species that 
have been described today live in freshwater systems and most animal species 
belong to crustaceans, rotifers, insects, or oligochaetes are found in lakes and 
ponds [11]. Planktonic and periphytic algae as well as different life forms of ma-
crophytes are also species in lakes and ponds [11]. 

Disturbances in wetlands ecosystems due to human activities reduces natural 
water absorbing capacity, resulting in floods and erosion in wet periods, and less 
water flow the rest of the year and half of the U.S. wetlands are gone primarily 
due to agricultural drainage [3]. The population growth of Laredo in Southern 
Texas has been rapidly increasing, 3.4-fold higher within five decades, so the 
land use change pattern is intense in the region [12] [13]. Therefore, surface wa-
ter bodies receive higher amounts of sediment and chemical loads including 
trace elements. Trace elements are specific pollutants which do not undergo 
biodegradation and they creates hazardous effects on the ecological system by 
accumulating in water, sediments and biota across the food chain posing serious 
threat to the environment and the humans [14] [15] [16]. 

About 80% of municipal wastewater without treatment is discharged directly 
into water bodies and industry is mainly responsible for transporting millions of 
tons of heavy metals to water bodies including in coastal oceans [17]. The high 
nutrients loading into water bodies creates the eutrophication in ponds, lakes, 
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reservoirs, and coastal regions leading to algal blooms which damages the aqua-
tic plants and animals [17] [18] and coastal ecosystems cover nearly 20% of 
earth’s surface and more than 415 coastal areas have been experiencing eutroph-
ic problems [19]. 

Surface runoff contributes tremendous amount of nutrients to water bodies 
and hence lead to water eutrophication causing development of blooms of algae, 
production of cyanotoxins, decreasing water pH, depletion of oxygen and there-
fore affecting aquatic biodiversity and ecology [20] [21]. Eutrophication could 
have an influence on the concentration of trace elements in aquatic environ-
ments [21] and the trace elements dynamics change with the variation in DOC 
concentration or making complexations with DOC [22]. In a natural condition, 
elements including trace elements enter water bodies through the chemical wea-
thering, erosion, and dissolution of water-soluble salts and constitute the back-
ground level [23] and these elements concentrations increases in aquatic ecosys-
tems due to anthropogenic activities [14] [16] [23]. Anthropogenic activities 
threaten the biodiversity of ponds and lakes, and in 30% of North American and 
40% of European fish species are threatened [11]. Runoff from the urban centers 
primarily from road runoffs carry out pollutants such as salts, metals, polycyclic 
aromatic hydrocarbons (PAHs) which are toxic to aquatic organisms [24]-[29]. 
Heavy metals and organochlorine substances are the most common contami-
nants in freshwater systems and some of these chemicals accumulate in food 
chain with much higher concentration in top carnivores than organisms at lower 
trophic levels due to biomagnification and they have numerous effects on or-
ganisms including direct toxic impacts and long term various effects such as car-
cinogenesis, reproductive disorders, reduced growth, and neurological disorders 
[11] [30] and DNA damage, changes in species abundances, increased mortality 
and ultimately affecting the whole ecosystems ecology [28]. Human activities in-
cluding industrial development altering the earth’s ecosystems in various ways 
impacting the water resources and as a consequences aquatic ecosystems are se-
riously threatened primarily in urban areas [11] [31] [32] [33] and about 25% of 
bird species on earth have gone extinction [31]. 

The effects of human population density and activities on water quantity and 
quality primarily from rivers have been documented earlier by various authors 
in different landscapes but such studies on lakes and ponds are lacking (relative-
ly less than rivers) in different regions on the earth including in Southern Texas 
[34]-[47]. Sometimes periodic droughts create severe regional water shortages in 
such a semiarid zone where moisture availability is the critical factor in plants 
and animal distribution and the human water use has been increasing about 
twice as fast as population growth over the past century globally, but its impacts 
vary with location [3]. 

The Bartlett Pond is an urban retention pond situated within the Jovita Idar’s 
El Progreso Park complex in East Central Laredo in Texas which is about 12 km 
north-east of Laredo city center. Soil in the pond is classified as hydric soil type 
and the surrounding area is classified as Copita Soil Series [48] (UC Davis Soil 
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Web App) which is well drained fine sandy loam that is moderately alkaline at a 
pH of 8.2.  

Water pollution is a major environmental problem within Southern Texas and 
the degradation of water quality in the Rio Grande River system, which drains 
through Laredo, an international boundary to Mexico. The basic water quality 
parameters from Rio Grande River systems and Manadas Creek, an urban tribu-
tary of Rio Grande within Laredo for antimony and arsenic distribution have 
been documented in earlier studies [49] [50] [51] but the water quality of lakes, 
ponds and groundwater has not yet been documented for the Southern Texas 
region. Wetlands in Laredo are considered rich in biodiversity, and play a major 
role in maintaining groundwater sources, preventing, and controlling loss of nu-
trients. More than 50% of the wetlands in the US are disappearing or degrading 
due to increase in human population or human activities despite the Govern-
ment’s policy for wetlands conservation [3]. The main objective of this study was 
to investigate the concentration and sources of trace elements which are respon-
sible for changing the ecology of the pond and to evaluate the whole aquatic 
ecosystem ecology of the Bartlett Pond.  

2. Study Area 

The research was conducted in Bartlett Pond, an urban retention pond situated 
within the Jovita Idar’s El Progreso Park complex in East Central Laredo, TX 
(27.554722˚N 99.473889˚W) in Southern Texas (Figure 1). The pond has his-
torically served as a drainage basin for the Upper Zacate Creek system, which is 
one of the three major tributaries of the Rio Grande at Laredo, Texas. The pond, 
with an area of nearly three hectares is located about 12 km north-east of 
Downtown Laredo (27.554722˚N 99.473889˚W) and its maximum depth is 
about 4.26 m. Today, the pond is primarily used for recreational purposes only. 
Visitors frequent the park for activities such as picnics, outdoor games, running, 
hiking, non-motorized boating, and fishing. It’s notable that fishing activities in 
the pond are strictly catch-and-release, aligning with the park’s focus on conser-
vation and outdoor enjoyment. Additionally, the pond is a catchment and pour 
point of run-off from various surrounding locations, including the Laredo In-
ternational Airport, which are potential sources of nonpoint pollution. Both the 
park and the pond are managed by the City of Laredo Parks and Recreation De-
partment, which oversees maintenance duties. 

The Bartlett Pond is the second largest pond within Laredo after Lake Casa 
Blanca which is about 6 km north-east of Bartlett. The Bartlett wetland site is a 
habitat of many plants including algae and some flowering plants. The site is also 
a habitat for many animal species including several bird species and more mi-
gratory birds especially in winter season. The region around Bartlett Pond in 
Laredo, Texas, is renowned for its exceptional bird diversity, with hundreds of 
species inhabiting the area and over 650 species in Texas [52]. Laredo is situated 
within a rich and diverse ecosystem in Texas, recognized as part of the birdiest 
corridor in North America [52]. This vibrant avian community includes both  
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Figure 1. Locations of Bartlett Pond in Laredo, Southern Texas with four quadrants in which 24 samples collected from each qua-
drant, n = 96. 

 

local and migratory bird species, contributing to the area’s ecological richness. 
Notably, Laredo boasts the unique distinction of being the only location in the 
United States where four different species of Kingfisher—Ringed, Belted, Green, 
and Amazon—have been observed [52]. While migratory birds typically stay for 
only a few weeks to months during the winter around Bartlett Pond, there have 
been no documented reports regarding the specific situation of birds in this area. 
Bartlett Pond exhibits richness in terms of species diversity, largely attributed to 
its favorable climate, particularly during the winter months. Biodiversity plays a 
critical role in sustaining life on Earth, providing essential resources such as food 
and medicines and moreover, biodiversity contributes to a wide range of ecolog-
ical benefits, including soil formation, waste disposal, air and water purification, 
nutrient cycling, absorption of solar energy, biogeochemical processes that nou-
rish ecosystems, and regulation of hydrological cycles with cumulative value of 
these ecological services is estimated to be approximately US$ 33 trillion per 
year, roughly equivalent to half of the world’s gross national product (GNP) [3] 
(Cunningham and Cunningham 2021). 
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Laredo is situated at an altitude of 127.41 m asl on the Mexican border in 
Southern Texas with an area about 265.7 km2 with a large area surrounded by 
forest. Rio Grande is the major river system in the area within Laredo, but its 
water neither enters Bartlett Pond nor into Lake Casa Blanca, as the river flows 
about 14 km south from the pond. Annual average rainfall is 500 mm, and the 
mean annual temperature is 23.5˚C. The average temperature ranges between 
8.9˚C in December and 31.7˚C in August in the Laredo. According to US Cli-
mate, August is the hottest month of the year with a minimum of 25.2˚C to 
maximum of 38.2˚C. 

3. Materials and Methods 
3.1. Sample Collection 

Bartlett Pond was divided into four quadrants: quadrant-I (Q1), quadrant-II 
(Q2), quadrant-III (Q3) and quadrant-IV (Q4) and each quadrant had 24 sam-
pling points as in Figure 1. Water samples were collected from four quadrants of 
the pond with a total of 96 samples during summer 2018 (Figure 1). Two types 
of fish (bass and tilapia) were also taken from quadrant 3 site for the trace ele-
ments analysis from three different parts of their body. There are two main inlet 
points in the pond; one at Q2 (quadrant II), where the surface runoff enters into 
the pond through the pipe, and the other at Q3 (quadrant III) where more urban 
surface runoff enters into the pond. Samples were taken in 500 mL acid-washed 
polyethylene bottles, and refrigerated at the laboratory of Texas A&M Interna-
tional University (TAMIU) until analysis for trace elements (Fe, Sb, Pb, As, Co, 
Tl, Cr, Cd). In each sample, 50 µL concentrated nitric acid was added to analyze 
for trace elements by Inductively Coupled Plasma-Optical Emission Spectrosco-
py (ICP-OES), by method US EPA 3015A at the Department of Biology and 
Chemistry of TAMIU [53]. 

3.2. Analytical Methods 

Acid digestion of trace metals in fishes and water was done with a CEM MARS 6 
Microwave Digestion System (CEM Corporation, Matthews, North Carolina, 
United States). Trace metal analysis was done with an Agilent ICP-720 Induc-
tively coupled plasma-optical emission spectrometer (Agilent Technologies, Santa 
Clara, California, United State) by following method US EPA 3015A [53] 

For Water 
Briefly, 20 mL of water sample was measured into a digestion vessel and di-

gested using EPA method 3015A. The digested samples were filtered through a 
0.45 µm polycarbonate filter and analyzed by Inductively Coupled Plasma-Opti- 
cal Emission Spectrometer (ICP-OES) for metal concentrations against a stan-
dard calibration curve [53]. Replicate samples, standard reference material (SRM), 
field blanks and laboratory spikes were treated in the same way. 

For Fish 
Fish samples were taken from the freezer and allowed to thaw. They were 
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rinsed with Milli-Q water, separated into three parts (head, body, and tail), dried 
in an oven at 80˚C for 24 hours, and grinded into a fine powder to evenly mix 
the samples before digestion. Approximately 200 mg of dried powder sample 
was weighed into the Teflon digestion vessel and digested with 7 mL of HNO3, 3 
mL HF, and 2mL H2O2 in a CEM MARS 6 microwave digester for 30 min fol-
lowing EPA method 3015A. The digested fish samples were then diluted to 50 
mL with Milli-Q water and filtered through a 0.45 µm polycarbonate filter and 
analyzed by ICP-OES for trace metals (Fe, Sb, Pb, As, Co, Tl, Cr, Cd) by follow-
ing method US EPA 3015A [53]. SRM oyster tissue was subjected to the same 
process.  

Quality Control 
The accuracy of the instrument was checked by triplicate analysis of the same 

samples. Method blanks, spike recovery, and standard reference material (SRM) 
analysis were also employed. Certified SRM 1566b oyster tissue and 1643f water 
were analyzed in the same way as the fish and water respectively to check the 
accuracy of analysis. The analytical values were within the range of certified val-
ues and the overall average recovery of trace metals in standard substances was 
between 88 and 105%. 

3.3. Statistical Tool for Data Analysis 

We utilized sophisticated statistical tool, Version 29.0.0 (241) of IBM SPSS Sta-
tistics software for conducting our analyses. Our analytical approach centered 
around three primary programs within the software: 

1) Analyze > Compare Means: This module was instrumental in conducting 
comparisons of means across different groups or conditions, providing valuable 
insights into the variations and trends within our dataset. 

2) Analysis > Correlate > Bivariate: Through this tool, we explored the rela-
tionships between pairs of variables, allowing us to assess the strength and direc-
tion of associations within our data. 

3) Analyze > Regression > Linear: Utilizing this program, we conducted linear 
regression analyses to model the relationships between one or more predictor 
variables and a dependent variable of interest, facilitating a deeper understand-
ing of the underlying patterns and predictive factors within our dataset. 

4. Results and Discussion 
4.1. Spatial Variations in Trace Elements 

The concentrations of trace elements in water samples were found in the fol-
lowing order: Fe � Sb > Pb > As � Co > Tl > Cr > Cd within Bartlett Pond. 
Variation pattern of average concentrations with standard deviations of meas-
ured trace elements (As, Cd, Co, Cr, Fe, Pb, Sb, and Tl) from each quadrant (n = 
24) is presented in Table 1. Summary descriptive statistics of different trace 
elements in Bartlett Pond water are given in Table 2 and the standard deviations 
were calculated by using n = 96. 
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Table 1. Average trace element concentrations in different sections of Bartlett Pond within Laredo, Southern Texas during sum-
mer 2018. All values are in µg/L. The standard deviations were calculated using n=24 for each section. WHO guideline values are 
from WHO 2017 [54].  

Trace Elements Quadrant I Quadrant II Quadrant III Quadrant IV WHO Guideline 

As 98.48 ± 56.18 200.81 ± 221.19 152.02 ± 115.29 107.94 ± 74.14 10 

Cd 23.51 ± 55.26 119.49 ± 267.21 58.57 ± 101.25 42.03 ± 69.61 3 

Co 49.39 ± 53.62 152.46 ± 262.56 57.11.02 ± 101.06 63.49 ± 66.34 50* 

Cr 31.97 ± 57.60 143.45 ± 259.64 73.71 ± 107.25 51.30 ± 71.01 50 

Fe 1764.28 ± 700.95 3255.47 ± 2561.39 2229.92 ± 984.52 1177.59 ± 444.22 1000-3000 

Pb 160.65 ± 105.16 257.53 ± 239.90 267.04 ± 126.87 177.55 ± 106.74 10 

Sb 281.52 ± 102.76 344.65 ± 253.97 289.53 ± 115.82 230.22 ± 71.47 20 

Tl 41.53 ± 47.64 149.50 ± 243.66 80.98 ± 94.64 50.24 ± 68.47 2 

*Canadian Drinking Water Guideline (2006) [55]. 
 
Table 2. Summary descriptive statistics of the different trace elements in the Bartlett Pond water. The standard deviations were 
calculated using n = 96. All measurements are in micrograms/Liter (µg/L). 

Trace Elements n Minimum Maximum Mean St. Deviation 

Arsenic 95 34.37 561.80 130.45 102.51 

Cadmium 95 0.02 379.77 48.46 90.77 

Cobalt 95 10.13 449.92 78.61 93.76 

Chromium 95 3.06 463.10 63.55 101.51 

Iron 95 563.29 8401.27 2107.46 1613.09 

Lead 95 21.08 579.36 205.19 122.80 

Antimony 95 93.69 801.79 276.70 123.70 

Thallium 95 0.00 475.92 69.62 92.97 

 

Interestingly, the distributions of the trace elements in water exhibit different 
shapes, as shown in Table 3. A positively skewed distribution means that smaller 
scores are more frequent than larger scores in the sample, with a few extremely 
high values pulling the average towards the right side of the distribution. For 
each data distribution, the mean and standard deviation are provided in the 
top-right corner of every figure included in this section. 

4.1.1. Spatial Variation of Arsenic 
Arsenic concentration appeared highest (200.81 ± 221.19 µg/L) at quadrant-II 
followed by quadrant-III (152.02 ± 115.29 µg/L), quadrant-IV (107.94 ± 74.14 
µg/L) and least at the quadrant-I (98.48 ± 56.18 µg/L) (Table 1). The arsenic 
concentration is much higher than the US EPA and WHO guideline values [54] 
[56]. The high concentration site has direct surface runoff input, and the lower 
concentration site has presence of vegetation close to the points that may control 
concentration of measured arsenic due to uptake.  The spatial variation of the 
trace element arsenic (As) in Bartlett Pond water shows positively skewed shape  
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Table 3. Descriptions of the shape distributions. 

Trace Elements Shape Distribution 

Arsenic Positively Skewed 

Cadmium Positively Skewed 

Cobalt Positively Skewed 

Chromium Positively Skewed 

Iron Almost symmetrical 

Lead Almost symmetrical 

Antimony Symmetrical 

Thallium Positively Skewed 

 

distribution as shown in histograms (Figure 2). Arsenic contamination in ground-
water is high in Texas primarily in wells of southern High Plains and southern Gulf 
Coast may be due to role of phosphate fertilizers used in the past which might have 
mobilized arsenic, use of arsenical pesticides or from geological sources [57]. 

4.1.2. Spatial Variation of Cadmium 
Cadmium concentration appeared highest (119.49 ± 267.21 µg/L) at quadrant-II 
followed by quadrant-III (58.57 ± 101.25 µg/L), quadrant-IV (42.03 ± 69.61 
µg/L) and least at the quadrant-I (23.51 ± 56.26 µg/L) (Table 1). The cadmium 
concentration is much higher than the US EPA and WHO guideline values [54] 
[56]. The spatial variation of the trace element cadmium (Cd) in Bartlett Pond 
water shows positively skewed shape distribution as shown in histograms 
(Figure 3). The spatial variation of cadmium within the Bartlett Pond is due to 
variation in surface urban runoff input, vegetation, and specific sampling loca-
tion within the point.  

4.1.3. Spatial Variation of Cobalt 
Cobalt concentration appeared highest (152.46 ± 262.56 µg/L) at quadrant-II 
followed by quadrant-III (97.11 ± 101.06 µg/L), quadrant-IV (63.49 ± 66.34 
µg/L) and least at the quadrant-I (49.39 ± 53.62 µg/L) (Table 1). The spatial var-
iation of the trace element cobalt (Co) in Bartlett Pond water shows positively 
skewed shape distribution as shown in histograms (Figure 4). The spatial varia-
tion of cobalt within the Bartlett Pond is due to variation in surface urban runoff 
input, vegetation, and specific sampling location within the point.  

4.1.4. Spatial Variation of Chromium 
Chromium concentration appeared highest (143.45 ± 259.64 µg/L) at qua-
drant-II followed by quadrant-III (73.71 ± 107.25 µg/L), quadrant-IV (51.30 ± 
71.01 µg/L) and least at the quadrant-I (31.79 ± 57.60 µg/L) (Table 1). The 
chromium concentration is much higher than the US EPA and WHO guideline 
values [54] [56]. The spatial variation of the trace element chromium (Cr) in 
Bartlett Pond water shows positively skewed shape distribution as shown in 
histograms (Figure 5). The spatial variation of chromium within the Bartlett 
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Pond is due to variation in surface urban runoff input, vegetation, and specific 
sampling location within the point.  

4.1.5. Spatial Variation of Iron 
Iron concentration appeared highest (3255.47 ± 2561.39 µg/L) at quadrant-II 
followed by quadrant-III (2229.92 ± 984.52 µg/L), quadrant-IV (1177.59 ± 
444.22 µg/L) and least at the quadrant-I (1764.28 ± 700.95 µg/L) (Table 1). The 
spatial variation of the trace element iron (Fe) in Bartlett Pond water shows al-
most symmetrical shape distribution as shown in histograms (Figure 6). The 
spatial variation of iron within the Bartlett Pond is due to variation in surface 
urban runoff input, vegetation, and specific sampling location within the point.  
 

 

Figure 2. Histogram displaying the spatial variation of the trace element arsenic (As) in 
water. The distribution of arsenic is positively skewed. 
 

 

Figure 3. Histogram displaying the spatial variation of the trace element cadmium (Cd) 
in water. The distribution of cadmium is positively skewed. 
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Figure 4. Histogram displaying the spatial variation of the trace element cobalt (Co) in 
water. The distribution of cobalt is positively skewed. 
 

 

Figure 5. Histogram displaying the spatial variation of the trace element chromium (Cr) 
in water. The distribution of chromium is positively skewed. 
 

 

Figure 6. Histogram displaying the spatial variation of the trace element iron (Fe) in wa-
ter. The distribution of iron is almost symmetrical skewed. 
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4.1.6. Spatial Variation of Lead 
Lead concentration appeared highest (267.04 ± 126.87 µg/L) at quadrant-III fol-
lowed by quadrant-II (257.53 ± 239.90 µg/L), quadrant-IV (177.55 ± 106.74 
µg/L) and least at the quadrant-I (160.65 ± 105.16 µg/L) (Table 1). The lead 
concentration is much higher than the US EPA and WHO guideline values [54] 
[56]. The spatial variation of the trace element lead (Pb) in Bartlett Pond water 
shows almost symmetrical shape distribution as shown in histograms (Figure 7). 
The spatial variation of lead within the Bartlett Pond is due to variation in sur-
face urban runoff input, vegetation, and specific sampling location within the 
point. 

4.1.7. Spatial Variation of Antimony 
Antimony concentration appeared highest (344.65 ± 253.97 µg/L) at quadrant-II 
followed by quadrant-III (289.53 ± 115.82 µg/L), quadrant-I (281.52 ± 102.76 
µg/L) and least at the quadrant-IV (230.22 ± 71.47 µg/L) (Table 1). The anti-
mony concentration is much higher than the US EPA and WHO guideline val-
ues [54] [56]. The spatial variation of the trace element antimony (Sb) in Bartlett 
Pond water shows symmetrical shape distribution as shown in histograms 
(Figure 8). The spatial variation of antimony within the Bartlett Pond is due to 
variation in surface urban runoff input, vegetation, and specific sampling loca-
tion within the point. Earlier documented studies show that the antimony (Sb) is 
generally taken up by terrestrial plants, but the detailed mechanisms are still 
lacking [58] (Tschan et al. 2009; [59] Feng et al. 2013; [60] Vidya et al. 2023). 

4.1.8. Spatial Variation of Thallium 
Thallium concentration appeared highest (149.50 ± 233.67 µg/L) at quadrant-II 
followed by quadrant-III (80.93 ± 94.64 µg/L), quadrant-IV (50.24 ± 68.47 µg/L) 
and least at the quadrant-I (41.53.22 ± 47.64 µg/L) (Table 1). The thallium  
 

 

Figure 7. Histogram displaying the spatial variation of the trace element lead (Pb) in wa-
ter. The distribution of lead is almost symmetrical skewed. 
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Figure 8. Histogram displaying the spatial variation of the trace element antimony (Sb) 
in water. The distribution of antimony is symmetrical skewed. 
 

concentration is much higher than the US EPA and WHO guideline values [54] 
[56]. The spatial variation of the trace element thallium (Tl) in Bartlett Pond 
water shows positive skewed shape distribution as shown in histograms (Figure 
9). The spatial variation of thallium within the Bartlett Pond is due to variation 
in surface urban runoff input, vegetation uptake and specific sampling location 
within the point.  

4.2. The Predictive and Correlation Analyses 

The correlation analysis of measured trace elements within Bartlett Pond yields 
fascinating results (see Table 4). It reveals that most trace elements demonstrate 
a strong positive correlation among themselves, with 10 pairs exhibiting a corre-
lation coefficient exceeding 0.90. Notably, the highest correlation coefficient 
(0.992) is observed between cobalt and chromium, whereas the lowest (0.346) is 
found between lead and iron. 

4.2.1. The Univariate and Multiple Regression Analyses of Arsenic in 
Relation to Other Trace Elements 

We have established strong correlations between arsenic and various trace ele-
ments, leading us to develop predictive models specifically for arsenic in con-
junction with different elements. Figure 10 displays the regression analysis de-
picting the relationship between arsenic and cobalt. The regression model ex-
pressed �As  = 1.07 Co + 46.59 with an R-squared value of 95%, indicates the 
model’s effectiveness in forecasting arsenic levels based on known cobalt con-
centrations. The regression coefficient of 1.07 signifies that a 1 µg/L increase in 
cobalt in pond water results in a 1.07 µg/L increase in arsenic levels within the 
same water sample. 

We have similarly constructed predictive models for arsenic in relation to other 
measured trace elements (Cd, Co, Cr, Fe, Pb, Sb, and Tl), detailed in Table 5. 
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Figure 9. Histogram displaying the spatial variation of the trace element thallium (Tl) in 
water. The distribution of thallium is positively skewed. 
 

Table 4. Pearson’s correlation matrix of probabilities among trace elements in water samples from Bartlett Pond during summer 
2018, n = 96. 

Elements As Cd Co Cr Fe Pb Sb Tl 

Arsenic 1 0.948** 0.976** 0.960** 0.623** 0.621** 0.800** 0.953** 

Cadmium 0.948** 1 0.984** 0.992** 0.427** 0.593** 0.706** 0.961** 

Cobalt 0.976** 0.984** 1 0.991** 0.554** 0.628** 0.773** 0.967** 

Chromium 0.960** 0.992** 0.991** 1 0.507** 0.602** 0.743** 0.970** 

Iron 0.623** 0.427** 0.554** 0.507** 1 0.346** 0.714** 0.547** 

Lead 0.621** 0.593** 0.628** 0.602** 0.346** 1 0.433** 0.615** 

Antimony 0.800** 0.706** 0.773** 0.743** 0.714** 0.433** 1 0.746** 

Thallium 0.953** 0.961** 0.967** 0.970** 0.547** 0.615** 0.746** 1 

**Correlation is significant at 1% level (2-tailed). 
 

 

Figure 10. The bivariate distribution of arsenic and cobalt. 
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Table 5. Predictive models for estimating Arsenic. 

Model # Independent variable(s) Predictive Model R2 value 

1. Cd �As  = 1.07 Cd + 78.55 90% 

2. Co �As  = 1.07 Co + 46.59 95.2% 

3. Cr �As  = 0.97 Cr + 68.82 92.2% 

4. Fe �As  = 0.04 Fe + 47.04 38.8% 

5. Pb �As  = 0.52 Pb + 24.05 38.6% 

6. Sb �As  = 0.66 Sb − 53.07 64.1% 

7. Tl �As  = 1.05 Tl + 57.29 90.8% 

8. Cd, Co, Cr, & Fe �As  = 0.77 Cd + 0.80 Co − 0.55 Cr + 0.01 Fe + 38.00 96.4% 
 

To derive the multivariate model (Model # 8) in Table 5, we began the process 
by utilizing all seven remaining trace elements as independent variables and ap-
plied the Backward Elimination Regression method. The resulting model de-
monstrates high significance (F = 603.17, df = (4, 90), p < 0.001) with an R- 
squared value of 96.4%, signifying its substantial practical utility. 

4.2.2. The Univariate and Multiple Regression Analyses of Cadmium in 
Relation to Other Trace Elements 

Cadmium exhibits a strong correlation with various trace elements, and we have 
developed predictive models for cadmium in conjunction with several of these 
elements (such as As, Co, Cr, Fe, Pb, Sb, and Tl). Figure 11 demonstrates the 
regression analysis depicting the relationship between cadmium and chromium. 
The regression model, expressed as �Cd  = 0.89 Cr – 7.93, with an R-squared 
value of 98.5%, indicates the model’s effectiveness in predicting cadmium levels 
based on known chromium concentrations. The regression coefficient of 0.89 
implies that a 1 µg/L increase in chromium in pond water corresponds to a 0.89 
µg/L increase in cadmium levels within the same water sample. 

Additionally, we have established predictive models for cadmium with other 
measured trace elements (As, Co, Cr, Fe, Pb, Sb, and Tl), as presented in Table 
6. 

To derive the multivariate model (Model #16) in Table 6, we initiated the 
process by utilizing the remaining six trace elements (As, Co, Cr, Fe, Pb, and Tl) 
as independent variables and employed the Backward Elimination Regression 
method. The resulting model demonstrates high significance (F = 3761.55, df = 
(6, 88), p < 0.001), with an R-squared value of 99.6%, signifying its substantial 
utility for practical applications. 

4.2.3. The Univariate and Multiple Regression Analyses of Cobalt in  
Relation To Other Trace Elements 

Cobalt exhibits a strong relationship with all other trace elements, and we have 
developed predictive models for cobalt in conjunction with various trace ele-
ments such as As, Cd, Cr, Fe, Pb, Sb, and Tl. In Figure 12, the regression analy-
sis demonstrates the relationship between cobalt and chromium. The regression  
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Table 6. Predictive models for estimating Cadmium. 

Model # Independent variable(s) Predictive Model R2 value 

9. As �Cd  = 0.84 As − 61.08 90.0% 

10. Co �Cd  = 0.95 Co − 26.45 96.9% 

11. Cr �Cd  = 0.89 Cr − 7.93 98.5% 

12. Fe �Cd  = 0.02 Fe − 2.14 17.3% 

13. Pb �Cd  = 0.44 Pb − 41.56 34.5% 

14. Sb �Cd  = 0.52 Sb − 94.89 49.3% 

15. Tl �Cd  = 0.94 Tl − 16.88 92.4% 

16. As, Co, Cr, Fe, Pb, & Tl �Cd  = 0.06 AS + 0.38 Co + 0.50 Cr − 0.01 Fe − 0.02 Pb + 0.07 Tl − 4.77 99.6% 
 

 

Figure 11. The bivariate distribution of cadmium and cromium. 
 

 

Figure 12. The bivariate distribution of cobalt and cromium.  
 

model, expressed as �Co  = 0.92 Cr + 20.44 with an R-squared value of 98.2%, 
indicates the model’s effectiveness in predicting cobalt levels based on known 
chromium concentrations. The regression coefficient of 0.92 implies that a 1 
µg/L increase in chromium in pond water corresponds to a 0.92 µg/L increase in 
cobalt levels within the same water sample. 

Similarly, we have established predictive models for cobalt with other meas-
ured trace elements (As, Cd, Fe, Pb, and Sb), detailed in Table 7. 

To determine the multivariate model (Model # 24) in Table 7, we initiated the 
process using the remaining five trace elements (As, Cd, Fe, Pb, and Sb) as in-
dependent variables and applied the Backward Elimination Regression method. 

https://doi.org/10.4236/jep.2024.154029


M. P. Bhatt et al. 
 

 

DOI: 10.4236/jep.2024.154029 513 Journal of Environmental Protection 
 

Table 7. Predictive models for estimating Cobalt. 

Model # Independent variable(s) Predictive Model R2 value 

17. As �Co  = 0.89 As − 37.80 95.2% 

18. Cd �Co  = 1.02 Cd + 29.34 96.9% 

19. Cr �Co  = 0.92 Cr + 20.44 98.2% 

20. Fe �Co  = 0.03 Fe + 10.79 30.7% 

21. Pb �Co  = 0.48 Pb − 19.78 38.8% 

22. Sb �Co = 0.59 Sb − 83.60 59.4% 

23. Tl �Co  = 0.98 Tl − 10.72 93.4% 

24. As, Cd, Fe, Pb, & Sb �Co  = 0.10 As + 0.82 Cd + 0.01 Fe + 0.03 Pb + 0.03 Sb − 0.90 99.3% 

 

The resulting model demonstrates high significance (F = 2512.07, df = (5, 89), p 
< 0.001) with an R-squared value of 99.3%, indicating its considerable utility for 
practical applications. 

4.2.4. The Univariate and Multiple Regression Analyses of Chromium in 
Relation to Other Trace Elements 

The relationship between chromium and various trace elements has been exten-
sively studied, leading to the development of predictive models. These models 
encompass chromium in conjunction with several trace elements, including ar-
senic (As), cadmium (Cd), cobalt (Co), iron (Fe), lead (Pb), antimony (Sb), and 
thallium (Tl). For instance, the predictive model relating chromium to arsenic is 
expressed as follows: �Cr  = 0.95 As – 60, demonstrating an impressive R- 
squared value of 92.2%. This model effectively predicts chromium levels based 
on known arsenic concentrations. Specifically, a 1 µg/L increase in arsenic in 
pond water corresponds to a 0.95 µg/L increase in chromium levels within the 
same water sample. 

Similar predictive models have been established for chromium in relation to 
other measured trace elements, such as arsenic, cadmium, and iron, as detailed 
in Table 8. 

To derive the multivariate model (Model # 32) in Table 8, we employed a 
Backward Elimination Regression method, utilizing the remaining three trace 
elements (As, Cd, and Fe) as independent variables. The resulting model de-
monstrates remarkable significance (F = 4733.79, df = (3, 91), p < 0.001) and 
boasts an R-squared value of 99.4%. This high level of significance underscores 
its practical utility for real-world applications. 

4.2.5. The Univariate and Multiple Regression Analyses of Iron in  
Relation to Other Trace Elements 

Iron does not display a strong relationship with all other trace elements. We 
have developed predictive models for iron in conjunction with various trace 
elements such as As, Cd, Co, Cr, Pb, Sb, and Tl. The regression analysis model 
for iron concerning arsenic is represented as follows: �Fe  = 9.80 As + 829.09, 
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with an R-squared value of 38.8%. This suggests the model’s effectiveness in 
predicting iron levels based on known arsenic concentrations. The regression 
coefficient of 9.80 indicates that a 1 µg/L increase in arsenic in pond water re-
sults in a 9.80 µg/L increase in iron levels within the same water sample. Addi-
tionally, we’ve established predictive models for iron with other measured trace 
elements (As, Cd, Co, Cr, Pb, and Tl), detailed in Table 9. 

To determine the multivariate model (Model # 40) in Table 9, we began by 
using all remaining trace elements (As, Cd, Co, Cr, Pb, and Tl) as independent 
variables and employed the Backward Elimination Regression method. The re-
sulting model demonstrates high significance (F = 96.93, df = (6, 88), p < 0.001) 
with an R-squared value of 86.91%, signifying its substantial utility for practical 
applications. 

4.2.6. The Univariate and Multiple Regression Analyses of Lead in  
Relation to Other Trace Elements 

Lead demonstrates a strong moderate relationship with all other trace elements. 
We have developed predictive models for lead in conjunction with various trace 
elements (such as As, Cd, Co, Cr, Fe, Sb, and Tl). For instance, the regression 
analysis model depicting lead’s relationship to arsenic is represented as fol-
lows: �Pb  =0.75*Arsenic (As) + 108.13, with an R-squared value of 38.6%. This  

 
Table 8. Predictive models for estimating Chromium. 

Model # Independent variable(s) Predictive Model R2 value 

25. As �Cr  = 0.95 As − 60.49 92.2% 

26. Cd �Cr  = 1.11 Cd + 9.77 98.5% 

27. Co �Cr  = 1.07 Co − 20.79 98.2% 

28. Fe �Cr  = 0.03 Fe − 3.75 25.8% 

29. Pb �Cr  = 0.50 Pb − 38.63 36.3% 

30. Sb �Cr  = 0.61 Sb − 105.22 55.2% 

31. Tl �Cr  = 1.06 Tl − 10.16 94.0% 

32. As, Cd, & Fe �Cr  = −0.08 As + 1.13 Cd + 0.01 Fe + 2.20 99.4% 

 
Table 9. Predictive models for estimating Iron. 

Model # Independent variable(s) Predictive Model R2 value 

33. As �Fe  = 9.80 As + 829.09 38.8% 

34. Cd �Fe  = 7.58 Cd + 1740.04 18.2% 

35. Co �Fe  = 9.53 Co + 1358.70 30.7% 

36. Cr �Fe  = 8.07 Cr + 1594.97 25.8% 

37. Pb �Fe  = 4.54 Pb + 1175.53 12.0% 

38. Sb �Fe  = 9.31 Sb − 469.23 51.0% 

39. Tl �Fe  = 9.50 Tl + 1446.20 30.0% 

40. As, Cd, Co, Cr, Pb, & Tl �Fe  = 11.31 As − 88.36 Cd + 38.35 Co +35.14 Cr − 1.95 Pb + 7.52 Tl − 457.25 86.9% 
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model suggests its usefulness in predicting lead levels based on known arsenic 
concentrations. Notably, the regression coefficient of 0.75 implies that a 1 µg/L 
increase in arsenic in pond water results in a corresponding 0.75 µg/L increase in 
lead levels within the same water sample. Similarly, we have established predic-
tive models for lead with other measured trace elements (As, Cd, Co, Cr, Fe, Sb, 
and Tl), which are presented in Table 10. 

To derive the multivariate model (Model # 48) as shown in Table 10, we be-
gan the process by utilizing all remaining trace elements (Cd, Co, Fe, and Tl) as 
independent variables and employed the Backward Elimination Regression me-
thod. The resulting model demonstrates high significance (F = 20.26.17, df = (4, 
90), p < 0.001) with an R-squared value of 47.6%, indicating its considerable 
practical utility for applications. 

4.2.7. The Univariate and Multiple Regression Analyses of Antimony in 
Relation to Other Trace Elements 

Antimony demonstrates a notably strong correlation with various trace ele-
ments, and we have developed predictive models for antimony alongside several 
others (such as As, Cd, Co, Cr, Fe, Pb, and Tl). For instance, the regression 
analysis model illustrating the relationship between antimony and arsenic is ex-
pressed as �Sb  = 0.97 As + 150.72, with an R-squared value of 64.1%. This 
model suggests its effectiveness in predicting lead levels based on known arsenic 
concentrations. The regression coefficient of 0.97 indicates that a 1 µg/L increase 
in arsenic in pond water leads to a 0.97 µg/L increase in antimony levels within 
the same water sample. we have also established predictive models for antimony 
with other measured trace elements (Cd, Co, Cr, Fe, Pb, and Tl), as outlined in 
Table 11. 

In order to derive the multivariate model (Model #56) found in Table 11, we 
initiated the process by using remaining trace elements (Co and Fe) as indepen-
dent variables and employed the Backward Elimination Regression method. The 
resulting model demonstrates high significance (F = 116.00, df = (2, 92), p < 
0.001) with an R-squared value of 71.6%, indicating its substantial practical ap-
plicability. 

 
Table 10. Predictive models for estimating Lead. 

Model # Independent variable(s) Predictive Model R2 value 

41. As �Pb  = 0.75 As + 108.13 38.6% 

42. Cd �Pb  = 0.80 Cd + 166.29 35.2% 

43. Co �Pb  = 0.82 Co + 140.54 39.4% 

44. Cr �Pb  = 0.73 Cr + 158.88 36.3% 

45. Fe �Pb  = 0.03 Fe +149.72 12.0% 

46. Sb �Pb  = 0.43 Sb + 86.15 18.8% 

47. Tl �Pb  = 0.81 Tl + 148.62 37.9% 

48. Cd, Co, Fe, & Tl �Pb  = −3.86 Cd + 4.04 Co − 0.04 Fe + 0.86 Tl + 93.98 47.6% 
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Table 11. Predictive models for estimating Antimony. 

Model # Independent variable(s) Predictive Model R2 value 

49. As �Sb  = 0.97 As + 150.72 64.1% 

50. Cd �Sb  = 0.96 Cd + 230.08 49.8% 

51. Co �Sb  = 1.02 Co + 196.49 59.8% 

52. Cr �Sb  = 0.91 Cr + 219.14 55.2% 

53. Fe �Sb  = 0.06 Fe + 161.29 51.0% 

54. Pb �Sb  = 0.44 Pb + 187.12 18.8% 

55. Tl �Sb = 0.99 Tl + 207.61 55.6% 

56. Co & Fe �Sb  = 0.72 Co + 0.03 Fe + 152.54 71.6% 

4.2.8. The Univariate and Multiple Regression Analyses of Thallium in 
Relation to Other Trace Elements 

Thallium demonstrates a robust correlation with various trace elements, and we 
have developed predictive models for thallium in conjunction with several ele-
ments (Arsenic, Cadmium, Cobalt, Chromium, Iron, Lead, and Antimony). Spe-
cifically, the regression analysis model linking thallium to arsenic is represented 
as �Tl  = 0.85 As – 43.14, with an impressive R-squared value of 90.8%. This 
suggests the model’s effectiveness in predicting thallium levels based on known 
arsenic concentrations. The regression coefficient of 0.85 indicates that a 1 µg/L 
increase in arsenic in pond water leads to a corresponding 0.85 µg/L increase in 
thallium levels within the same water sample. Similarly, we have established pre-
dictive models for thallium with other measured trace elements (Cadmium, Co-
balt, Chromium, Iron, Lead, and Antimony), which are detailed in Table 12. 

To determine the multivariate model (Model # 64) in Table 12, we began by 
using the Backward Elimination Regression method, employing all remaining 
trace elements (Cadmium, Cobalt, Chromium, and Iron) as independent va-
riables. The resulting model shows high significance (F = 823.24, df = (2, 92), p < 
0.001) with an R-squared value of 94.7%. This underscores its substantial prac-
tical utility and relevance for applications. 

4.3. Toxicity of Trace Elements and Their Testing in Bartlett Pond 
4.3.1. Hypothesis Testing and Toxicity of Arsenic (As) 
Arsenic contamination in water is a significant concern globally due to its toxic-
ity and potential health risks. Arsenic is a naturally occurring element found in 
soil and rocks and released into the aquatic and terrestrial landscape through the 
natural chemical weathering processes, and it can seep into groundwater, mak-
ing its way into drinking water sources, and globally more than 200 million 
people are risk due to its contamination [61] [62] [63]. Anthropogenic activities 
contribute to exceeding high concentration in the environment. Chronic expo-
sure to arsenic-contaminated water has been linked to various health issues, in-
cluding skin lesions, cancer (skin, bladder, lung), cardiovascular diseases, and  
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Table 12. Predictive models for estimating Thallium. 

Model # Independent variable(s) Predictive Model R2 value 

57. As �Tl  = 0.85 As – 43.14 90.8% 

58. Cd �Tl  = 0.99 Cd + 21.91 92.4% 

59. Co �Tl  = 0.96 Co – 5.76 93.5% 

60. Cr �Tl  = 0.89 Cr + 13.18 94.0% 

61. Fe �Tl  = 0.03 Fe + 3.11 30.0% 

62. Pb �Tl  = 0.47 Pb – 25.97 37.9% 

63. Sb �Tl  = 0.56 Sb – 85.51 55.6% 

64. Cd, Co, Cr, & Fe �Tl  = 0.91 Cd + 0.01 Fe + 5.07 94.7% 

 

neurological effects [54] [56] [62]. 
The permissible level of arsenic in drinking water varies across countries. The 

World Health Organization (WHO) and the US Environmental Protection Agen-
cy (EPA) Federal recommend a maximum concentration of 10 micrograms per 
liter (µg/L) of arsenic in drinking water in the US.  

We tested the hypotheses H0: µ ≤ 10 µg/L versus H1: µ > 10 µg/L and con-
cluded that we reject the null hypothesis. The sample mean and standard devia-
tion for arsenic are 130.45 µg/L and 102.51 µg/L, respectively. These results in-
dicate that the arsenic level in pond water exceeds the permissible limit. There-
fore, pond water is considered contaminated in terms of arsenic concentration. 

4.3.2. Hypothesis Testing and Toxicity of Cadmium (Cd) 
Cadmium in water is a serious concern for environmental, ecosystems ecology 
and health issues. Cadmium is a toxic heavy metal that can enter water sources 
through industrial discharge, mining activities, agricultural runoff, and impro-
per disposal of waste [55]. It poses significant risks to human health, especially 
when consumed through contaminated water or food grown in cadmium-conta- 
minated soil. Exposure to cadmium in drinking water over time can lead to var-
ious health problems, including kidney damage, bone mineral density reduction, 
and potentially increasing the risk of certain cancers [54] [56]. 

The WHO has set a provisional guideline value for cadmium in drinking wa-
ter at 3 µg/L to minimize health risks. The study involves hypothesis testing, 
where two hypotheses are proposed: 

Null Hypothesis (H0): The mean Cadmium level (µ) in pond water is less than 
or equal to 3 µg/L versus alternative Hypothesis (H1): The mean Cadmium level 
(µ) in pond water is greater than 3 µg/L. 

The study’s results indicate that the sample mean Cadmium level is 48.46 
µg/L, with a sample standard deviation of 90.77 µg/L. Based on these values, the 
researchers conclude rejecting the null hypothesis. As the sample mean Cad-
mium level significantly exceeds the threshold of 3 µg/L, the study asserts that 
the Cadmium concentration in pond water exceeds permissible limits. Conse-
quently, pond water is deemed unsafe for drinking due to elevated Cadmium le-
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vels. 

4.3.3. Hypothesis Testing and Toxicity of Cobalt (Co) 
The permissible levels of cobalt in water can vary based on different guidelines 
set by regulatory bodies. Cobalt is a naturally occurring element and can be 
present in water sources through various means, including industrial discharge, 
mining activities, and erosion of rocks and soils [56]. Internationally, the WHO 
doesn’t have a specific guideline value for cobalt in drinking water. However, 
they recommend a provisional guideline value for cobalt in drinking water of 10 
micrograms per liter based on health considerations. We tested the hypotheses 
H0: µ ≤ 10 µg/L versus H1: µ > 10 µg/L and concluded that we reject the null 
hypothesis. This decision is based on the sample mean and standard deviation 
for Cobalt, which are 78.61 µg/L and 96.76 µg/L, respectively. The mean cobalt 
concentration is significantly higher than the Canadian drinking water standard 
(50 µg/L). These values imply that the Cobalt level in the pond water exceeds the 
permissible range. Consequently, regarding Cobalt levels, the pond water is con-
sidered undrinkable. 

4.3.4. Hypothesis Testing and Toxicity of Chromium (Cr) 
The permissible level of chromium in water varies based on the type of chro-
mium present. There are primarily two forms of chromium: trivalent chromium 
(chromium-3) and hexavalent chromium (chromium-6). Chromium-3 is natu-
rally occurring and considered essential in small amounts for human health, 
while chromium-6 is a toxic form often associated with industrial processes [56]. 
The United States Environmental Protection Agency has set a Maximum Con-
taminant Level (MCL) for total chromium in drinking water at 100 µg/L. This 
MCL includes both chromium-3 and chromium-6. We tested the hypotheses: 
H0: µ ≤ 100 µg/L vs. H1: µ > 100 µg/L and concluded that we reject the null hy-
pothesis (p-value < 0.001). This decision was based on the all sample mean and 
standard deviation for Chromium, which were 63.55 µg/L and 101.51 µg/L, re-
spectively. It is interesting to note that while the sample mean is within the per-
missible limit, the standard deviation is notably large. The mean value of chro-
mium at quadrant-II appeared 143.45 µg/L, which is higher than the US EPA 
standard. This suggests that the Chromium level in the pond water exceeds the 
permissible limit. Therefore, pond water is considered undrinkable. 

4.3.5. Hypothesis Testing and Toxicity of Iron (Fe) 
Excess iron in water can lead to issues such as a metallic taste, discoloration of 
water (appearing brown or reddish), and potential staining of laundry, dishes, 
and plumbing fixtures [56]. Additionally, high levels of iron in water can con-
tribute to adverse health effects if consumed regularly over a prolonged period 
[54]. The permissible level of iron in water varies based on different standards 
set by various organizations. In general, the acceptable level of iron in drinking 
water typically ranges from 300 µg/L to 500 µg/L according to the World Health 
Organization guidelines although no strict value given. However, this guideline 
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might differ depending on regional or national standards. Having tested the hy-
potheses H0:  µ ≤ 500 µg/L against H1: µ > 500 µg/L, we have concluded that we 
reject the null hypothesis. This decision is based on the sample mean and stan-
dard deviation for iron, which are 2107.46 µg/L and 1613.09 µg/L respectively, 
along with a p-value < 0.001. Consequently, the Iron level in the pond water 
does not meet the permissible limits, indicating contamination in the pond wa-
ter due to elevated Iron levels. 

4.3.6. Hypothesis Testing and Toxicity of Lead (Pb) 
The permissible level of lead in water varies depending on the regulatory stan-
dards set by different countries or organizations. In the United States, the Envi-
ronmental Protection Agency has set the action level for lead in drinking water 
at 15 µg/L. This action level means that if lead levels exceed 15 µg/L in more than 
10% of sampled taps in a water system, actions must be taken to reduce lead le-
vels. However, it’s important to note that no level of lead exposure is considered 
safe, especially for children, as even low levels of lead exposure can have harmful 
effects on health, including developmental issues and damage to the brain and 
nervous system [56]. We tested the hypotheses H0: µ ≤ 15 µg/L versus H1: µ > 15 
µg/L. Our conclusion is that we reject the null hypothesis due to the sample 
mean and standard deviation for Lead being 205.19 µg/L and 122.80 µg/L re-
spectively, with a p-value of < 0.001. This implies that the Lead level in pond 
water exceeds the permissible limit, indicating contamination in the pond water 
concerning Lead. 

4.3.7. Hypothesis Testing and Toxicity of Antimony (Sb) 
The permissible level of antimony in water can vary based on different regula-
tions and guidelines set by governing bodies. In the United States, the Environ-
mental Protection Agency has set a Maximum Contaminant Level Goal for An-
timony in drinking water at 6 µg/L. However, it’s important to note that differ-
ent countries or regions might have their own standards or guidelines for Anti-
mony levels in water. These regulations are put in place to ensure public health 
and safety by limiting exposure to potentially harmful trace elements like Anti-
mony. 

We tested the hypotheses H0: µ ≤ 6 µg/L vs. H1: µ > 6 µg/L and concluded that 
we reject the null hypothesis. The sample mean and standard deviation for An-
timony are 276.70 µg/L and 123.70 µg/L, respectively, with a p-value of < 0.001. 
This indicates that the Antimony level in pond water exceeds the permissible 
limit, suggesting contamination. Therefore, the pond water is contaminated in 
terms of Antimony levels. 

4.3.8. Hypothesis Testing and Toxicity of Thallium (Tl) 
The permissible level of Thallium in drinking water is regulated by various 
health authorities and standards maximum concentration limit set by different 
countries. Generally, the acceptable concentration levels of Thallium in water are 
very low due to its toxicity. In the United States, the Environmental Protection 
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Agency has set the maximum contaminant level goal (MCLG) for Thallium in 
drinking water at zero, meaning there is no safe level of exposure to Thallium. 
However, they have established an enforceable regulation called the maximum 
contaminant level (MCL) at 2 µg/L Thallium in public water systems. We tested 
the hypotheses H0: µ ≤ 2 µg/L vs. H1: µ > 2 µg/L and concluded that we reject the 
null hypothesis. The sample mean and standard deviation for Thallium were 
found to be 69.62 µg/L and 92.97 µg/L, respectively. This indicates that the Thal-
lium level in pond water is not within the permissible range, suggesting that the 
pond water is undrinkable in terms of Thallium content. 

Overall, pond water contains excessive amounts of all measured trace ele-
ments beyond the permissible levels for drinking. Additionally, the standard 
deviations are very large. Consequently, the Bartlett Pond water is severely 
contaminated, and many fish were found dead during sampling. The Bartlett 
Pond water is not recommended for any use until we reverse its healthy water 
quality.  

4.4. Impact of High Concentration of Trace Element on Aquatic Life 

We investigated the effects of high concentration of trace elements on the aqua-
tic animals on the pond water. For this purpose, we selected two fish species, 
namely Tilapia and Bass. Three specimens of each species were captured for 
analysis. Utilizing our standard methods, we measured the concentrations of 
trace elements present in different parts of the fish—namely the Head, Body, and 
Tail—to ascertain potential differential impacts. The data collected for this phase 
of the study are presented in Table 13.  

We conducted small-sample t-tests for 48 different possible combinations of 2 
fish types, their 3 body parts, and 8 trace elements, focusing on the right-tailed 
alternative hypotheses as stated in Table 13 (NB3). The analyses yielded the fol-
lowing results: 

The concentrations of the trace elements are equivalent in both types of fish  
 
Table 13. Average concentration (in mg/kg) of Trace Elements in the body parts of Tilapia and Bass Fish. 

Fish (Body Part) As Cr Pb Cd Tl Co Fe Sb 

Tilapia (Head) 5.03* (0.58) 0.67 (0.05) 0.20 (0.18) 0.13 (0.10) 1.04* (0.59) 0.77* (0.10) 60.77 (11.15) 12.47* (4.73) 

Tilapia (Body) 5.51* (1.17) 0.80 (0.19) 0.67 (0.30) 0.12 (0.08) 1.49* (0.20) 0.82* (0.18) 66.61 (12.16) 17.19 * (2.94) 

Tilapia (Tail) 5.58* (0.86) 0.91 (0.24) 1.18 (1.92) 010 (0.08) 1.00* (0.85) 0.94* (0.14) 94.36 (8.11) 18.96* (1.74) 

Bass (Head) 6.26* (2.11) 0.81 (0.06) 2.84 (2.76) 0.14 (0.10) 1.69* (0.55) 1.04* (0.30) 64.40 (24.23) 21.9* (3.72) * 

Bass (Body) 6.98* (1.19) 0.92 (0.43) 0.95 (0.68) 0.04 (0.05) 1.70* (1.11) 1.10* (0.28) 91.54 (23.97) 19.92* (5.74) 

Bass (Tail) 6.59* (1.63) 0.89 (0.16) 0.64 (0.62) 0.14 (0.05) 0.24* (0.07) 1.21* (0.25) 69.65 (9.58) 20.28* (4.34) 

Max. SRM Certified  
Value for Fish 

3.00 1.00 1.00 0.50 0.10 0.50 100.00 1.00 

NB 1: The numbers within the parentheses are the corresponding sample standard deviations. NB 2: Sample size (n) for each case 
was 3. NB 3: * = p-value < 0.001 for H0: The Mean value = The Max. SRM Certified Value vs. H1: The Mean value > The Max. 
SRM Certified Value. 
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and consistent across the body parts of the two types of fish. The concentrations 
of the trace elements such as As, Tl, Co, and Sb are significantly higher (p-value 
< 0.001) than the maximum SRM certified values for each fish but trace elements 
such as Cr, Pb, Cd, and Fe are not significantly higher than the maximum SRM 
certified values for each fish [64]. In summary, the study revealed that certain 
trace elements were found in higher concentrations than anticipated in both 
types of fish and their respective body parts. Conversely, other trace elements fell 
within the expected ranges. It is evident that the elevated levels of the toxic ele-
ments: As, Tl, Co, and Sb, which have accumulated in fish tissues, pose increased 
health risks to humans who consume these contaminated fish although fishing is 
prohibited. It is likely that the fish have accumulated these higher levels of trace 
elements from the contaminated pond water. 

5. Conclusions 

The investigation of spatial distribution of trace elements, including arsenic, 
cadmium, cobalt, chromium, iron, lead, antimony, and thallium, and their po-
tential toxicity provided a detailed understanding of their distribution across 
different positions of the pond and shedding light on the implications for both 
environmental health and aquatic life. We observed distinct spatial patterns and 
identified potential sources of contamination primarily from anthropogenic 
sources such as surface urban runoff, and specific sampling locations by utilizing 
descriptive statistics, histograms, and regression analyses. Natural chemical wea-
thering mechanisms appear to have a negligible contribution to the severe con-
tamination observed within the pond. Moreover, the correlation analyses un-
veiled strong positive correlations among the most trace elements, indicating in-
terconnectedness within the ecosystem. 

Further analyses involved hypothesis testing to assess the toxicity of each trace 
element in accordance with regulatory standards. Results consistently indicated 
elevated concentrations of trace elements surpassing permissible limits, render-
ing the pond water unsuitable for drinking and posing significant risks to envi-
ronment and human health. The large standard deviations observed unders-
cored the variability within the dataset, emphasizing the severity of contamina-
tion and the urgent need for remedial action. 

Moreover, the impact of high trace element concentrations on aquatic life, 
particularly Tilapia and Bass, was investigated. We evaluated trace element levels 
in different body parts of the Bass and Tilapia fish, uncovering significant find-
ings regarding potential differential impacts through meticulous sampling and 
analysis. Contaminant accumulation was notably higher in Bass compared to 
Tilapia fish. The analysis highlighted the need for comprehensive monitoring 
and mitigation strategies to safeguard aquatic ecosystems and mitigate adverse 
effects on biodiversity. 

Overall, the findings underscore the critical importance of ongoing monitoring 
and management of water quality in Bartlett Pond. The integration of advanced sta-
tistical techniques with field observations has facilitated a comprehensive under-
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standing of environmental dynamics, informing evidence-based decision-making 
and guiding future research and conservation efforts. Addressing the identified 
contamination requires collaborative efforts from policymakers, environmental 
agencies, and local communities to ensure the restoration and preservation of water 
quality and ecosystem health for current and future generations. 
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