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Abstract 

 
In this paper, we establish some common fixed-point theorems in supermetric space for Dass-Gupta Rational 

Contraction, E-contraction, generalized E-contraction and rational Dass-Gupta E-contraction. Additionally, 

these theorems expand and generalize several intriguing findings from metric fixed-point theory to the 

supermetric setting. Furthermore, an example is provided to support our results. 
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1 Introduction 
 

A fixed point of a function is a point that doesn't move when the function is applied to it. In many branches of 

mathematics and its applications, including numerical analysis, optimization, and the study of dynamical 

systems, fixed points play a crucial role. They frequently depict equilibrium states of systems or solutions to 

equations. Finding a fixed point in an iterative process, for instance, can be comparable to finding a solution to 

the equation that is being iterated in the context of numerical equation-solving techniques.  

 

A key finding in the theory of metric spaces is the Banach Contraction Principle, sometimes referred to as the 

Contraction Mapping Theorem. It gives the circumstances in which there is a unique fixed point for a mapping 

from a metric space to itself. This idea is fundamental to many branches of mathematics and its applications, 

such as functional analysis, numerical techniques, analysis, and optimization. It offers a strong tool for proving 

convergence in iterative algorithms and ensures the existence and uniqueness of solutions to certain equations 

and problems. The literature then extensively generalized the Banach contraction principle (see [1, 2, 3,4,5, 17-

19]). It is widely used in applied and pure mathematics alike.  

 

In 1968, Kannan [6] developed a modified version of this theory and removed the continuity requirement. The 

first important variation of Banach's remarkable finding on the metric fixed-point theory is Kannan's fixed-point 

theorem. Dass and Gupta [2] presented the Rational Contraction, which is a generalization of the Banach 

Contraction Mapping Principle. By using rational functions as the contraction condition rather than constants, it 

expands the concept of contraction maps to a more generic context. The traditional contraction mapping 

principle is made broader by the Dass-Gupta Rational Contraction condition, which permits the contraction 

factor to change based on the points being mapped. In certain applications, this enables a more flexible 

foundation. Similar to mappings satisfying the Banach Contraction Mapping Principle, the existence and 

uniqueness of fixed points for mappings satisfying the Dass-Gupta Rational Contraction condition can be 

determined by taking advantage of the rational function's properties as well as the underlying metric space's 

completeness.  

 

The notion of E-contraction was introduced by Fulga and Proca [7]. Later, this concept has been improved by 

several authors, e.g., [8, 9, 10]. A point that is simultaneously fixed under two or more mappings or functions is 

referred to as a common fixed point. Put differently, a point 𝜃 such that ∆𝑖(𝜃) = 𝜃, for all 𝑖 = 1,2, … , 𝑛, is a 

common fixed point given two or more functions ∆1, ∆2, … , ∆𝑛. Sirajo [11] proved some common fixed-point 

theorems for contraction mapping in metric space. Many researchers are concentrating on the field of common 

fixed points, as evidenced by pioneering articles such as [12, 13, 14].  

 

Supermetric space was introduced by Fulga and Karapinar [15]. In this framework, we were able to derive 

various fixed-point theorems, and we think this approach could help relieve the congestion and squeeze issues 

previously mentioned [16]. 

 

In supermetric space, we establish some common fixed-point theorems for Dass-Gupta Rational type 

contraction and E-contraction. These theorems expand and generalize several intriguing findings from metric 

fixed-point theory to the super metric setting. Furthermore, we present an example to illustrate our theorems. 

 

2 Preliminaries 
 

First, we recall the basic results and definitions. 

 

Definition 2.1 (see [7]) Let (𝔇, 𝜏) be a metric space. A mapping and Δ: 𝔇 → 𝔇 is said to be an E-contraction if 

there exists a real number 𝔠 ∈ [0,1) such that 

 

                    𝜏(Δ𝜃, Δ𝜗) ≤ 𝔠[𝜏(𝜃, 𝜗) + |𝜏(𝜃, Δ𝜃) − 𝜏(𝜗, Δ𝜗)|] 
 

for all 𝜃, 𝜗 ∈ 𝔇. 

 

Definition 2.2 (see [2]) Let (𝔇, 𝜏) be a metric space. A mapping and Δ: 𝔇 → 𝔇 is said to be a Dass-Gupta 

Rational contraction if there exist real numbers 𝔠1, 𝔠2 ∈ [0,1) with 𝔠1 + 𝔠2 < 1 such that 
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                                        𝜏(Δ𝜃, Δ𝜗) ≤ 𝔠1
[1+𝜏(𝜃,Δ𝜃)]𝜏(𝜗,Δ𝜗)

1+𝜏(𝜃,𝜗)
+ 𝔠2𝜏(𝜃, 𝜗) 

 

for all 𝜃, 𝜗 ∈ 𝔇. 

 

Definition 2.3 (see [15]) Consider 𝔇 to be a non-empty set. A function 𝔡: 𝔇 × 𝔇 → [0, +∞) is considered a 

super metric if it fulfills the subsequent axioms:  

 

(s1).∀ 𝜃, 𝜗 ∈ 𝔇, if 𝔡(𝜃, 𝜗) = 0 ⟹  𝜃 = 𝜗. 
(s2).∀ 𝜃, 𝜗 ∈ 𝔇, 𝔡(𝜃, 𝜗) = 𝔡(𝜗, 𝜃). 

(s3).There exists 𝔰 ≥ 1 such that for every 𝜗 ∈ 𝔇 , there exist distinct sequences {𝜃𝑖}, {𝜗𝑖} ⊂ 𝔇,  with 

𝔡(𝜃𝑖 , 𝜗𝑖) → 0 when 𝑖 → ∞, such that  

                           

                                        lim sup
𝑖→∞

𝔡(𝜗𝑖, 𝜗) ≤ 𝔰 lim sup
𝑖→∞

𝔡(𝜃𝑖 , 𝜗) 

 

The tripled (𝔇, 𝔡, 𝔰) is called a supermetric space.  

 

Definition 2.4 (see [15]) A sequence {𝜃𝑖} on a supermetric space (𝔇, 𝔡, 𝔰): 
 

1. converges to 𝜃 ∈ 𝔇 ⟺ lim
𝑖→∞

𝔡(𝜃𝑖 , 𝜃) = 0. 

2. is a Cauchy sequence in 𝔇 ⟺ lim sup
𝑖→∞

{𝔡(𝜃𝑖 , 𝜃𝑗): 𝑗 > 𝑖} = 0. 

 

Proposition 2.5 (see [15]) The limit of a convergent sequence is unique on a supermetric space.  

 

Definition 2.6 (see [15]) A supermetric space (𝔇, 𝔡, 𝔰) is called complete if and only if each Cauchy sequence is 

convergent in 𝔇.   

 

Theorem 2.7 (see [15]) Let (𝔇, 𝔡, 𝔰) be a complete supermetric space and Δ: 𝔇 → 𝔇 be a mapping. Suppose that 

0 < 𝒸 < 1 such that  

 

    𝔡(Δ𝜃, Δ𝜗) ≤ 𝒸 𝔡(𝜃, 𝜗)   

                                                             

for all (𝜃, 𝜗) ∈ 𝔇. Then, Δ has a unique fixed point in 𝔇. 

 

3 Common Fixed-Point Theorems for Rational Contraction 
 

This section contains some common fixed-point theorems using Dass-Gupta rational type contraction, an 

illustrative example and deductions. 

 

Theorem 3.1 Let (𝔇, 𝔡, 𝔰) be a complete supermetric space and Υ, Δ be self-mappings of 𝔇. If there exist real 

numbers  𝔯1,  𝔯2 ≥ 0  with  𝔯1 +  𝔯2 < 1 such that 

 

𝔡(Υ𝜃, Δ𝜗) ≤  𝔯1
[1+𝔡(𝜃,Υ𝜃)]𝔡(𝜗,Δ𝜗)

1+𝔡(𝜃,𝜗)
+  𝔯2𝔡(𝜃, 𝜗)                                                                                         (1) 

 

for all 𝜃, 𝜗 ∈ 𝔇. Then, Υ and Δ have a unique common fixed point in 𝔇. 

 

Proof. Let 𝜃0 ∈ 𝔇 and we define the class of iterative sequences {𝜃𝑖} such that 𝜃𝑖+1 = Υ𝜃𝑖 , 𝜃𝑖+2 = Δ𝜃𝑖+1 for all 

𝑖 ∈ ℕ. Without loss of generality, we assume that 𝜃𝑖+2 ≠ Δ𝜃𝑖+1 for each nonnegative integer 𝑖. Indeed, if there 

exist a nonnegative integer 𝑖0 such that 𝜃𝑖0+2 = Δ𝜃𝑖0+1, then our proof of the Theorem proceeds as follows. By 

contractive condition (1), we have 

 

   0 < 𝔡(𝜃𝑖+1, 𝜃𝑖+2) = 𝔡(Υ𝜃𝑖, Δ𝜃𝑖+1) 

                                               ≤  𝔯1
[1+𝔡(𝜃𝑖,Υ𝜃𝑖)]𝔡(𝜃𝑖+1,Δ𝜃𝑖+1)

1+𝔡(𝜃𝑖,𝜃𝑖+1)
+  𝔯2𝔡(𝜃𝑖 , 𝜃𝑖+1)           
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                                               =  𝔯1
[1+𝔡(𝜃𝑖,𝜃𝑖+1)]𝔡(𝜃𝑖+1,𝜃𝑖+2)

1+𝔡(𝜃𝑖,𝜃𝑖+1)
+  𝔯2𝔡(𝜃𝑖, 𝜃𝑖+1)     

                                               ≤  𝔯1𝔡(𝜃𝑖+1, 𝜃𝑖+2) +  𝔯2𝔡(𝜃𝑖 , 𝜃𝑖+1).    
 

The last inequality gives, 

 

   0 < 𝔡(𝜃𝑖+1, 𝜃𝑖+2) ≤
 𝔯2

1− 𝔯1
𝔡(𝜃𝑖 , 𝜃𝑖+1) = 𝒸 𝔡(𝜃𝑖 , 𝜃𝑖+1) 

 

where 𝒸 =
 𝔯2

1− 𝔯1
. From this, we can write 

 

                 0 < 𝔡(𝜃𝑖+1, 𝜃𝑖+2) ≤ 𝒸 𝔡(𝜃𝑖 , 𝜃𝑖+1) ≤ 𝒸2 𝔡(𝜃𝑖−1, 𝜃𝑖) ≤ ⋯ ≤ 𝒸𝑖+1 𝔡(𝜃0, 𝜃1).                                        (2) 

 

On the other hand, one writes, 

 

                0 < 𝔡(𝜃𝑖 , 𝜃𝑖+1) = 𝔡(Υ𝜃𝑖−1, Δ𝜃𝑖) 

                                          ≤  𝔯1
[1+𝔡(𝜃𝑖−1,Δ𝜃𝑖−1)]𝔡((𝜃𝑖,Υ𝜃𝑖))

1+𝔡(𝜃𝑖−1,𝜃𝑖)
+  𝔯2𝔡(𝜃𝑖−1, 𝜃𝑖)          

                                          =  𝔯1
[1+𝔡(𝜃𝑖−1,𝜃𝑖)]𝔡(𝜃𝑖,𝜃𝑖+1)

1+𝔡(𝜃𝑖−1,𝜃𝑖)
+  𝔯2𝔡(𝜃𝑖−1, 𝜃𝑖)     

                                          ≤  𝔯1𝔡(𝜃𝑖 , 𝜃𝑖+1) +  𝔯2𝔡(𝜃𝑖 , 𝜃𝑖−1),    
 

which yields that, 

 

  0 < 𝔡(𝜃𝑖+1, 𝜃𝑖) ≤
 𝔯2

1− 𝔯1
𝔡(𝜃𝑖 , 𝜃𝑖−1) = 𝒸 𝔡(𝜃𝑖 , 𝜃𝑖−1). 

 

And then, we can write 

 

   0 < 𝔡(𝜃𝑖, 𝜃𝑖+1) ≤ 𝒸 𝔡(𝜃𝑖 , 𝜃𝑖−1) ≤ 𝒸2 𝔡(𝜃𝑖−1, 𝜃𝑖−2) ≤ ⋯ ≤ 𝒸𝑖  𝔡(𝜃0, 𝜃1).                                           (3) 

 

By appealing to (2) and (3), we find that 

 

  0 < 𝔡(𝜃𝑖 , 𝜃𝑖+1) ≤ 𝒸𝑖 𝔡(𝜃0, 𝜃1).                                                                                                             (4) 

 

Taking the limit as 𝑖 tends to infinity in inequality (4), we get  

 

                 lim
𝑖→∞

𝔡(𝜃𝑖, 𝜃𝑖+1) = 0.                                                                                                                              (5) 

 

In what follows, we want to show that the sequence {𝜃𝑖} is a Cauchy sequence. Now suppose that, 𝑖, 𝑗 ∈ ℕ with  

𝑖 > 𝑗.Then from inequality (5) and using (s3), we get 

 

                   lim
𝑖→∞

sup 𝔡(𝜃𝑖 , 𝜃𝑖+2) ≤ 𝔰 lim
𝑖→∞

sup 𝔡(𝜃𝑖+1, 𝜃𝑖+2) ≤ 𝔰 lim
𝑖→∞

sup{𝒸𝑖+1 𝔡(𝜃0, 𝜃1)}.   

               

Hence, lim
𝑖→∞

sup 𝔡(𝜃𝑖 , 𝜃𝑖+2) = 0. Similarly, we have 

 

                   lim
𝑖→∞

sup 𝔡(𝜃𝑖 , 𝜃𝑖+3) ≤ 𝔰 lim
𝑖→∞

sup 𝔡(𝜃𝑖+2, 𝜃𝑖+3) ≤ 𝔰 lim
𝑖→∞

sup{𝒸𝑖+2 𝔡(𝜃0, 𝜃1)}.    

              

Inductively, one can conclude that lim
𝑖→∞

sup{ 𝔡(𝜃𝑖 , 𝜃𝑗): 𝑖 > 𝑗} = 0. Thus, {𝜃𝑖} is a Cauchy sequence in a complete 

supermetric space (𝔇, 𝔡, 𝔰), the sequence {𝜃𝑖}
 converges to 𝜃∗ ∈ 𝔇 and then lim

𝑖→∞
𝔡(𝜃𝑖 , 𝜃∗) = 0.   Further, we 

show that 𝜃∗  is a common fixed point of Υ  and Δ . If not, 𝜃∗ ≠ Υ𝜃∗ ≠ Δ𝜃∗,  and then 𝔡(𝜃∗, Υ𝜃∗) > 0  and 

𝔡(𝜃∗, Δ𝜃∗) > 0. Note that 

 

  0 < 𝔡(𝜃𝑖+2, Υ𝜃∗) = 𝔡(Υ𝜃∗, 𝜃𝑖+2) = 𝔡(Υ𝜃∗, Δ𝜃𝑖+1) 

                                            ≤  𝔯1
[1+𝔡(𝜃∗,Υ𝜃∗)]𝔡(𝜃𝑖+1,Δ𝜃𝑖+1)

1+𝔡(𝜃∗,𝜃𝑖+1)
+  𝔯2𝔡(𝜃∗, 𝜃𝑖+1) 
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                                            =  𝔯1
[1+𝔡(𝜃∗,Υ𝜃∗)]𝔡(𝜃𝑖+1,𝜃𝑖+2)

1+𝔡(𝜃∗,𝜃𝑖+1)
+  𝔯2𝔡(𝜃∗, 𝜃𝑖+1). 

 

Taking the limit as 𝑖 → ∞, we derive lim
𝑖→∞

sup 𝔡(𝜃𝑖+2, Υ𝜃∗) ≤ 0. Thus, we have, 

 

                                   0 < 𝔡(𝜃∗, Υ𝜃∗) ≤ lim
𝑖→∞

sup 𝔡(𝜃𝑖+2, Υ𝜃∗) ≤ 0,   

                                              

and one can conclude that 𝔡(𝜃∗, Υ𝜃∗) = 0, which implies that Υ𝜃∗ = 𝜃∗.On the other hand,    

  

  0 < 𝔡(𝜃𝑖+2, Δ𝜃∗) = 𝔡(Υ𝜃𝑖+1, Δ𝜃∗) 

                                            ≤  𝔯1
[1+𝔡(𝜃𝑖+1,Υ𝜃𝑖+1)]𝔡(𝜃∗,Δ𝜃∗)

1+𝔡(𝜃𝑖+1,𝜃∗)
+  𝔯2𝔡(𝜃𝑖+1, 𝜃∗) 

                                            =  𝔯1
[1+𝔡(𝜃𝑖+1,𝜃𝑖+2)]𝔡(𝜃∗,Δ𝜃∗)

1+𝔡(𝜃𝑖+1,𝜃∗)
+  𝔯2𝔡(𝜃𝑖+1, 𝜃∗). 

 

Taking the limit as 𝑖 → ∞, we derive lim
𝑖→∞

sup  𝔡(𝜃𝑖+2, Δ𝜃∗) ≤  𝔯1𝔡(𝜃∗, Δ𝜃∗). Thus, we have, 

 

                                     0 < 𝔡(𝜃∗, Δ𝜃∗) ≤ lim
𝑖→∞

sup  𝔡(𝜃𝑖+2, Δ𝜃∗) ≤  𝔯1𝔡(𝜃∗, Δ𝜃∗),                                            

 

and one can conclude that 𝔡(𝜃∗, Υ𝜃∗) = 0, which implies that Δ𝜃∗ = 𝜃∗. Hence, 𝜃∗ is a common fixed point of 

Υ and Δ. We shall now prove the uniqueness of 𝜃∗. Suppose there exists another point 𝜗∗ ∈ 𝔇 such that  Υ𝜗∗ =
Δ𝜗∗ =  𝜗∗. Then, by inequality (1), we have   

 

                     𝔡(Υ𝜃∗, Δ𝜗∗) ≤  𝔯1
[1+𝔡(𝜃∗,Υ𝜃∗)]𝔡(𝜗∗,Δ 𝜗∗)

1+𝔡(𝜃∗,𝜗∗)
+  𝔯2𝔡(𝜃∗, 𝜗∗)   

                                         ≤  𝔯2𝔡(𝜃∗, 𝜗∗) < 𝑑(𝜃∗, 𝜗∗),                                                                         

 

which is a contradiction. Hence, the common fixed point is unique.  

 

If we take Υ = Δ in inequality (1), then we obtain the following corollary. 

 

Corollary 3.2 Let (𝔇, 𝔡, 𝔰) be a complete supermetric space and Υ be a self-mapping of  𝔇. If there exist real 

numbers  𝔯1,  𝔯2 ≥ 0  with  𝔯1 +  𝔯2 < 1 such that 

 

        𝔡(Υ𝜃, Υ𝜗) ≤  𝔯1
[1+𝔡(𝜃,Υ𝜃)]𝔡(𝜗,Υ𝜗)

1+𝔡(𝜃,𝜗)
+  𝔯2𝔡(𝜃, 𝜗)                                                                                 (6) 

 

for all 𝜃, 𝜗 ∈ 𝔇. Then, Υ has a unique fixed point in 𝔇. 

 

If we take  𝔯1 = 0 and  𝔯2 = 𝔯 in Theorem 3.1 and Corollary 3.2, respectively, then we obtain the following 

corollaries.  

 

Corollary 3.3 Let (𝔇, 𝔡, 𝔰) be a complete supermetric space and Υ, Δ be two self-mappings of 𝔇. If there exists a 

real number 0 ≤ 𝔯 < 1 such that  

 

                        𝔡(Υ𝜃, Δ𝜗) ≤ 𝔯 𝔡(𝜃, 𝜗)                                                                                                                    (7) 

 

for all 𝜃, 𝜗 ∈ 𝔇. Then, Υ and Δ have a unique common fixed point in 𝔇. 

 

Corollary 3.4 Let (𝔇, 𝔡, 𝔰) be a complete supermetric space and Υ be a self-mapping of 𝔇. If there exists real 

number 0 ≤ 𝔯 < 1 such that  

 

                        𝔡(Υ𝜃, Υ𝜗) ≤ 𝔯𝔡(𝜃, 𝜗)                                                                                                                     (8) 

 

for all 𝜃, 𝜗 ∈ 𝔇. Then, Υ has a unique fixed point in 𝔇. 

 

We give an example which satisfy the conditions of Theorem 3.1. 
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Example 3.5 Let  𝔰 = 1, and the function 𝔡: [0, 1] × [0, 1] → [0, +∞) be defined as follows: 

 

𝔡(𝜃, 𝜗) = 𝜃𝜗 for all 𝜃 ≠ 𝜗, and 𝜃, 𝜗 ∈ (0, 1);  
𝔡(𝜃, 𝜗) = 0 for all 𝜃 = 𝜗, and 𝜃, 𝜗 ∈ [0, 1];  
𝔡(0, 𝜗) = 𝔡(𝜗, 0) = 𝜗 for all 𝜗 ∈ (0,1]; 

𝔡(1, 𝜗) = 𝔡(𝜗, 1) = 1 −
𝜗

2
 for all 𝜗 ∈ [0,1). 

 

First, we claim that 𝔡 is supermetric on [0, 1]. We will concentrate on (s3) because (s1) and (s2) are simple to 

confirm. For any 𝜗 ∈ (0, 1), we can choose the sequences {𝜃𝑖}, {𝜗𝑖} ⊂ [0, 1], where 

 

                𝜃𝑖 =
𝑖2+1

𝑖2+2
,  and 𝜗𝑖 =

𝑖+1

𝑖2+2
, for any 𝑖 ∈ ℕ.  

Since 

                lim
𝑖→∞

𝜃𝑖 = lim
𝑖→∞

𝑖2+1

𝑖2+2
= lim

𝑖→∞

1+
1

𝑖2

1+
2

𝑖2

= 1,  

and      

                lim
𝑖→∞

𝜗𝑖 = lim
𝑖→∞

𝑖+1

𝑖2+2
= lim

𝑖→∞

1+
1

𝑖

𝑖(1+
2

𝑖2)
= 0. 

 

Then, we have 

                  lim
𝑖→∞

𝔡(𝜃𝑖 , 𝜗𝑖) = lim
𝑖→∞

𝜃𝑖𝜗𝑖 = lim
𝑖→∞

𝑖2+1

𝑖2+2

𝑖+1

𝑖2+2
= lim

𝑖→∞

1+
1

𝑖2

1+
2

𝑖2

lim
𝑖→∞

1+
1

𝑖

𝑖(1+
2

𝑖2)
= 0. 

Thus,  

lim
𝑖→∞

sup  𝔡(𝜃𝑖 , 𝜗) = lim
𝑖→∞

sup  𝜃𝑖𝜗 = lim
𝑖→∞

sup {( 
𝑖2 + 1

𝑖2 + 2
) 𝜗} = 𝜗 lim

𝑖→∞
sup ( 

𝑖2 + 1

𝑖2 + 2
) = 𝜗, 

lim
𝑖→∞

sup  𝔡(𝜗𝑖 , 𝜗) = lim
𝑖→∞

sup  𝜗𝑖𝜗 = lim
𝑖→∞

sup {( 
𝑖 + 1

𝑖2 + 2
) 𝜗} = 𝜗 lim

𝑖→∞
sup ( 

𝑖 + 1

𝑖2 + 2
) = 0. 

 

Therefore,  

 

lim
𝑖→∞

sup  𝔡(𝜗𝑖 , 𝜗) = 0 < 𝜗 = 𝔰 lim
𝑖→∞

sup  𝔡(𝜃𝑖 , 𝜗), 

 

and (s3) holds.  

If 𝜗 = 0, using the same sequences, we get 

 

lim
𝑖→∞

sup  𝔡(𝜃𝑖 , 𝜗) = lim
𝑖→∞

sup  𝜃𝑖 = lim
𝑖→∞

sup
𝑖2 + 1

𝑖2 + 2
= lim

𝑖→∞
sup

1 +
1
𝑖2

1 +
2
𝑖2

= 1, 

lim
𝑖→∞

sup  𝔡(𝜗𝑖 , 𝜗) = lim
𝑖→∞

sup  𝜗𝑖 = lim
𝑖→∞

sup
𝑖 + 1

𝑖2 + 2
= lim

𝑖→∞
sup

1 +
1
𝑖

𝑖 (1 +
2
𝑖2)

= 0. 

 

Therefore,  

 

lim
𝑖→∞

sup  𝔡(𝜗𝑖 , 𝜗) = 0 < 1 = 𝔰 lim
𝑖→∞

sup  𝔡(𝜃𝑖 , 𝜗), 

 

and again (s3) holds.  

 

If 𝜗 = 1, using choosing 𝜃𝑖 =
𝑖+1

𝑖2+2
,  and 𝜗𝑖 =

𝑖+2

𝑖+3
, for any 𝑖 ∈ ℕ. Then  

 

lim
𝑖→∞

𝜃𝑖 = lim
𝑖→∞

𝑖+1

𝑖2+2
= 0 and lim

𝑖→∞
𝜗𝑖 = lim

𝑖→∞

𝑖+2

𝑖+3
= 1. 
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Then, we have 

 

               lim
𝑖→∞

𝔡(𝜃𝑖 , 𝜗𝑖) = lim
𝑖→∞

𝜃𝑖𝜗𝑖 = lim
𝑖→∞

𝑖+1

𝑖2+2

𝑖+2

𝑖+3
= 0. 

Thus,  

lim
𝑖→∞

sup  𝔡(𝜃𝑖 , 𝜗) = lim
𝑖→∞

sup (1 −
 𝜃𝑖

2
) = lim

𝑖→∞
sup (1 −

𝑖 + 1

2(𝑖2 + 2)
) = lim

𝑖→∞
sup

2𝑖2 − 𝑖 + 3

2(𝑖2 + 2)
= 1, 

lim
𝑖→∞

sup  𝔡(𝜗𝑖 , 𝜗) = lim
𝑖→∞

sup (1 −
 𝜗𝑖

2
) = lim

𝑖→∞
sup (1 −

𝑖 + 2

2(𝑖 + 3)
) = lim

𝑖→∞
sup

𝑖 + 4

2(𝑖 + 3)
=

1

2
. 

 

Therefore,  

 

lim
𝑖→∞

sup  𝔡(𝜗𝑖 , 𝜗) =
1

2
< 1 = 𝔰 lim

𝑖→∞
sup  𝔡(𝜃𝑖 , 𝜗), 

 

and again (s3) holds. Hence, 𝔡 defines a supermetric on [0, 1]. Define two self-mappings Υ, Δ on [0, 1] as 

  

 Υ𝜃 =
𝜃

4
, if 𝜃 ∈ [0,1) and Υ𝜃 =

1

16
, if 𝜃 = 1, 

 Δ𝜃 =
𝜃

2
, if 𝜃 ∈ [0,1) and Δ𝜃 =

1

8
, if 𝜃 = 1.  

 

Taking  𝔯1 =
1

9
,  𝔯2 =

1

2
. 

 

We consider the following cases: 

 

1. If 𝜃, 𝜗 ∈ (0,1), we have  

 

           𝔡(Υ𝜃, Δ𝜗) = 𝔡 (
𝜃

4
,

𝜗

2
) =

𝜃𝜗

8
≤

1

9

(1+𝜃2)𝜗2

(8+𝜃𝜗)
+

1

2
𝜃𝜗 

                                   ≤  𝔯1
[1+𝔡(𝜃,Υ𝜃)]𝔡(𝜗,Δ𝜗)

1+𝔡(𝜃,𝜗)
+  𝔯2𝔡(𝜃, 𝜗). 

 

2. If 𝜃 = 0, 𝜗 ∈ (0,1), we have  

 

           𝔡(Υ𝜃, Δ𝜗) = 𝔡(Υ0, Δ𝜗) = 𝔡 (0,
𝜗

2
) =

𝜗

2
≤

1

9
(0) +

1

2
𝜗 

                                  ≤  𝔯1
[1+𝔡(𝜃,Υ𝜃)]𝔡(𝜗,Δ𝜗)

1+𝔡(𝜃,𝜗)
+  𝔯2𝔡(𝜃, 𝜗). 

 

3. If 𝜃 = 0, 𝜗 = 0, or 𝜃 = 1, 𝜗 = 1, we have  

        

    𝔡(Υ𝜃, Δ𝜗) = 0 ≤
1

9

(1+𝔡(𝜃,Υ𝜃))𝔡(𝜗,Δ𝜗)

1+𝔡(𝜃,𝜗)
+

1

2
𝔡(𝜃, 𝜗) 

                                   ≤  𝔯1
[1+𝔡(𝜃,Υ𝜃)]𝔡(𝜗,Δ𝜗)

1+𝔡(𝜃,𝜗)
+  𝔯2𝔡(𝜃, 𝜗). 

 

4. If 𝜃 = 0, 𝜗 = 1, we have  

        

    𝔡(Υ𝜃, Δ𝜗) = 𝔡(Υ0, Δ1) = 𝔡 (0,
1

8
) =

1

8
 

                           ≤
1

9

(1+0)(
1

8
)

1+1
+

1

2
(1) 

                          =  𝔯1
[1+𝔡(𝜃,Υ𝜃)]𝔡(𝜗,Δ𝜗)

1+𝔡(𝜃,𝜗)
+  𝔯2𝔡(𝜃, 𝜗). 

 

5. If 𝜃 = 1, 𝜗 ∈ (0,1), we have  
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   𝔡(Υ𝜃, Δ𝜗) = 𝔡(Υ1, Δ𝜗) = 𝔡 (
1

16
,

𝜗

2
) =

𝜗

32
≤

1

9

(1+
𝜗2

32
)

1+𝜗
+

1

2
𝜗 

                                  ≤  𝔯1 𝔯1
[1+𝔡(𝜃,Υ𝜃)]𝔡(𝜗,Δ𝜗)

1+𝔡(𝜃,𝜗)
+  𝔯2𝔡(𝜃, 𝜗) +  𝔯2𝔡(𝜃, 𝜗). 

 

In view of Theorem 3.1, we conclude that Υ and Δ have a unique common fixed point 0 ∈ [0,1]. 
 

4 Common Fixed-Point Theorems for E-contraction 
 

This section contains some common fixed-point theorems using E-contraction, generalized E-contraction, 

rational E-contraction, and deductions.   

 

Theorem 4.1 Let (𝔇, 𝔡, 𝔰) be a complete supermetric space and Υ, Δ be self-mappings of 𝔇. If there exists a real 

number  𝔯 ∈ [0,1[ such that 

 

                             𝔡(Υ𝜃, Δ𝜗) ≤ 𝔯[𝔡(𝜃, 𝜗) + | 𝔡(𝜃, Υ𝜃) −  𝔡(𝜗, Δ𝜗)|]                                                                   (9) 

 

for all 𝜃, 𝜗 ∈ 𝔇. Then, Υ and Δ have a unique common fixed point in 𝔇. 

 

Proof Following the steps of proof of Theorem 3.1, we construct the sequence {𝜃𝑖} by iterating 

 

   𝜃𝑖+1 = Υ𝜃𝑖 , 𝜃𝑖+2 = Δ𝜃𝑖+1 for all 𝑖 ∈ ℕ.  

 

where 𝜃0 ∈ 𝔇 is arbitrary point. Then, by inequality (9), we have 

 

           0 < 𝔡(𝜃𝑖+1, 𝜃𝑖+2) = 𝔡(Υ𝜃𝑖 , Δ𝜃𝑖+1) 

                                        ≤ 𝔯[𝔡(𝜃𝑖 , 𝜃𝑖+1) + | 𝔡(𝜃𝑖 , Υ𝜃𝑖) −  𝔡(𝜃𝑖+1, Δ𝜃𝑖+1)|] 
                                        = 𝔯[𝔡(𝜃𝑖 , 𝜃𝑖+1) + |𝔡(𝜃𝑖 , 𝜃𝑖+1) − 𝔡(𝜃𝑖+1, 𝜃𝑖+2)|].                                                         (10) 

 

If 𝔡(𝜃𝑖, 𝜃𝑖+1) < 𝑑(𝜃𝑖+1, 𝜃𝑖+2) for some 𝑖, from (10), we have 

 

              𝔡(𝜃𝑖+1, 𝜃𝑖+2) ≤ 𝔯[𝔡(𝜃𝑖 , 𝜃𝑖+1) − 𝔡(𝜃𝑖 , 𝜃𝑖+1) + 𝔡(𝜃𝑖+1, 𝜃𝑖+2)] = 𝔯𝔡(𝜃𝑖+1, 𝜃𝑖+2),  
                       

which is a contradiction. Hence, 𝔡(𝜃𝑖 , 𝜃𝑖+1) > 𝑑(𝜃𝑖+1, 𝜃𝑖+2) and so from (10), we have 

 

   𝔡(𝜃𝑖+1, 𝜃𝑖+2) ≤ 𝔯[𝔡(𝜃𝑖 , 𝜃𝑖+1) + 𝔡(𝜃𝑖 , 𝜃𝑖+1) − 𝔡(𝜃𝑖+1, 𝜃𝑖+2)]. 
 

The last inequality gives, 

 

               0 < 𝔡(𝜃𝑖+1, 𝜃𝑖+2) ≤
2𝔯

1+𝔯
𝔡(𝜃𝑖 , 𝜃𝑖+1) = 𝒸 𝔡(𝜃𝑖 , 𝜃𝑖+1). 

 

where 𝒸 =
2𝔯

1+𝔯
. From this, we can write, 

 

               0 < 𝔡(𝜃𝑖+1, 𝜃𝑖+2) ≤ 𝒸1 𝔡(𝜃𝑖 , 𝜃𝑖+1) ≤ 𝒸1
2 𝔡(𝜃𝑖−1, 𝜃𝑖) ≤ ⋯ ≤ 𝒸1

𝑖+1 𝔡(𝜃0, 𝜃1).                                    (11) 

 

On the other hand, one writes 

 

              0 < 𝔡(𝜃𝑖 , 𝜃𝑖+1) = 𝔡(Υ𝜃𝑖−1, Δ𝜃𝑖) 

                                        ≤ 𝔯[𝔡(𝜃𝑖−1, 𝜃𝑖) + | 𝔡(𝜃𝑖−1, Υ𝜃𝑖−1) −  𝔡(𝜃𝑖 , Δ𝜃𝑖)|] 
                                        = 𝔯[𝔡(𝜃𝑖 , 𝜃𝑖−1) + |𝔡(𝜃𝑖−1, 𝜃𝑖) − 𝔡(𝜃𝑖 , 𝜃𝑖+1)|].                                                             (12) 

 

If 𝔡(𝜃𝑖−1, 𝜃𝑖) < 𝑑(𝜃𝑖 , 𝜃𝑖+1) for some 𝑖, from (12), we have 

 

               𝔡(𝜃𝑖 , 𝜃𝑖+1) ≤ 𝔯[𝔡(𝜃𝑖 , 𝜃𝑖−1) − 𝔡(𝜃𝑖−1, 𝜃𝑖) + 𝔡(𝜃𝑖 , 𝜃𝑖+1)] = 𝔯 𝔡(𝜃𝑖 , 𝜃𝑖+1).  
                       

which is a contradiction. Hence, 𝔡(𝜃𝑖−1, 𝜃𝑖) > 𝑑(𝜃𝑖 , 𝜃𝑖+1) and so from (12), we have 
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  𝔡(𝜃𝑖 , 𝜃𝑖+1) ≤ 𝔯[𝔡(𝜃𝑖 , 𝜃𝑖−1) + 𝔡(𝜃𝑖−1, 𝜃𝑖) − 𝔡(𝜃𝑖 , 𝜃𝑖+1)], 
 

which yields that, 

 

                 0 < 𝔡(𝜃𝑖+1, 𝜃𝑖) ≤
2𝔯

1+𝔯
𝔡(𝜃𝑖 , 𝜃𝑖−1) = 𝒸 𝔡(𝜃𝑖 , 𝜃𝑖−1). 

 

where 𝒸2 =
2𝔯

1+𝔯
. Then, we can write 

 

                  0 < 𝔡(𝜃𝑖 , 𝜃𝑖+1) ≤ 𝒸2 𝔡(𝜃𝑖 , 𝜃𝑖−1) ≤ 𝒸2
2 𝔡(𝜃𝑖−1, 𝜃𝑖−2) ≤ ⋯ ≤ 𝒸2

𝑖  𝔡(𝜃0, 𝜃1).                                    (13) 

 

By appealing to (11) and (13), we find that 

 

                   0 < 𝔡(𝜃𝑖 , 𝜃𝑖+1) ≤ 𝒸𝑖  𝔡(𝜃0, 𝜃1).                                                                                                         (14) 

 

Taking limit as 𝑖 tends to infinity in inequality (14), we get  

 

                      lim
𝑖→∞

𝔡(𝜃𝑖 , 𝜃𝑖+1) = 0.                                                                         

 

As already elaborated in the proof of Theorem 3.1, the classical procedure leads to {𝜃𝑖} is a Cauchy sequence in 

a complete supermetric space (𝔇, 𝔡, 𝔰). Hence, the sequence {𝜃𝑖}
 converges to 𝜃∗ ∈ 𝔇 and then lim

𝑖→∞
𝔡(𝜃𝑖 , 𝜃∗) =

0.  Further, we show that 𝜃∗ is a common fixed point of Υ and Δ. If not, 𝜃∗ ≠ Υ𝜃∗ ≠ Δ𝜃∗, and then 𝔡(𝜃∗, Υ𝜃∗) >
0 and 𝔡(𝜃∗, Δ𝜃∗) > 0. From (9), we have  

 

                0 < 𝔡(𝜃𝑖+2, Υ𝜃∗) = 𝔡(Υ𝜃∗, 𝜃𝑖+2) = 𝔡(Υ𝜃∗, Δ𝜃𝑖+1) 

                                             ≤ 𝔯[𝔡(𝜃∗, 𝜃𝑖+1) + |𝔡(𝜃∗, Υ𝜃∗) − 𝔡(𝜃𝑖+1, Δ𝜃𝑖+1)|] 
     ≤ 𝔯[𝔡(𝜃∗, 𝜃𝑖+1) + |𝔡(𝜃∗, Υ𝜃∗) − 𝔡(𝜃𝑖+1, 𝜃𝑖+2)|]. 
 

Taking the limit as 𝑖 → ∞, we derive lim
𝑖→∞

sup 𝔡(𝜃𝑖+2, Υ𝜃∗) ≤ 𝔯𝔡(𝜃∗, Υ𝜃∗). Thus, we have, 

 

              0 < 𝔡(𝜃∗, Υ𝜃∗) ≤ lim
𝑖→∞

sup 𝔡(𝜃𝑖+2, Υ𝜃∗) ≤ 𝔯𝔡(𝜃∗, Υ𝜃∗).       

                              

and one can conclude that 𝔡(𝜃∗, Υ𝜃∗) = 0, which implies that Υ𝜃∗ = 𝜃∗.On the other hand,   

   

 0 < 𝔡(𝜃𝑖+2, Δ𝜃∗) = 𝔡(Υ𝜃𝑖+1, Δ𝜃∗) 

                  ≤ 𝔯[𝔡(𝜃𝑖+1, 𝜃𝑖+1) + |𝔡(𝜃𝑖+1, Υ𝜃𝑖+1) − 𝔡(𝜃∗, Δ𝜃∗)|] 
                ≤ 𝔯[𝔡(𝜃∗, 𝜃𝑖+1) + |𝔡(𝜃𝑖+1, 𝜃𝑖+2) − 𝔡(𝜃∗, Δ𝜃∗)|]. 
 

Taking the limit as 𝑖 → ∞, we derive lim
𝑖→∞

sup  𝔡(𝜃𝑖+2, Δ𝜃∗) ≤ 𝔯𝔡(𝜃∗, Δ𝜃∗). Thus, we have, 

 

              0 < 𝔡(𝜃∗, Δ𝜃∗) ≤ lim
𝑖→∞

sup  𝔡(𝜃𝑖+2, Δ𝜃∗) ≤ 𝔯𝔡(𝜃∗, Δ𝜃∗).   

                              

and one can conclude that 𝔡(𝜃∗, Υ𝜃∗) = 0, which implies that Δ𝜃∗ = 𝜃∗. Hence, 𝜃∗ is a common fixed point of 

Υ and Δ. We shall now prove the uniqueness of 𝜃∗. Suppose there exists another point 𝜗∗ ∈ 𝔇 such that  Υ𝜗∗ =
Δ𝜗∗ =  𝜗∗. Then, by inequality (9), we have   

 

              0 < 𝔡(𝜃∗, 𝜗∗) = 𝔡(Υ𝜃∗, Δ𝜗∗) 

                                     ≤ 𝔯[𝔡(𝜃∗, 𝜗∗) + |𝔡(𝜃∗, Υ𝜃∗) − 𝔡(𝜗∗, Δ 𝜗∗)|] 
                                     ≤ 𝔯𝔡(𝜃∗, 𝜗∗) < 𝑑(𝜃∗, 𝜗∗).                                                                          
 

which is a contradiction. Hence, the common fixed point 𝜃∗ is unique.  

 

If we take Υ = Δ in contractive condition (9), then we obtain the following corollary. 
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Corollary 4.2 Let (𝔇, 𝔡, 𝔰) be a complete supermetric space and Δ be a self-mapping of 𝔇. If there exists a real 

number 𝔯 ∈ [0,1[ such that 

 

               𝔡(Δ𝜃, Δ𝜗) ≤ 𝔯[𝔡(𝜃, 𝜗) + | 𝔡(𝜃, Δ𝜃) −  𝔡(𝜗, Δ𝜗)|]                                                                               (15) 

 

for all 𝜃, 𝜗 ∈ 𝔇. Then, Δ has a unique fixed point in 𝔇. 

 

Theorem 4.3 Let (𝔇, 𝔡, 𝔰) be a complete supermetric space and Υ, Δ be self-mappings of 𝔇. If there exists a real 

number  𝔯 ∈ [0,1[ such that 

 

                  𝔡(Υ𝜃, Δ𝜗) ≤ 𝔯 max {𝔡(𝜃, 𝜗) + | 𝔡(𝜃, Υ𝜃) −  𝔡(𝜗, Δ𝜗)|,
𝔡(𝜃,Υ𝜃)+𝔡(𝜗,Δ𝜗)

2
 }                                          (16) 

 

for all 𝜃, 𝜗 ∈ 𝔇. Then, Υ and Δ have a unique common fixed point in 𝔇. 

 

Proof Following the steps of proof of Theorem 3.1, we construct the sequence {𝜃𝑖} by iterating 

 

  𝜃𝑖+1 = Υ𝜃𝑖 , 𝜃𝑖+2 = Δ𝜃𝑖+1 for all 𝑖 ∈ ℕ.  

 

where 𝜃0 ∈ 𝔇 is arbitrary point. Then, by (16), we have 

 

 0 < 𝔡(𝜃𝑖+1, 𝜃𝑖+2) = 𝔡(Υ𝜃𝑖 , Δ𝜃𝑖+1) 

                              ≤ 𝔯 max {𝔡(𝜃𝑖 , 𝜃𝑖+1) + | 𝔡(𝜃𝑖, Υ𝜃𝑖) −  𝔡(𝜃𝑖+1, Δ𝜃𝑖+1)|,
𝔡(𝜃𝑖,Υ𝜃𝑖)+ 𝔡(𝜃𝑖+1,Δ𝜃𝑖+1)

2
 }     

                              = 𝔯 max {𝔡(𝜃𝑖 , 𝜃𝑖+1) + | 𝔡(𝜃𝑖 , 𝜃𝑖+1) − 𝔡(𝜃𝑖+1, 𝜃𝑖+2)|,
𝔡(𝜃𝑖,𝜃𝑖+1)+𝔡(𝜃𝑖+1,𝜃𝑖+2)

2
 }                        (17) 

                                        

If 𝔡(𝜃𝑖, 𝜃𝑖+1) < 𝑑(𝜃𝑖+1, 𝜃𝑖+2) for some 𝑖, from (17), we have 

 

       𝔡(𝜃𝑖+1, 𝜃𝑖+2) ≤ 𝔯 max {𝔡(𝜃𝑖 , 𝜃𝑖+1) − 𝔡(𝜃𝑖 , 𝜃𝑖+1) + 𝔡(𝜃𝑖+1, 𝜃𝑖+2),
𝔡(𝜃𝑖,𝜃𝑖+1)+𝔡(𝜃𝑖+1,𝜃𝑖+2)

2
 } 

                             = 𝔯 max {𝔡(𝜃𝑖+1, 𝜃𝑖+2),
𝔡(𝜃𝑖,𝜃𝑖+1)+𝔡(𝜃𝑖+1,𝜃𝑖+2)

2
 } 

                             ≤ 𝔯𝔡(𝜃𝑖+1, 𝜃𝑖+2),                        
 

which is a contradiction. Hence, 𝔡(𝜃𝑖 , 𝜃𝑖+1) > 𝑑(𝜃𝑖+1, 𝜃𝑖+2) and so from (17), we have 

 

       𝔡(𝜃𝑖+1, 𝜃𝑖+2) ≤ 𝔯 max {𝔡(𝜃𝑖 , 𝜃𝑖+1) + 𝔡(𝜃𝑖 , 𝜃𝑖+1) − 𝔡(𝜃𝑖+1, 𝜃𝑖+2),
𝔡(𝜃𝑖,𝜃𝑖+1)+𝔡(𝜃𝑖+1,𝜃𝑖+2)

2
} 

                             ≤ 𝔯 max{2𝔡(𝜃𝑖 , 𝜃𝑖+1) − 𝔡(𝜃𝑖+1, 𝜃𝑖+2), 𝔡(𝜃𝑖 , 𝜃𝑖+1)} 

                             = 𝔯[2𝔡(𝜃𝑖 , 𝜃𝑖+1) − 𝔡(𝜃𝑖+1, 𝜃𝑖+2)]. 
 

The last inequality gives 

 

                    0 < 𝔡(𝜃𝑖+1, 𝜃𝑖+2) ≤
2𝔯

1+𝔯
𝔡(𝜃𝑖 , 𝜃𝑖+1) = 𝒸 𝔡(𝜃𝑖, 𝜃𝑖+1). 

 

where 𝒸 =
2𝔯

1+𝔯
. From this, we can write, 

 

               0 < 𝔡(𝜃𝑖+1, 𝜃𝑖+2) ≤ 𝒸1 𝔡(𝜃𝑖 , 𝜃𝑖+1) ≤ 𝒸1
2 𝔡(𝜃𝑖−1, 𝜃𝑖) ≤ ⋯ ≤ 𝒸1

𝑖+1 𝔡(𝜃0, 𝜃1).                                    (18) 

 

On the other hand, one writes 

 

  0 < 𝔡(𝜃𝑖 , 𝜃𝑖+1) = 𝔡(Υ𝜃𝑖−1, Δ𝜃𝑖) 

                           ≤ 𝔯 max {𝔡(𝜃𝑖−1, 𝜃𝑖) + | 𝔡(𝜃𝑖−1, Υ𝜃𝑖−1) −  𝔡(𝜃𝑖 , Δ𝜃𝑖)|,
𝔡(𝜃𝑖−1,Υ𝜃𝑖−1)+𝔡(𝜃𝑖,Δ𝜃𝑖)

2
 }     

                           = 𝔯 max {𝔡(𝜃𝑖 , 𝜃𝑖−1) + |𝔡(𝜃𝑖−1, 𝜃𝑖) − 𝔡(𝜃𝑖, 𝜃𝑖+1)|,
𝔡(𝜃𝑖−1,𝜃𝑖)+𝔡(𝜃𝑖,𝜃𝑖+1)

2
 }                                   (19) 

 

If 𝔡(𝜃𝑖−1, 𝜃𝑖) < 𝑑(𝜃𝑖 , 𝜃𝑖+1) for some 𝑖, from (19), we have 
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               𝔡(𝜃𝑖 , 𝜃𝑖+1) ≤ 𝔯 max {𝔡(𝜃𝑖 , 𝜃𝑖−1) − 𝔡(𝜃𝑖−1, 𝜃𝑖) + 𝔡(𝜃𝑖 , 𝜃𝑖+1),
𝔡(𝜃𝑖−1,𝜃𝑖)+𝔡(𝜃𝑖,𝜃𝑖+1)

2
 } 

                                 ≤ 𝔯 max {𝔡(𝜃𝑖 , 𝜃𝑖+1),
𝔡(𝜃𝑖−1,𝜃𝑖)+𝔡(𝜃𝑖,𝜃𝑖+1)

2
 } 

                                 ≤ 𝔯 𝔡(𝜃𝑖 , 𝜃𝑖+1),                        
 

which is a contradiction. Hence, 𝔡(𝜃𝑖−1, 𝜃𝑖) > 𝑑(𝜃𝑖 , 𝜃𝑖+1) and so from (19), we have 

 

               𝔡(𝜃𝑖 , 𝜃𝑖+1) ≤ 𝔯 max {𝔡(𝜃𝑖 , 𝜃𝑖−1) + 𝔡(𝜃𝑖−1, 𝜃𝑖) − 𝔡(𝜃𝑖 , 𝜃𝑖+1),
𝔡(𝜃𝑖−1,𝜃𝑖)+𝔡(𝜃𝑖,𝜃𝑖+1)

2
 } 

                                 ≤ 𝔯 max{2𝔡(𝜃𝑖, 𝜃𝑖−1) − 𝔡(𝜃𝑖, 𝜃𝑖+1), 𝔡(𝜃𝑖−1, 𝜃𝑖) } 

                                 = 𝔯 [2𝔡(𝜃𝑖 , 𝜃𝑖−1) − 𝔡(𝜃𝑖 , 𝜃𝑖+1)],                        
 

which yields that, 

 

                0 < 𝔡(𝜃𝑖+1, 𝜃𝑖) ≤
2𝔯

1+𝔯
𝔡(𝜃𝑖 , 𝜃𝑖−1) = 𝒸 𝔡(𝜃𝑖 , 𝜃𝑖−1). 

 

where 𝒸2 =
2𝔯

1+𝔯
. Then, we can write 

 

               0 < 𝔡(𝜃𝑖, 𝜃𝑖+1) ≤ 𝒸2 𝔡(𝜃𝑖, 𝜃𝑖−1) ≤ 𝒸2
2 𝔡(𝜃𝑖−1, 𝜃𝑖−2) ≤ ⋯ ≤ 𝒸2

𝑖  𝔡(𝜃0, 𝜃1).                                       (20) 

 

By appealing to (11) and (13), we find that 

 

               0 < 𝔡(𝜃𝑖, 𝜃𝑖+1) ≤ 𝒸𝑖 𝔡(𝜃0, 𝜃1).                                                                                                             (21) 

 

Taking limit as 𝑖 tends to infinity in inequality (19), we get  

 

                 lim
𝑖→∞

𝔡(𝜃𝑖, 𝜃𝑖+1) = 0.                                                                                                                            (22) 

 

As already elaborated in the proof of Theorem 3.1, the classical procedure leads to {𝜃𝑖} is a Cauchy sequence in 

a complete supermetric space (𝔇, 𝔡, 𝔰). Hence, the sequence {𝜃𝑖}
 converges to 𝜃∗ ∈ 𝔇 and then lim

𝑖→∞
𝔡(𝜃𝑖 , 𝜃∗) =

0.  Further, we show that 𝜃∗ is the fixed point of Υ and Δ. If not, 𝜃∗ ≠ Υ𝜃∗ ≠ Δ𝜃∗, and then 𝔡(𝜃∗, Υ𝜃∗) > 0 and 

𝔡(𝜃∗, Δ𝜃∗) > 0. From (16), we have  

 

 0 < 𝔡(𝜃𝑖+2, Υ𝜃∗) = 𝔡(Υ𝜃∗, 𝜃𝑖+2) = 𝔡(Υ𝜃∗, Δ𝜃𝑖+1) 

                             ≤ 𝔯 max {𝔡(𝜃∗, 𝜃𝑖+1) + |𝔡(𝜃∗, Υ𝜃∗) − 𝔡(𝜃𝑖+1, Δ𝜃𝑖+1)|,
𝔡(𝜃∗,Υ𝜃∗)+𝔡(𝜃𝑖+1,Δ𝜃𝑖+1)

2
 } 

                             = 𝔯 max {𝔡(𝜃∗, 𝜃𝑖+1) + |𝔡(𝜃∗, Υ𝜃∗) − 𝔡(𝜃𝑖+1, 𝜃𝑖+2)|,
𝔡(𝜃∗,Υ𝜃∗)+𝔡(𝜃𝑖+1,𝜃𝑖+2)

2
 }. 

 

Taking limit as 𝑖 → ∞, we derive lim
𝑖→∞

sup 𝔡(𝜃𝑖+2, Υ𝜃∗) ≤ 𝔯 max {𝔡(𝜃∗, Υ𝜃∗),
𝔡(𝜃∗,Υ𝜃∗)

2
}. Thus, we have, 

 

                   0 < 𝔡(𝜃∗, Υ𝜃∗) ≤ lim
𝑖→∞

sup 𝔡(𝜃𝑖+2, Υ𝜃∗) ≤ 𝔯𝔡(𝜃∗, Υ𝜃∗).                                    

 

and one can conclude that 𝔡(𝜃∗, Υ𝜃∗) = 0, which implies that Υ𝜃∗ = 𝜃∗.On the other hand,    

  

 0 < 𝔡(𝜃𝑖+2, Δ𝜃∗) = 𝔡(Υ𝜃𝑖+1, Δ𝜃∗) 

                             ≤ 𝔯 max {𝔡(𝜃𝑖+1, 𝜃∗) + |𝔡(𝜃𝑖+1, Υ𝜃𝑖+1) − 𝔡(𝜃∗, Δ𝜃∗)|,
𝔡(𝜃𝑖+1,Υ𝜃𝑖+1)+𝔡(𝜃∗,Δ𝜃∗)

2
 } 

                             = 𝔯 max {𝔡(𝜃𝑖+1, 𝜃∗) + |𝔡(𝜃𝑖+1, 𝜃𝑖+2) − 𝔡(𝜃∗, Δ𝜃∗)|,
𝔡(𝜃𝑖+1,𝜃𝑖+2)+𝔡(𝜃∗,Δ𝜃∗)

2
 }. 

 

Taking limit as 𝑖 → ∞, we derive lim
𝑖→∞

sup  𝔡(𝜃𝑖+2, Δ𝜃∗) ≤ 𝔯 max {𝔡(𝜃∗, Δ𝜃∗),
𝔡(𝜃∗,Δ𝜃∗)

2
}. Thus, we have, 

 

                0 < 𝔡(𝜃∗, Δ𝜃∗) ≤ lim
𝑖→∞

sup  𝔡(𝜃𝑖+2, Δ𝜃∗) ≤ 𝔯𝔡(𝜃∗, Δ𝜃∗).       
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and one can conclude that 𝔡(𝜃∗, Υ𝜃∗) = 0, which implies that Δ𝜃∗ = 𝜃∗. Hence, 𝜃∗ is a common fixed point of 

Υ and Δ. We shall now prove the uniqueness of 𝜃∗. Suppose there exists another point 𝜗∗ ∈ 𝔇 such that  Υ𝜗∗ =
Δ𝜗∗ =  𝜗∗. Then, by inequality (16), we have   

 

    0 < 𝔡(𝜃∗, 𝜗∗) = 𝔡(Υ𝜃∗, Δ𝜗∗)  

                           ≤ 𝔯 max {𝔡(𝜃∗, 𝜗∗) + |𝔡(𝜃∗, Υ𝜃∗) − 𝔡(𝜗∗, Δ 𝜗∗)|,
𝔡(𝜃∗,Υ𝜃∗)+𝔡(𝜗∗,Δ 𝜗∗)

2
 } 

                           = 𝔯𝔡(𝜃∗, 𝜗∗) < 𝑑(𝜃∗, 𝜗∗).                                                                          
 

which is a contradiction. Hence, the common fixed point is unique.  

 

If we take Υ = Δ in condition (16), then we obtain the following corollary. 

 

Corollary 4.4 Let (𝔇, 𝔡, 𝔰) be a complete supermetric space and Δ be a self-mapping of 𝔇. If there exists real 

number  𝔯 ∈ [0,1[ such that 

 

                   𝔡(Δ𝜃, Δ𝜗) ≤ 𝔯 max {𝔡(𝜃, 𝜗) + | 𝔡(𝜃, Δ𝜃) −  𝔡(𝜗, Δ𝜗)|,
𝔡(𝜃,Δ𝜃)+𝔡(𝜗,Δ𝜗)

2
 }                                          (23) 

 

for all 𝜃, 𝜗 ∈ 𝔇. Then, Δ has a unique fixed point in 𝔇. 

 

Theorem 4.5 Let (𝔇, 𝔡, 𝔰) be a complete supermetric space and Υ, Δ be self-mappings of 𝔇. If there exist real 

number  𝔯1, 𝔯2 ∈ [0,1[  with 𝔯1 + 𝔯2 < 1 such that 

 

                  𝔡(Υ𝜃, Δ𝜗) ≤ 𝔯1[𝔡(𝜃, 𝜗) + | 𝔡(𝜃, Υ𝜃) −  𝔡(𝜗, Δ𝜗)|] + 𝔯2
[1+𝔡(𝜃,Υ𝜃)]𝔡(𝜗,Δ𝜗)

1+𝔡(𝜃,𝜗)
                                        (24) 

 

for all 𝜃, 𝜗 ∈ 𝔇. Then, Υ and Δ have a unique common fixed point in 𝔇. 

 

Proof Following the steps of proof of Theorem 3.1, we construct the sequence {𝜃𝑖} by iterating 

 

  𝜃𝑖+1 = Υ𝜃𝑖 , 𝜃𝑖+2 = Δ𝜃𝑖+1 for all 𝑖 ∈ ℕ.  

 

where 𝜃0 ∈ 𝔇 is arbitrary point. Then, by (24), we have 

 

 0 < 𝔡(𝜃𝑖+1, 𝜃𝑖+2) = 𝔡(Υ𝜃𝑖 , Δ𝜃𝑖+1) 

                              ≤ 𝔯1[𝔡(𝜃𝑖 , 𝜃𝑖+1) + | 𝔡(𝜃𝑖 , Υ𝜃𝑖) −  𝔡(𝜃𝑖+1, Δ𝜃𝑖+1)|] + 𝔯2
 [1+𝔡(𝜃𝑖,Υ𝜃𝑖)]𝔡(𝜃𝑖+1,Δ𝜃𝑖+1)

1+𝔡(𝜃𝑖,𝜃𝑖+1)
 

                              = 𝔯1[𝔡(𝜃𝑖 , 𝜃𝑖+1) + | 𝔡(𝜃𝑖, 𝜃𝑖+1) − 𝔡(𝜃𝑖+1, 𝜃𝑖+2)|] + 𝔯2
 [1+𝔡(𝜃𝑖,𝜃𝑖+1)]𝔡(𝜃𝑖+1,𝜃𝑖+2)

1+𝔡(𝜃𝑖,𝜃𝑖+1)
                               

                              ≤ 𝔯1[𝔡(𝜃𝑖 , 𝜃𝑖+1) + | 𝔡(𝜃𝑖 , 𝜃𝑖+1) − 𝔡(𝜃𝑖+1, 𝜃𝑖+2)|] + 𝔯2𝔡(𝜃𝑖+1, 𝜃𝑖+2)                                     (25) 

                                        

If 𝔡(𝜃𝑖, 𝜃𝑖+1) < 𝑑(𝜃𝑖+1, 𝜃𝑖+2) for some 𝑖, from (25), we have 

 

        𝔡(𝜃𝑖+1, 𝜃𝑖+2) ≤ 𝔯1[𝔡(𝜃𝑖 , 𝜃𝑖+1) − 𝔡(𝜃𝑖 , 𝜃𝑖+1) + 𝔡(𝜃𝑖+1, 𝜃𝑖+2)] + 𝔯2𝔡(𝜃𝑖+1, 𝜃𝑖+2)        

                              = 𝔡(𝜃𝑖+1, 𝜃𝑖+2) + 𝔯2𝔡(𝜃𝑖+1, 𝜃𝑖+2) 

                              = (𝔯1 + 𝔯2)𝔡(𝜃𝑖+1, 𝜃𝑖+2),                        
 

which is a contradiction. Hence, 𝔡(𝜃𝑖 , 𝜃𝑖+1) > 𝑑(𝜃𝑖+1, 𝜃𝑖+2) and so from (25), we have 

 

        𝔡(𝜃𝑖+1, 𝜃𝑖+2) ≤ 𝔯1[𝔡(𝜃𝑖 , 𝜃𝑖+1) + 𝔡(𝜃𝑖 , 𝜃𝑖+1) − 𝔡(𝜃𝑖+1, 𝜃𝑖+2)] + 𝔯2𝔡(𝜃𝑖+1, 𝜃𝑖+2)        

                              = 𝔯1[2𝔡(𝜃𝑖 , 𝜃𝑖+1) − 𝔡(𝜃𝑖+1, 𝜃𝑖+2)] + 𝔯2𝔡(𝜃𝑖+1, 𝜃𝑖+2) 

                              = 2𝔯1𝔡(𝜃𝑖 , 𝜃𝑖+1) − 𝔯1𝔡(𝜃𝑖+1, 𝜃𝑖+2) + 𝔯2𝔡(𝜃𝑖+1, 𝜃𝑖+2) 

 

The last inequality gives, 

 

                    0 < 𝔡(𝜃𝑖+1, 𝜃𝑖+2) ≤
2𝔯1

1+𝔯1−𝔯2
𝔡(𝜃𝑖 , 𝜃𝑖+1) = 𝒸 𝔡(𝜃𝑖 , 𝜃𝑖+1). 
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where 𝒸 =
2𝔯1

1+𝔯1−𝔯2
. From this, we can write, 

 

               0 < 𝔡(𝜃𝑖+1, 𝜃𝑖+2) ≤ 𝒸1 𝔡(𝜃𝑖 , 𝜃𝑖+1) ≤ 𝒸1
2 𝔡(𝜃𝑖−1, 𝜃𝑖) ≤ ⋯ ≤ 𝒸1

𝑖+1 𝔡(𝜃0, 𝜃1).                                    (25) 

 

On the other hand, one writes 

 

  0 < 𝔡(𝜃𝑖 , 𝜃𝑖+1) = 𝔡(Υ𝜃𝑖−1, Δ𝜃𝑖) 

                            ≤ 𝔯1[𝔡(𝜃𝑖−1, 𝜃𝑖) + | 𝔡(𝜃𝑖−1, Υ𝜃𝑖−1) −  𝔡(𝜃𝑖 , Δ𝜃𝑖)|] + 𝔯2
 [1+𝔡(𝜃𝑖−1,Υ𝜃𝑖−1)]𝔡(𝜃𝑖,Δ𝜃𝑖)

1+𝔡(𝜃𝑖−1,𝜃𝑖)
 

                            = 𝔯1[𝔡(𝜃𝑖−1, 𝜃𝑖) + |𝔡(𝜃𝑖−1, 𝜃𝑖) − 𝔡(𝜃𝑖, 𝜃𝑖+1)|] + 𝔯2
 [1+𝔡(𝜃𝑖−1,𝜃𝑖)]𝔡(𝜃𝑖,𝜃𝑖+1)

1+𝔡(𝜃𝑖−1,𝜃𝑖)
 

                            ≤ 𝔯1[𝔡(𝜃𝑖−1, 𝜃𝑖) + |𝔡(𝜃𝑖−1, 𝜃𝑖) − 𝔡(𝜃𝑖 , 𝜃𝑖+1)|] + 𝔯2𝔡(𝜃𝑖 , 𝜃𝑖+1)                                               (26) 

 

If 𝔡(𝜃𝑖−1, 𝜃𝑖) < 𝑑(𝜃𝑖 , 𝜃𝑖+1) for some 𝑖, from (26), we have 

 

               𝔡(𝜃𝑖 , 𝜃𝑖+1) ≤ 𝔯1[𝔡(𝜃𝑖−1, 𝜃𝑖) − 𝔡(𝜃𝑖−1, 𝜃𝑖) + 𝔡(𝜃𝑖 , 𝜃𝑖+1)] + 𝔯2𝔡(𝜃𝑖 , 𝜃𝑖+1) 

                                 = 𝔯1𝔡(𝜃𝑖 , 𝜃𝑖+1) + 𝔯2𝔡(𝜃𝑖 , 𝜃𝑖+1) 

                                 = (𝔯1 + 𝔯2) 𝔡(𝜃𝑖 , 𝜃𝑖+1),                        
 

which is a contradiction. Hence, 𝔡(𝜃𝑖−1, 𝜃𝑖) > 𝑑(𝜃𝑖 , 𝜃𝑖+1) and so from (26), we have 

 

               𝔡(𝜃𝑖 , 𝜃𝑖+1) ≤ 𝔯1[𝔡(𝜃𝑖−1, 𝜃𝑖) + 𝔡(𝜃𝑖−1, 𝜃𝑖) − 𝔡(𝜃𝑖 , 𝜃𝑖+1)] + 𝔯2𝔡(𝜃𝑖 , 𝜃𝑖+1) 

                                 = 𝔯1[2𝔡(𝜃𝑖−1, 𝜃𝑖) − 𝔡(𝜃𝑖 , 𝜃𝑖+1)] + 𝔯2𝔡(𝜃𝑖, 𝜃𝑖+1). 
                                  

which yields that, 

 

                0 < 𝔡(𝜃𝑖+1, 𝜃𝑖) ≤
2𝔯1

1+𝔯1−𝔯2
𝔡(𝜃𝑖, 𝜃𝑖−1) = 𝒸 𝔡(𝜃𝑖 , 𝜃𝑖−1). 

 

where 𝒸2 =
2𝔯1

1+𝔯1−𝔯2
. Then, we can write 

 

               0 < 𝔡(𝜃𝑖, 𝜃𝑖+1) ≤ 𝒸2 𝔡(𝜃𝑖, 𝜃𝑖−1) ≤ 𝒸2
2 𝔡(𝜃𝑖−1, 𝜃𝑖−2) ≤ ⋯ ≤ 𝒸2

𝑖  𝔡(𝜃0, 𝜃1).                                       (27) 

 

By appealing to (25) and (27), we find that 

 

               0 < 𝔡(𝜃𝑖, 𝜃𝑖+1) ≤ 𝒸𝑖 𝔡(𝜃0, 𝜃1).                                                                                                             (28) 

 

Taking limit as 𝑖 tends to infinity in inequality (28), we get  

 

                 lim
𝑖→∞

𝔡(𝜃𝑖, 𝜃𝑖+1) = 0.                                                                                                                            (29) 

 

As already elaborated in the proof of Theorem 3.1, the classical procedure leads to {𝜃𝑖} is a Cauchy sequence in 

a complete supermetric space (𝔇, 𝔡, 𝔰). Hence, the sequence {𝜃𝑖}
 converges to 𝜃∗ ∈ 𝔇 and then lim

𝑖→∞
𝔡(𝜃𝑖 , 𝜃∗) =

0.  Further, we show that 𝜃∗ is the fixed point of Υ and Δ. If not, 𝜃∗ ≠ Υ𝜃∗ ≠ Δ𝜃∗, and then 𝔡(𝜃∗, Υ𝜃∗) > 0 and 

𝔡(𝜃∗, Δ𝜃∗) > 0. From (24), we have  

 

 0 < 𝔡(𝜃𝑖+2, Υ𝜃∗) = 𝔡(Υ𝜃∗, 𝜃𝑖+2) = 𝔡(Υ𝜃∗, Δ𝜃𝑖+1) 

                              ≤ 𝔯1[𝔡(𝜃∗, 𝜃𝑖+1) + |𝔡(𝜃∗, Υ𝜃∗) − 𝔡(𝜃𝑖+1, Δ𝜃𝑖+1)|] + 𝔯2
 [1+𝔡(𝜃∗,Υ𝜃∗)]𝔡(𝜃𝑖+1,Δ𝜃𝑖+1)

1+𝔡(𝜃∗,𝜃𝑖+1)
 

                              = 𝔯1[𝔡(𝜃∗, 𝜃𝑖+1) + |𝔡(𝜃∗, Υ𝜃∗) − 𝔡(𝜃𝑖+1, 𝜃𝑖+2)|] + 𝔯2
 [1+𝔡(𝜃∗,Υ𝜃∗)]𝔡(𝜃𝑖+1,𝜃𝑖+2)

1+𝔡(𝜃∗,𝜃𝑖+1)
. 

                             

 

Taking limit as 𝑖 → ∞, we derive lim
𝑖→∞

sup 𝔡(𝜃𝑖+2, Υ𝜃∗) ≤ 𝔯1𝔡(𝜃∗, Υ𝜃∗). Thus, we have, 

 

                   0 < 𝔡(𝜃∗, Υ𝜃∗) ≤ lim
𝑖→∞

sup 𝔡(𝜃𝑖+2, Υ𝜃∗) ≤ 𝔯1𝔡(𝜃∗, Υ𝜃∗).                                    
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and one can conclude that 𝔡(𝜃∗, Υ𝜃∗) = 0, which implies that Υ𝜃∗ = 𝜃∗.On the other hand,    

  

 0 < 𝔡(𝜃𝑖+2, Δ𝜃∗) = 𝔡(Υ𝜃𝑖+1, Δ𝜃∗) 

                                           ≤ 𝔯1[𝔡(𝜃𝑖+1, 𝜃∗) + |𝔡(𝜃𝑖+1, Υ𝜃𝑖+1) − 𝔡(𝜃∗, Δ𝜃∗)|] + 𝔯1
[1+𝔡(𝜃𝑖+1,Υ𝜃𝑖+1)]𝔡(𝜃∗,Δ𝜃∗)

1+𝔡(𝜃𝑖+1,𝜃∗)
 

                                           = 𝔯1[𝔡(𝜃𝑖+1, 𝜃∗) + |𝔡(𝜃𝑖+1, 𝜃𝑖+2) − 𝔡(𝜃∗, Δ𝜃∗)|] + 𝔯1
[1+𝔡(𝜃𝑖+1,𝜃𝑖+2)]𝔡(𝜃∗,Δ𝜃∗)

1+𝔡(𝜃𝑖+1,𝜃∗)
. 

 

Taking limit as 𝑖 → ∞, we derive lim
𝑖→∞

sup  𝔡(𝜃𝑖+2, Δ𝜃∗) ≤ 𝔯1𝔡(𝜃∗, Δ𝜃∗). Thus, we have, 

 

                0 < 𝔡(𝜃∗, Δ𝜃∗) ≤ lim
𝑖→∞

sup  𝔡(𝜃𝑖+2, Δ𝜃∗) ≤ 𝔯1𝔡(𝜃∗, Δ𝜃∗).       

                          

and one can conclude that 𝔡(𝜃∗, Υ𝜃∗) = 0, which implies that Δ𝜃∗ = 𝜃∗. Hence, 𝜃∗ is a common fixed point of 

Υ and Δ. We shall now prove the uniqueness of 𝜃∗. Suppose there exists another point 𝜗∗ ∈ 𝔇 such that  Υ𝜗∗ =
Δ𝜗∗ =  𝜗∗. Then, by inequality (24), we have   

 

    0 < 𝔡(𝜃∗, 𝜗∗) = 𝔡(Υ𝜃∗, Δ𝜗∗)  

                           ≤ 𝔯1[𝔡(𝜃∗, 𝜗∗) + |𝔡(𝜃∗, Υ𝜃∗) − 𝔡(𝜗∗, Δ 𝜗∗)|] + 𝔯1
[1+𝔡(𝜃∗,Υ𝜃∗)]𝔡(𝜗∗,Δ 𝜗∗)

1+𝔡(𝜃∗,𝜗∗)
 

                           = 𝔯1𝔡(𝜃∗, 𝜗∗) < 𝑑(𝜃∗, 𝜗∗).                                                                          
 

which is a contradiction. Hence, the common fixed point is unique.  

 

If we take Υ = Δ in condition (24), then we obtain the following corollary. 

 

Corollary 4.6 Let (𝔇, 𝔡, 𝔰) be a complete supermetric space and Δ be a self-mapping of 𝔇. If there exist real 

numbers  𝔯1, 𝔯2 ∈ [0,1[ with 𝔯1 + 𝔯2 < 1 such that 

 

                   𝔡(Δ𝜃, Δ𝜗) ≤ 𝔯1[𝔡(𝜃, 𝜗) + | 𝔡(𝜃, Δ𝜃) −  𝔡(𝜗, Δ𝜗)|] + 𝔯2
[1+𝔡(𝜃,Δ𝜃)] 𝔡(𝜗,Δ𝜗)

1+𝔡(𝜃,𝜗)
                                       (30) 

 

for all 𝜃, 𝜗 ∈ 𝔇. Then, Δ has a unique fixed point in 𝔇. 

 

If we take 𝔯2 = 0 and 𝔯1 = 𝔯  in condition (30), then we obtain the following corollary. 

 

Corollary 4.7 Let (𝔇, 𝔡, 𝔰) be a complete supermetric space and Δ be a self-mapping of 𝔇. If there exists a real 

number 𝔯 with 0 ≤ 𝔯 < 1 such that 

 

                   𝔡(Δ𝜃, Δ𝜗) ≤ 𝔯𝔡(𝜃, 𝜗)                                                                                                                        (31) 

 

for all 𝜃, 𝜗 ∈ 𝔇. Then, Δ has a unique fixed point in 𝔇 
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