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Abstract

Metastasis is the process through which cancer cells break away from a primary tumor,

travel through the blood or lymph system, and form new tumors in distant tissues. One of

the preferred sites for metastatic dissemination is the brain, affecting more than 20% of all

cancer patients. This figure is increasing steadily due to improvements in treatments of pri-

mary tumors. Stereotactic radiosurgery (SRS) is one of the main treatment options for

patients with a small or moderate number of brain metastases (BMs). A frequent adverse

event of SRS is radiation necrosis (RN), an inflammatory condition caused by late normal

tissue cell death. A major diagnostic problem is that RNs are difficult to distinguish from BM

recurrences, due to their similarities on standard magnetic resonance images (MRIs). How-

ever, this distinction is key to choosing the best therapeutic approach since RNs resolve

often without further interventions, while relapsing BMs may require open brain surgery.

Recent research has shown that RNs have a faster growth dynamics than recurrent BMs,

providing a way to differentiate the two entities, but no mechanistic explanation has been

provided for those observations. In this study, computational frameworks were developed

based on mathematical models of increasing complexity, providing mechanistic explana-

tions for the differential growth dynamics of BMs relapse versus RN events and explaining

the observed clinical phenomenology. Simulated tumor relapses were found to have growth

exponents substantially smaller than the group in which there was inflammation due to dam-

age induced by SRS to normal brain tissue adjacent to the BMs, thus leading to RN. ROC

curves with the synthetic data had an optimal threshold that maximized the sensitivity and

specificity values for a growth exponent β* = 1.05, very close to that observed in patient

datasets.

Author summary

After treatment of brain metastases with radiation therapy, a fraction of patients experi-

ence tumor recurrences and others display radiation necrosis (RN). Clinical data shows
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that the growth of RNs is faster, as measured by the growth exponent, than that of recur-

rent brain metastases. This reflects the inflammatory nature of the former, and provides a

method to distinguish RN in the clinics from relapsing metastatic lesions. A simple math-

ematical model for the inflammatory response and a more sophisticate discrete stochastic

simulator with many biological details were been developed to provide a mechanistic

explanation of the differential dynamics of tumor growth versus inflammatory responses

after stereotactic radiation surgery of metastatic brain lesions.

Introduction

Brain metastases (BM) are the most common intracranial malignancies in adults, with around

25% of patients with cancer developing brain metastases during the course of their diseases [1,

2]. Most BMs originate from primary cancers from lung, breast or from melanoma [2].

Improvements in detection and primary tumor treatment leading to longer survival of cancer

patients have resulted in an increase in the incidence of BMs in the last years [3].

Stereotactic radiosurgery (SRS), a form of external beam radiation therapy, is the preferred

treatment option for the management of BMs in patients with less than five lesions because of

its excellent local control rates [4].

Radiation necrosis (RN) is an inflammatory reaction that appears between 6 and 24 months

following SRS in 5% to 25% of treated patients [5]. It appears as contrast-enhancing lesions,

resembling the appearance of tumor progressions on routine magnetic resonance images

(MRIs) what poses a critical problem for physicians. RN may resolve spontaneously, and does

not require further work-up, while progressive BMs require a prompt therapeutic action, typi-

cally in the form of open brain surgery. Thus the distinction between the two conditions is a

problem with direct clinical implications.

There are two main pathophysiological theories for the development of RN in the brain,

and it seems likely the combination of both is the best explanation for the process. One expla-

nation suggests that radiation damages different types of healthy brain cells, resulting in apo-

ptosis [6], while another theory suggests that radiation damages the vasculature [7]. Damage to

endothelial cells, which causes cell death in a delayed manner [8] and the release of inflamma-

tory mediators [9], is a critical factor in the emergence of RN. Astrocytes, oligodendrocytes,

and oligodendrocyte progenitor cells are also damaged by radiation [10, 11] resulting in the

release of hypoxia-inducible factor 1α and VEGF [12]. Finally, VEGF induces ICAM-1,

increasing the inflammatory response and edema, together with the enhancement seen on CE

images. Necrotic cells release a variety of damage-associated molecular patterns (DAMPs) that

act as signals to attract pro-inflammatory innate immune cells (macrophages and neutrophils)

and lymphocytes. This influx of macrophages and neutrophils is considered an inflammatory

response, as seen during infection. Once clearance of the dead cells is complete, the macro-

phages switch to an anti-inflammatory, pro-resolving phenotype that supports tissue regenera-

tion [13, 14].

Although biopsy sampling is considered the gold standard for distinguishing between

tumor progression and radiation necrosis, it is subject to certain limitations, particularly in

cases where biopsy sampling poses a safety concern, such as in patients with brainstem metas-

tases [4]. Conventional MRI is not appropriate for discriminating between both conditions

since they share similar characteristics. Several alternative methods have been employed to dif-

ferentiate tumor progression and RN, including perfusion MR imaging [15], positron emis-

sion tomography [16], the use of artificial intelligence [17] and radiomic methods [18, 19], or
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changes in anatomical boundaries [20]. However, many of these methods lack independent

validation, require complex computational methodologies, or are in need of further study.

Consequently, there is a need for diagnostic techniques based on routinely-used imaging

methods, such as post-contrast T1-weighted images (T1-WI) [20].

Mechanistic mathematical models have been used to study the growth of untreated metas-

tasis in different scenarios [21–23], the interaction between primary and secondary tumors

[24], cancer metastasis networks [25–27], and, and, in recent years, the response to treatment

[28–34]. However only a few of them have studied specifically brain metastases [23, 28, 29, 33,

34].

Recently, a simplified version of the Von Bertalanffy [35] growth equation was applied to

observational longitudinal volumetric data on lesion growth in patients [36, 37]. This type of

analysis revealed its usefulness in discriminating between conditions, showing that RNs exhibit

quicker growth dynamics compared to recurrent BMs [38].

The aim of this study was to understand the longitudinal dynamics of RN development and

how different are its growth patterns from those of progressive lesions. To do so, two mathe-

matical models were built. The first, a simple compartmental model, allowed the growth of RN

events to be understood. The second, based on a discrete stochastic simulator, allowed the

response to SRS to be studied, including more details of the biological processes behind post-

SRS inflammation.

Materials and methods

In the planning of radiation therapy and despite improvements in the accuracy of radiation

therapy treatments, low doses of radiation are administered to the tissue surrounding the

lesion to ensure that not only visible tumor cells but also those that are not visible in medical

images are eliminated, to reduce the likelihood of tumor recurrence. However, this

approach has the unavoidable consequence of damaging healthy tissues around the meta-

static lesion.

While radiation kills tumor cells and reduces tumor volume, it also affects healthy cells,

which die by mitotic catastrophe when they are trying to renew. Renewal time for tumor cells

is fast, whereas brain cells take months to reach the renewal point. This damage to healthy cells

and the subsequent inflammation process governed by the immune system can lead to an

apparent increase in tumor volume, which is typically observed several months or even years

after SRS [39] as depicted in Fig 1.

Modelling the growth dynamics of radiation necrosis at a cellular level

using a compartmental model

To simulate the development of radiation necrosis over time, a simple mathematical model

was first developed, describing the evolution of cells taking into account the impact of SRS on

both the tumor cells and the healthy cells in the tissue surrounding the lesion, as illustrated in

Fig 2. To calibrate the model, we used MRI data, which resulted in a distribution of model

parameters. By using these distributions, our goal was to ensure that the growth exponent

obtained was consistent with the expected values, demonstrating consistency regardless of ini-

tial volume and parameter variations.

It was assumed that the dynamics of the three leading populations involved in radiation

necrosis events, tumor cells T(t), necrotic cells N(t) and immune cells I(t) are governed by the
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following equations:

dT
dt

¼ rT; ð1aÞ

dN
dt

¼ H � lNIN; ð1bÞ

dI
dt
¼ gN þ yI � lII: ð1cÞ

where T + N + I represents the total volume of the lesion. The initial time t = 0 corresponds to

the first available MRI, usually around 3 months after SRS. Eq (1a) describes the growth of the

tumor cells, which is assumed to be exponential.

Fig 1. Longitudinal dynamics of the 3D reconstructions of a brain metastasis treated with SRS showing radiation necrosis. Dots

correspond to the measured volumes together with their 3D reconstructions and the solid line is the result of interpolating longitudinal

volumetric data (shown only to guide the eye). The patient was a 50-year-old male with a non-small-cell lung cancer primary, who

underwent a single session SRS with a dose of 20 Gy. In this case, the inflammatory lesion exhibited its peak volumetric expansion around

12 months after treatment. The solid line is a cubic spline interpolation shown to guide the eye.

https://doi.org/10.1371/journal.pcbi.1011400.g001

Fig 2. Schematic representation of the populations involved in the response to SRS. The post-treatment scenario

represents the growth of radiation necrosis events as defined in Eq (1). After SRS healthy cells around the tumor

become damaged and die by necrotic catastrophe. The appearance of necrosis stimulates immune cells leading to an

apparent growth of the lesion.

https://doi.org/10.1371/journal.pcbi.1011400.g002
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The first term in (1b) accounts for the dynamics of healthy cells that are killed by the late

effects of radiation when trying to renew as given by

HðtÞ ¼ k �
tanhðtN � tÞ þ 1

2
; ð2Þ

which accounts for the fact that cells have the same probability of reaching the renewal point

during a given time period tN, assumed to be 2 months, as it has been identified as the duration

wherein the effects of irradiation are significant [40]. The value of k provides information

about the number of healthy cells that die at each time. This means that the total number of

cells killed by radiation is given by

HT ¼

Z 1

0

HðtÞ dt: ð3Þ

H will depend on the initial BM volume, since typically, a region of 1 mm width surrounding

the tumor is irradiated to kill potentially infiltrating tumor cells. This is the typical irradiation

margin used in BM radiation therapy treatments. Hence, we can estimate k�HT/60 by assum-

ing that an equal number of cells will die each day during the 2-month period, tN (60 days).

The second term in (1b) represents necrotic cells cleared away by immune cells I(t). Eq (1c)

assumes that the immune response is stimulated by the presence of necrotic cells, while they

have a growth rate θ and a death rate λI.
Parameters estimation for model Eq (1). The growth rate ρ was computed for each

lesion from the volumes in the first two points at which growth was observed before any treat-

ment was applied, i.e.

Vð2Þ ¼ Vð1Þerðt2 � t1Þ: ð4Þ

This choice implicitly assumes that the tumor preserves the same growth dynamics after

treatment, an assumption taken here for simplicity, although the real dynamics would be more

complicated [37].

The death rate λI was taken to be 0.07 days−1, leading to a half-life of around two weeks,

that is the typical lifetime of activated effector immune cells [41, 42].

Parameters λN, γ and θ were estimated at a lesion level by fitting the model to available lon-

gitudinal volumetric data from 20 patients in [43]. The data consisted of three volumetric time

points for each BM, displaying longitudinal volumetric growth. The MATLAB functions

fminsearch and ode45 were used to perform the fitting, returning values in the range

[1.85 − 2.36] � 10−11 days−1, [1.84 − 2.06] � 10−7 days−1 and [0.139 − 0.249] days−1, for λN, γ and

θ, respectively. Thus, the parameter values obtained were very consistent for the different BMs.

The immune growth rate θ was found to be about 5 days, which seems a reasonable value. In

contrast, the necrotic cell elimination rate λN and the rate of activation of immune cells γ were

found to be very long. This finding may be influenced by the delayed effect of healthy cell

death and the activation of the immune system associated with the appearance of RN. Table 1

shows a summary of all parameters and variables used in the compartmental model.

Calculation of the β exponent. To compute β for the simulations of model (1), the simu-

lated time interval was split into three time slots, and for each slot, a random time value was

chosen. This method was designed to mimic the clinical imaging follow-up, where scans are

typically performed in three-months time windows but with a substantial variability due to

real-world constraints. Those times t0, t1, t2 and the computed volumes V0, V1, V2 were used to
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compute the growth exponent β using the simplified Von Bertalanffy growth equation [35]

dV
dt
¼ aVb: ð5Þ

Solving Eq (5), gives

VðtÞ� bþ1

� bþ 1
�

V � bþ1
0

� bþ 1
¼ aðt � t0Þ: ð6Þ

Since there is information on the dynamics at three-time points (t0, V0), (t1, V1) and (t2,

V2), the two parameters α and β can be completely determined by evaluating (6) at the times

t0, t1, t2, giving

1 � ðV1=V0Þ
� bþ1

1 � ðV2=V0Þ
� bþ1
¼
t1 � t0
t2 � t0

: ð7Þ

Eq (6) is an algebraic equation for β that was solved by using the MATLAB function fzero

(which returns the root of a nonlinear function) for each set of known values V0, V1, V2, t0, t1,

t2.

A dataset of 500 virtual BMs was generated for each choice of initial volume, ranging from

0.5 cm3 to 3.0 cm3. The parameters λN, γ, and θ were allowed to take uniformly distributed

random values within ranges chosen to include the parameters obtained when fitting volumet-

ric data. Specifically, λN was assigned a value within the range [1.8 − 2.4] � 10−11 days−1, γ
within [1.8 − 2.1] � 10−7 days−1, and θ within [0.14 − 0.25] days−1. By varying the initial vol-

umes and parameter values, it was possible to obtain a wide range of β values and to analyze

the resulting trends.

A discrete stochastic simulator for the response to SRS and radiation

necrosis classification

The mathematical model used for the prior analysis included only a limited number of relevant

biological elements. A fuller study was carried out using a discrete stochastic brain metastasis

simulator (DSBMS) based on Ref. [44]. The model included six types of cellular population:

normal and damaged healthy cells, normal and damaged tumor cells, immune cells and

necrotic cells. For these populations, the main biological processes were implemented at the

cellular level: mitosis, migration and cell death.

The discrete model focuses on describing cell populations instead of individual cells. The

spatial domain was set as a 3D grid discretized in cubic compartments (voxels) of side length

4x, fixed at 1 mm. Each voxel has a specific dynamic that depends on its occupation and

Table 1. Summary of parameters for the compartmental model.

Description Symbol Unit Computation

Initial volume V(0) cm3 From first MRI

Proliferative growth rate ρ days−1 From 1st and 2nd MRIs, Eq (4)

Healthy cells dying k days−1 From first MRI

Necrotic cells elimination rate λN days−1 Fitting parameter, estimated

Immune cells activation rate γ days−1 Fitting parameter, estimated

Immune cells growth rate θ days−1 Fitting parameter, estimated

Immune cells elimination rate λI days−1 Fixed [41, 42]

https://doi.org/10.1371/journal.pcbi.1011400.t001
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surroundings and can contain cells from each subpopulation with an upper limit indicated as

local carrying capacity K. The different cell populations attempt to perform all basic processes

at each time step. These processes can be described by a binomial distribution with a probabil-

ity associated with the process. That is, the number of cells successfully undergoing division,

death, migration or transition to another population within the discrete model are calculated

voxel-wise and state-wise at each time step. These numbers are thus calculated by randomly

sampling the corresponding binomial distribution, whose N will be the number of cells in each

population within a voxel, and whose probability will be the rate of the process modulated by

the time step length4x. All processes, their probabilities and associated binomial distributions

are described below in detail.

Tumor growth in the discrete model. To simulate the growth of the metastatic lesion

before SRS, the biological processes of cell division, death and migration were implemented

similarly to the model in [44]. Let nt, nn and nh be the total numbers of tumor, necrotic and

healthy cells inside a given voxel, respectively. The total numbers of proliferating and dying

tumor cells are drawn from the binomial distributions Bðnt; Ptp
Þ and Bðnt; Ptd

Þ, respectively.

The number of migrating tumor cells is drawn from the respective binomial distribution

Bðnt; Ptm
Þ. Then these cells are distributed around a neighborhood of 26 voxels (Moore neigh-

borhood) according to a multinomial distribution Y*Mult(X, PMoore), where Y is a vector of

26 components giving the number of cells that migrate to each voxel, X is the number of

migrating cells that has been previously computed and PMoore is a vector of 26 components giv-

ing the probabilities of migration to each surrounding voxel [44]. The probability PMoore is pro-

portional to 1, 1=
ffiffiffi
2
p

or 1=
ffiffiffi
3
p

depending on whether voxels share a face, edge or vertex with

the central voxel respectively. Performing the migration in this way reproduces a diffusive pro-

cess, wherein migration depends on cell density gradients and distances. For simplicity, it was

assumed that all tumor cells belong to the same clonal population without including mutation

events or phenotype changes.

For healthy cells, it was assumed that the levels of cell division and death remain balanced

due to the ability of these cells to self-regulate. The biological process of migration is the only

one that is affected by the evolution of tumor cells. Therefore, the number of migrating healthy

cells is drawn from the binomial distribution Bðnh; Phm
Þ being displaced by the pressure

exerted by the tumor cell colonization when the total number of cells in the voxel exceeds 45%

of its maximum capacity. Fig 3A shows a slice of an actual simulation, where the colors indi-

cate voxel occupation. Note that each voxel can contain a different number of cells.

To construct tumor growth rules in the DSBMS the probabilities of tumor cells reproduc-

tion, migration and death were first considered to be given by

Ptp
¼
4t
ttp

1 �
nt þ nn þ nh

K

� �
; ð8aÞ

Ptm
¼
4t
ttm

nt þ nn þ nh

K

� �
; ð8bÞ

Ptd
¼
4t
ttd

tanh
10ðnt þ nn þ nh � 0:75KÞ

K

� �� �

: ð8cÞ

These probabilities were modulated by the relationship between the time step and the char-

acteristic time of the process. The reproduction probability decreases with voxel occupation

while the migration probability increases, simulating competition for space and resources. To
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mimic the effect of local vascular damage and hypoxia on tumor cell apoptosis signaling, it was

activated once the voxel occupation reached a cell number greater than 75% of its carrying

capacity. This was incorporated into the probability of death Ptd
by the hyperbolic tangent

term as a function of the voxel capacity.

As to motility, the probability of healty cells migration was given by

Phm
¼
4t
thm

tanh
10ðnt þ nn þ nh � 0:45KÞ

K

� �� �

: ð8dÞ

All probabilities were calculated at each time step and voxel, providing the number of cells

undergoing mitosis, apoptosis and migration for every population. Parameter τ represents the

characteristic times of each process. K is a carrying capacity.

Response to radiosurgery. A single dose of SRS was simulated in-silico. SRS leads to a

fraction of tumor cells Sf surviving without damage and remaining viable, a fraction (1 − Sf)
receiving lethal damage. Of those, a fraction � dies on a short time scale (i.e. days), and the

remaining fraction 1−� moves into the compartment of damaged cells. Radiation therapy

induces immune cells and lethal damage to a fraction (1 − Sn) of healthy cells surrounding the

Fig 3. A Slice of a tumor simulation before SRS with DSBMS, mapping the distribution of cell density. A representation of the populations

of healthy (blue), tumor (red) and necrotic (black) cells within a voxel according to their location is shown. B. Example of a single-shot treatment

plan for a virtual simulation of SRS. The target is outlined in yellow, and it is the area most affected by SRS. The green line encloses another area

affected with less intensity. C. Spatial distribution of cell populations just before and after SRS. Voxels may be occupied by more than one cell

population but the dominant populations per voxel are shown.

https://doi.org/10.1371/journal.pcbi.1011400.g003
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tumor, where Sn represents the survival fraction of healthy cells remaining undamaged and

viable. Fig 3C shows an example of the spatial distribution of cell population before and after

SRS, as described above.

Let nd, ni and nhd be the total number of damaged tumor cells, activated immune cells and

damaged healthy cells inside a given voxel, respectively. The numbers of damaged tumor and

healthy cells that die by radiation are drawn from binomial distributions Bðnd; Pdd
Þ and

Bðnhd; Phd
Þ, respectively. Then, the number of necrotic cells increases by adding these popula-

tions. Additionally, the immune system is activated and immune cells move to the irradiated

region to remove necrotic cells. The number of necrotic cells eliminated by interaction with

immune cells and the number of immune cells activated are drawn from binomial distribu-

tions Bðnn; Pne
Þ and Bðni; Pia

Þ, respectively. Furthermore, the activated immune cells are

removed naturally and this process is simulated from the binomial distribution Bðni; Pid
Þ. In

an analogous way to tumor cells migration, the number of migrating immune cells is drawn

from the binomial distribution Bðni; Pim
Þ using the same algorithm.

Different probabilistic events where included to develop this part of the DSBMS. First, the

probabilities of death of damaged cells are given by

Pdd
¼

4t
k � ttp

; ð9aÞ

Phd
¼

1

2
tanh

t � k � thr
2s

� �

þ
1

2
: ð9bÞ

Damaged tumor cells die by mitotic catastrophe after k cycles of mitosis while trying to

repair the damage caused [45]. The probability of this event (Eq (9a)) is modulated by the rela-

tionship between the time step, the division time rate thr and the number k of the mitosis

cycle. Similarly, damaged healthy cells die by mitotic catastrophe while trying to renew them-

selves. The time frame of this death event is longer since, as stated above, healthy cells have a

low proliferation rate. For this reason, Phd
described by Eq (9b) has a time dependence and a

similar structure to the standard logistic function. This probability increases when damaged

healthy cells are closer to their k-th division. Here t represents the time elapsed from radiosur-

gery to the evaluation step and 1/2σ is the compression parameter.

It was assumed that the probability of immune cells activation to be given by

Pia
¼
4t
tia
�
nn

ni
1 �

nt þ nn þ nh þ nd þ nhd þ q � ni

K

� �
: ð9cÞ

The immune system activation event takes into account the proportion of necrotic and

immune cells within each voxel, and the characteristic activation time when there is at least

one immune cell inside. Pia
decreases with the voxel occupancy, simulating competition for

space and resources. It was assumed that the size of immune cells is different from other cell

populations, being q times the size of a healthy or tumor cell.

The probability of necrotic cells elimination is described in the DSBMS

Pne
¼
4t
tne
�
ni

nn
1 �

nt þ nn þ nh þ nd þ nhd
K

� �
; ð9dÞ

This probability was modulated by the ratio between the two populations, inversely to the

activation process. In this case, Pne
is also affected by the carrying capacity of the voxel.
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Finally, the probabilities of immune cells death and migration were assume to have the

form

Pid
¼
4t
tid
; ð9eÞ

Pim
¼
4t
tim

nt þ nn þ nh þ nd þ nhd þ q � ni
K

� �
: ð9fÞ

These probabilities were modulated by the relationship between the time step and the char-

acteristic time of the process. Additionally, migration events were affected by voxel occupancy,

making it harder to move in crowded contexts. The notations introduced to define each popu-

lation of cells are summarized in Table 2.

In all the previous formulations, the parameters τ included in each probabilistic event rep-

resent the characteristic times of each process (see Table 3).

Estimation of parameters for the DSBMS. We choose domain simulation sizes in line

with those found in the clinical setting for metastatic lesions pre-SRS treatment, which are

around 0.5 − 2 cm3 with maximum tumor sizes up to 10 cm3. Since high-resolution MRI voxel

size is around 1 mm3, we chose that voxel size 1 mm3. Hence, space is discretized as a hexahe-

dral mesh consisting of L × L × L spatial units (voxels), where L = 60. The time step was fixed

to4t = 4 hours. From typical cell sizes [46], the carrying capacity of a single voxel was esti-

mated to be K = 2 × 105 cells, assuming similar sizes for tumor and healthy cells (* 10-12

μm). Basal rates of tumor cell division, death and migration were chosen using Bayesian crite-

ria based on the doubling times estimations [47] and imaging data from real BMs in [28]. The

value k = 2 was taken, i.e. damaged tumor cells dying by mitotic catastrophe after two cell

cycles on average [45].

Parameters related to the immune system were obtained from data of the microglial cell

population [48, 49], which constitutes 0.5%-16.6% of the total number of cells in the human

brain and the most abundant type of immune cell in the brain. Then, the initial number of

immune cells was set at 10% of the healthy cells surrounding the tumor [50]. Immune cells are

activated if within voxels are cells damaged or necrotic by SRS. Furthermore, it is known that

the immune cells increase in size by 50% (q = 3/2) after activation [51]. It was assumed that the

mean lifetime of immune cells is around two months and the activation time is in the range of

12 to 20 hours [50].

All the proposed parameters are associated with cellular processes, which combined result

in whole-tumor rates. Cellular traits were randomly sampled from the range of allowed basal

rates for each simulation. While the division time for a single cell may seem extensive, it’s

important to note that in our model, the utilized division time represents an average across all

tumor cells. Notably, not all cells within a tumor undergo division simultaneously. Taking this

Table 2. Notation and description of the cell populations in the DSBMS model.

Symbol Description

nt numbers of tumor cells inside a voxel

nn numbers of necrotic cells inside a voxel

nh numbers of healthy cells inside a voxel

nd numbers of damaged tumor cells inside a voxel

ni numbers of immune cells inside a voxel

nhd numbers of damaged healthy cells inside a voxel

https://doi.org/10.1371/journal.pcbi.1011400.t002
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into account, the term ‘division rate’ actually refers to the ‘averaged division rate’. This concept

extends to parameters such as death time and migration coefficient. The parameters were cali-

brated using the ABC rejection algorithm. Several simulations were performed using input

parameters sampled from prior distributions. Simulations that satisfied realistic brain metasta-

ses features, such as size and growth speed, were accepted, and the input parameters that pro-

duced them were retrieved to build refined posterior distributions. This process was repeated

iteratively until a convergence criterion was met.

Virtual BMs simulations. To simulate tumor growth dynamics after SRS, a set of simula-

tions of BMs was run, starting from 103 tumor cells, allowing them to grow until they reached

diagnostic volumes in the range 0.5 − 2 cm3. Radiosurgery events were simulated and post-

treatment tumor evolution continued as previously described. Each simulation had a different

set of basal rates, sampled randomly from the ranges specified in Table 3. This study focused

its attention on cases with either late inflammation or progression, but always in cases with ini-

tial response. Thus, simulations displaying longitudinal volumetric growth in the first four

months after SRS were rejected.

To simulate the effect of radiosurgery, the voxel survival fraction was defined

Sf ¼ Sf̂ � tanh
10ðnn � 0:45KÞ

K

� �

; ð10Þ

where Sf̂ is the maximum survival fraction, nn is the number of necrotic cells in a voxel and K
is the carriyng capacity. Sf̂ ranges from 0 to 1, with values approaching zero indicating a

heightened susceptibility to damage from radiosurgery, while values close to 1 result negligible

damage. In this manuscript we explored the whole range of values [0,1] for this parameter in

order to consider both the case of radiosensitive and radioresistant tumors. The well-oxygen-

ated cells are less resistant to radiation (more radio sensitive). Thus, cells that are farthest away

and that do not get enough oxygen and nutrients to survive are those that are found in the vox-

els with the highest number of necrotic cells.

Table 3. Summary of parameter values used for the stochastic model.

Parameters Meaning (average times per voxel) Value (unit) Source

ttp Tumor cells division time 450-550 h [28, 47]

ttd Tumor cells death time 1000-1500 h [28]

ttm Tumor cells migration 1000-2000 h [28]

thr Healthy cells reproduction 4680 h [46]

tim Immune cells migration 150-250 h [48, 49]

tid Immune cells death 1440- 1560 h [50]

tia Immune cells activation 12-20 h [50]

tne Necrotic cells elimination 72- 96 h [48, 49]

K carrying capacity of a voxel 2 × 105 cells [46]

k mitosis catastrophe cycle on average 2 [45]

q size ratio of immune cells to tumor cells 3/2 [51]

Sf voxel survival fraction of tumor cells Eq (10)

Sf̂ maximun survival fraction of tumor cells 0-1

� voxel fraction of lethally damaged tumor cells 0-1

Sn voxel survival fraction of healthy cells 0-1

https://doi.org/10.1371/journal.pcbi.1011400.t003
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Two sets of simulations. were carried out. A first group of 200 BM simulations was per-

formed under the ideal condition of no damage to the healthy tissue surrounding the tumor

(Sn = 1). This group would correspond to an idealized scenario, that is highly unlikely to hap-

pen in clinical practice. The second group of 200 BM simulations accounted for the damage

induced by SRS to healthy tissue next to the lesion, between 30% and 90% cell death per voxel

due to lethal damage (0.1� Sn� 0.7). The latter corresponded to the scenario that would be

expected to happen in the clinical setting. Besides, to establish the criterion for distinguishing

between recurrence + inflammation (R & I) and the inflammation group (I) within this second

set of simulations, it was necessary to set a limit for the survival fraction of tumor cells. We

assumed that below 10% maximum survival of tumor cells, the volumetric growth of the lesion

would be primarily associated with inflammation and would thus be classified as inflamma-

tion, while above 10% survival, it would be classified as relapse + inflammation.

To calculate the lesion volume, the set of voxels reaching more than 45% of their carrying

capacity was considered, looking at all cell types including necrotic cells. This set was denoted

by ν and Nν = |ν| was calculated as the number of elements in ν. Since the volume of a voxel

was taken to be equal to 1 mm3, the tumor volume is equal to the number of occupied voxels

Nν in mm3. Blood vessels start suffering damage when the cellular density is high enough, thus

leading to the gadolinium contrast being released into the brain tissue. This leads to a positive

signal in the postcontrast T1-weighted images that is then visualized as being tumor tissue.

Thus, the inclusion of ν intends to reproduce this real-world feature and make our simulations

comparable with available MRI studies. This is a way to determine which voxels should be

included in the calculation of the total volume.

Calculation of β exponent for virtual BMs. To study the dynamics of post-treatment vol-

umetric growth for simulated tumors, the exponent β was calculated from the volumetric sim-

ulation data using Eq (7).

To perform the calculation of β exponent for a virtual tumor, attention was paid to the

dynamic behavior of tumors after the second follow-up (six months after radiosurgery). Tak-

ing into account that the average time between follow-ups in the clinic is three months, for

each case, we calculated the following three volume measurements were calculated from six

months post-SRS, that is, t = 6, 9 and 12 months. After that, the volumes were fitted to the

growth law and the value of the exponent β was calculated.

The three-time instances were taken within the following ranges: t0 2 (180, 180+ 15) days,

t1 2 (t0+ 80, t0+ 100) days and t2 2 (t1+ 80, t1+ 100) days. Then, β was estimated for each simu-

lation for the volume and combination of t0, t1 and t2. This procedure was repeated 20 times.

Finally, we obtained the estimated b̂ value was obtained for the corresponding simulated

tumor as the median value of all the calculated values.

Computational implementation. The DSBMS was coded both in Matlab (R2020b, Math-

Works, Inc., Natick, MA, USA) and Julia (version 1.5.3). The main workspace and simulation

sections were coded in Julia, while data analysis and plotting were coded in Matlab. Simula-

tions were performed on a 4-core 16 GB 2.7 GHz MacBook Pro. Computational cost per simu-

lation was of the order of 1-3 minutes.

Human data

The human data utilized in this study were sourced from the dataset provided in [43]. A data-

set of BMs collected as part of a retrospective, multicenter, nonrandomized study, treated with

stereotactic radiotherapy and followed up with magnetic resonance imaging (MRI). Twenty

cases with at least 3 consecutive imaging studies available, and classified as radiation necrosis,

were used, of which 6 correspond to breast primary tumor, 13 to non-small cell lung cancer,
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and 1 to small cell lung cancer. When comparing the three subgroups, no differences were

found in the growth exponents β. The volumetric data used in this paper was calculated from

volumetric contrast-enhanced T1-weighted MRI sequences, and the main interest was on total

volume measurements.

Results

Compartmental mathematical model reproduces the accelerated growth

dynamics of RN events

The compartmental model provides information on the evolution of cell populations

and fits patient data. To simulate the RN event, we conducted simulations using the mathe-

matical model described in Eq (1). This model allows us to track the evolution of each type of

cell over time, providing insight into how the populations of different cell types change during

the development of RN. Fig 4A shows the results of one of those simulations. Initially, only

tumor cells are present, and they grow exponentially. Meanwhile, necrotic cells steadily

increase as damaged healthy cells die when they attempt to renew. Next, it was observed that

the primary drivers of the fast-growing phenomenon associated with RN were the immune

cell populations. These immune cells contributed the most to the total number of cells and

played a critical role in the RN process.

Fittings were also performed of the solutions of Eq (1) to actual data from patients diag-

nosed with RN. This led to finding individual parameter values providing excellent fits to the

data. Fig 4B shows five examples of these fitted lesions. (see Table 4 for the particular values for

each fit).

Analysis of model behaviour reveals high growth exponents in terms of volume

growth. To further explore the behavior of the mathematical model, we conducted simula-

tions with different initial volumes ranging from 0.5 to 3.0 cm3. Specifically, we simulated 500

RN events per volume using a randomized approach where the model parameters took values

within a given range. The exponents obtained in these simulations are shown in Fig 4C The

findings revealed that the median β values obtained from the mathematical model are consis-

tently larger than 1.5, regardless of the initial volumes or model parameters used in the

simulations.

Stochastic mesoscopic model reflects the observed dynamics in BM

recurrences and RN events

The stochastic mesoscale brain metastasis growth simulator was set up using the biological

rules described in ‘Methods’. A total of 400 simulations were performed of virtual BMs treated

with SRS displaying growth after treatment and the exponent β was calculated. Fig 5 presents

two simulation examples, capturing distinct scenarios of recurrence and radiation necrosis

(RN) events, offering insights into their volumetric changes over time and the distribution of

the diverse cell populations.

DSBMS correctly reproduces the volumetric dynamics of BM growth after SRS. The

volumetric growth dynamics after therapy of the virtual BMs generated was studied. Fig 6

shows three examples of these in silico simulations. The first column (A, C, E) shows the

dynamics of the different cell populations present: proliferating tumor cells, damaged cells,

necrotic cells, immune cells and total tumor cells for the three cases. The second column (B, D,

F) shows the longitudinal volumetric dynamics of the simulation displayed in the first column.

In each case, 20 β growth exponents were calculated as explained in ‘Methods’. Additionally,

the median b̂ was obtained for each simulation. In two of the cases, sublinear growths (b̂ < 1)
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were obtained for recurrences. These simulations were generated with little or no damage to

healthy tissue, i.e, Sn = 1 (Fig 6A and 6B) and Sn = 0.7 (Fig 6E and 6F). On the other hand,

when there was substantial damage to healthy tissue Sn = 0.1, the volumetric evolution dis-

played a superlinear growth (b̂ > 1), as shown in Fig 6C and 6D.

Post-SRS BMs are characterized throught growth exponents. Thus, in order to charac-

terize the volumetric growth post-SRS of the BMs using the scaling exponent, the values of β
were calculated for the set of 400 virtual BMs. The results obtained for the first group (Sn = 1)

are shown in Fig 7A. The values of β were grouped according to the value of Sf̂ used in the sim-

ulation. Medians and quartiles of the box plots were mostly below 1, although for small values

of Sf̂ , there were a set of outliers with high estimates of β. These exponents described the

dynamics of relapsing lesions.

For the second group, which included damage to healthy tissue, there were two behaviors

observed in silico. Fig 7B shows the scatter plot of the b̂ median calculated for the virtual BMs

Fig 4. Results of simulations of the compartmental model Eq (1). a. Example of a simulation of model Eq (1)

showing the typical dynamics observed post-SRS in the context of RN events. The simulation illustrates the evolution

of each cell type, with the initial number of tumor cells set to NT = 5 � 107, and parameter values ρ = 0.07 days−1, λN =

2.3 � 10−11 days−1, γ = 1.9 � 10−7 days−1 and θ = 0.17 days−1. b. Fittings using Eq (1) (solid lines) for the longitudinal

volumetric growth data (circles) for five patients diagnosed with RN. The parameters used for the fitting process are

shown in Table 4. c. Distribution of growth exponents, β values obtained for simulations with varying initial volumes

ranging from 0.5 to 3.0 cm3 by simulating 500 RN events per volume using a randomized approach where model

parameters took values in the predefined range. Note that values of β between 1 and 2 were obtained systematically.

https://doi.org/10.1371/journal.pcbi.1011400.g004

Table 4. Model Eq (1) parameters best fitting the longitudinal dynamics of RN events. Volumetric data were taken from Ref. [43] and lesions 1 to 5 correspond to

patients ID numbers: 30031, 40024, 40001, 40176, and 40042, respectively.

Unit #1 #2 #3 #4 #5

Initial volume, V(0) cm3 2.4000 0.3400 0.4290 0.3312 0.5760

Proliferative growth rate, ρ days−1 0.0032 0.0057 0.0040 0.0063 0.0073

Healthy cells dying, k days−1 7.31 � 105 2.01 � 105 2.34 � 105 1.97 � 105 2.84 � 105

Necrotic cells elimination rate, λN days−1 2.14 � 10−11 2.11 � 10−11 2.27 � 10−11 2.36 � 10−11 1.85 � 10−11

Immune cells activation rate, γ days−1 1.84 � 10−7 1.99 � 10−7 1.99 � 10−7 2.06 � 10−7 2.06 � 10−7

Immune growth rate, θ days−1 0.195 0.181 0.171 0.139 0.219

Immune cells elimination rate, λI days−1 0.07 0.07 0.07 0.07 0.07

https://doi.org/10.1371/journal.pcbi.1011400.t004
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Fig 5. The dynamics of brain metastases (BMs) recurrences and radiation necrosis (RN) events are captured by

the stochastic mesoscopic model. a. Recurrent BM. b. RN event. White points represent the total tumor volume at

different time points, and black lines depict interpolations between the points (provided as visual guidance).

Additionally, spatial distribution of the four cell populations illustrate the dynamic shifts in dominance among cell

types for both scenarios. The dominant population per voxel is shown.

https://doi.org/10.1371/journal.pcbi.1011400.g005

Fig 6. DSBMS simulations of longitudinal tumor growth dynamics after SRS. The first column (A,C,E) shows the

dynamics of the total populations of proliferating cells (red lines), damaged cells (orange lines), necrotic cells (violet

lines), immune cells (green lines) and total tumor cells (blue lines). The second column (B,D,F) shows the longitudinal

tumor volumetric dynamics. Blue lines inside the zoom box represent different fits of β exponent solving Eq (7) and

the b̂ mean is shown. Subplots (A-B) correspond with a tumor simulation with no damage to healthy tissue (Sn = 1,

Sf̂ ¼ 0:2), subplots (E-F) correspond with small damage to healthy tissue (Sn = 0.7, Sf̂ ¼ 0:2) and subplots (C-D)

correspond with high damage to healthy tissue (Sn = 0.1, Sf̂ ¼ 0:02). Basal rate parameters for simulations in this

figure are ttp ¼ 505 h, ttd ¼ 1500 h, ttm ¼ 1000 h, thr ¼ 4680 h, tim ¼ 160 h, tid ¼ 1500 h, tia ¼ 15 h and tne ¼ 90 h.

https://doi.org/10.1371/journal.pcbi.1011400.g006
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according to the different values of (Sf̂ , Sn) simulated. Values of b̂ > 1 were obtained for cases

where SRS eliminates most of the tumor cells (values of Sf̂ � 0:1). Here, the volume re-growth

was due to the inflammatory component. Otherwise, for larger tumor remnants re-growth

simulations (values of 0:1 < Sf̂ < 1) the calculated b̂ exponents were less than 1. This behavior

corresponds to tumor relapse. In addition, the β values calculated for the cases simulated with

0.1� Sn� 0.7 and Sf̂ � 0:1 can be seen in Fig 7C. Despite the observed variability, the β values

obtained were typically greater than 1.

Growth exponents allow differentiation between radiation necrosis and recurrence.

The computational results suggest that the β value could be used to distinguish the inflamma-

tory response from tumor progression. The ANOVA test for the comparison with virtual BMs

leads to significant differences between the inflammatory response group and relapses groups

(p = 1.85×10−12). Box plots for the different subgroups are shown in Fig 8A The area under the

ROC curve (AUC) in Fig 8B illustrates the ability of the exponent b̂ to discriminate between

response groups. We obtained AUC = 0.97 and the optimal threshold calculated to maximize

the sensitivity and specificity values was βthreshold = 1.05. This means that inflammatory events

Fig 7. Comparison of box plots for the growth exponents β calculated for virtual BMs performed with the

DSBMS. A. Growth exponents β values computed for the group of 200 simulations with Sn = 1 and 0 � Sf̂ � 1. B.

Growth exponents β values computed for the group of 200 simulations with 0.1� Sn� 0.7 and 0 � Sf̂ � 0:1. C.

Scatter plot that shows the β median calculated for the virtual BMs which were simulated with different values of (Sf̂ ,

Sn). Basal rate parameters for the simulations are shown in Table 3.

https://doi.org/10.1371/journal.pcbi.1011400.g007

PLOS COMPUTATIONAL BIOLOGY Radiation necrosis in brain metastases: A computational approach

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011400 January 30, 2024 16 / 23

https://doi.org/10.1371/journal.pcbi.1011400.g007
https://doi.org/10.1371/journal.pcbi.1011400


show faster growth dynamics than relapses. Furthermore, the sensitivity obtained at βthreshold
was equal to 0.96, indicating its ability to accurately identify true positive cases.

We investigated how the AUC changes based on the chosen Sf bound that defines the R+I

and I groups. Fig 9 displays the outcomes from this exploration, ranging the Sf bound from

0.04 to 0.4. Additionally, the optimal value of the β* threshold, obtained from the ROC curve,

is indicated for each case. As we can see, the classification power of β slightly decreases as the

value of Sf increases. The result provide insights into the robustness of β as a classifier.

Fig 8. A. Box plots showing the comparison of the growth exponents b̂ between the different simulated BMs: relapse

group (R), whose response is characterized by tumor progression (0 < Sf̂ < 1, Sn = 1), relapse and inflammation

group (R & I), whose response is characterized by tumor progression and inflammation (0:1 < Sf̂ < 1, 0.1� Sn� 0.7)

and inflammation group (I), whose response is characterized by inflammation (0 < Sf̂ � 0:1, 0.1� Sn� 0.7). B. ROC

curve for the discrimination between tumor progression (R and R&I groups) and inflammatory response (I group)

according to the growth exponent b̂.

https://doi.org/10.1371/journal.pcbi.1011400.g008

Fig 9. Exploring the correlation between the AUC of the ROC curve and ranging the Sf bound from 0.04 to 0.4.

The colorbar illustrates the corresponding calculated β* threshold.

https://doi.org/10.1371/journal.pcbi.1011400.g009
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However, it is important to observe that as simulated BMs with a greater proportion of tumor

cell survival after SRS are incorporated into group I, the resulting β* threshold tends to be less

than 1, what is related with the fact that in presence of tumor cells growing, the corresponding

β is smaller than 1.

Discussion and conclusion

Radiation necrosis is a common adverse effect associated with radiation treatment. To gain a

deeper understanding of the growth dynamics of RN events, computational frameworks were

developed, based on mathematical models of increasing complexity. These models provide

mechanistic explanations for the observed growth dynamics of RN, and offer insight into the

underlying mechanisms of this phenomenon.

Recent research has revealed that RNs tend to exhibit faster growth dynamics than recur-

rent BMs, which can help distinguish between the two entities [38]. However, until now, no

mechanistic explanation has been provided for these observations. The mathematical models

developed in this work offer a promising way to fill this gap and provide a mechanistic under-

standing of the differences in growth dynamics between RN and BM.

Although RN is thought to be the result of synergy between vascular damage and immune

activation, the precise mechanism underlying this phenomenon remains unclear [52, 53]. The

first mathematical model presented in this study was a compartmental model. The hypothesis

was that healthy tissue surrounding the lesion becomes damaged due to radiation, leading to

necrosis and the activation of immune cells. This mechanism effectively reproduces the pro-

cesses that take place during RN events. Additionally, the simulations consistently yield growth

exponents larger than 1.5, regardless of the initial values. Even though the model might appear

to be overfitted, in fact the model is basically a two-compartment model, since the equation for

tumor cells is not coupled with the other two and the parameter is calculated from the total

volume of the first two time points.

However, there are limitations to this model. While it provides a basic understanding of the

mechanisms involved in RN, it may be too simplistic for a more detailed understanding of the

biological processes involved in the response to SRS. It is important to have a more compre-

hensive understanding of these processes, not only for RN but also for recurrent events. Differ-

entiating RN from tumor progression is one of the main challenges in the management of

BMs, since the treatment approach for each of these varies greatly, and accurate differentiation

is essential for effective treatment [54]. An additional complication arises from the fact that

RN is usually heterogeneous, where necrotic cells coexist with tumor cells [55]. This compli-

cates the differentiation process and highlights the need for a more detailed understanding of

the underlying biological processes.

To the authors’ knowledge, only two studies have implemented mathematical models to

date to differentiate RN from progression. Both studies used a biomechanically coupled tumor

growth model that describes a logistic growth with a diffusive term in the presence of an exter-

nal force. To estimate the model parameters, the first study [33] used ten lesions, with five

exhibiting tumor recurrence and five showing RN. The second study [34], based on the same

model, investigated 78 BMs and achieved an area under the ROC curve of 0.75 when differen-

tiating progression from RN. In contrast, our DSBMS model achieved a superior ROC of 0.97,

using the growth exponent as the classification parameter. However, it is crucial to note that

these results are not directly comparable due to the utilization of synthetic data in our study.

To account for the complexities of the system, a stochastic mesoscale simulator was also

developed, providing a more detailed representation of the complex interactions occurring

within BMs. In this simulator, BMs are described as a composition of different clonal
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populations seen at the voxel level, with three populations taken into account before treatment:

healthy cells, tumor cells, and necrotic cells, and three more to account for the response after

SRS: immune cells, damaged tumor cells, and damaged healthy cells.

Brain metastases growth was described on a mesoscopic scale in the simplest possible way,

taking into account only one clonal population. Although it is known that these tumors pres-

ent cellular heterogeneity in their composition, it is not fully characterized. For this reason,

our results are not focused on describing the growth dynamics of BMs optimally. On the other

hand, it has been known that tumor treatments induce a reduction of the clonal complexity at

the point of maximal response due to the action of selective pressures of the drugs [56], which

supports the simplification of a single clonal population to describe the response to SRS.

Continuous models can potentially neglect spatial correlations between the locations of

individuals, especially when different species or subpopulations are taken into account. There-

fore, the model developed here accounts for these relationships by combining discrete, spatial,

and stochastic dynamics. This made it possible to analyze the dynamic behavior of the tumor

in terms of volume through a more complete and precise approach. The model was used to

simulate the different possible scenarios according to the damage caused to the healthy tissue

surrounding the tumor, and the survival fraction of the tumor cells after therapy. Depending

on whether the healthy tissue surrounding the lesion is damaged or not, this leads to different

values of the growth exponents.

The discrete model explored the coexistence of necrotic cells with tumor cells, resulting in

heterogeneous RNs. However, the interaction between the tumor and immune cell population

was not taken into account, although it has been hypothesized that radiation induces damage

signals within the tumor, making it for the immune system to detect [57]. There is only limited

data available on the dynamics of immune response after radiation to a tumor lesion, but it

could be interesting to include this in future work. Despite this, an increase in the necrotic cell

population in the stochastic simulator indirectly affects the tumor cell population by saturating

the voxels in question. In these cases, the probabilities of tumor cell proliferation and death are

decreased and increased, respectively, and slower growth dynamics of this population are

observed.

The stochastic simulator was tested to determine its effectiveness in distinguishing between

recurrent lesions and RN events. The model classified both entities at 97% accuracy

(AUC = 0.97), which demonstrated its potential to differentiate between these two conditions.

The threshold exponent β found, despite being larger than 1, was smaller than those computed

by the continuous model and that observed in human beings. This can be explained by the

inclusion of virtual simulations with small but not zero residual diseases (Sf> 0) after SRS in

the inflammation group, which may affect overall volumetric growth dynamics. Another

drawback is the low spatial resolution when cell densities decrease in response to therapy,

which may affect the lesion volume measurement. In the case of this work, the resolution scale

of the MRI data was maintained to facilitate integration with image data and allow computa-

tionally feasible simulations up to the macroscopic whole-tumor scale. However, enhancing

the resolution may improve patient classification. This is a consideration for the future, espe-

cially as technologies continue to advance, providing greater precision in magnetic resonance

imaging.

However, these results also suggest that the value of the exponent β could have a direct clini-

cal application. The model supports that when three MRI studies are available satisfying the

inclusion criteria, computing β for a particular patient could allow us to diagnose the growth

as inflammation or tumor progression. Furthermore, this result is consistent with the study

carried out in [38] on a group of real patients with and without radiation necrosis. In the pres-

ent study, the area under the curve (AUC) associated with the receiver operating characteristic
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(ROC) curve was found to be 0.97, which is significantly higher than the AUC of 0.74 reported

in the previously cited study that used actual patient data. One potential explanation for this

difference could be the presence of confounding effects and a higher variability between

patients in the actual patient data. In a previous study [37], it was emphasized that while seg-

mentation influenced the computation of the growth exponent β in certain cases, especially for

the smallest lesions, the majority of lesions demonstrated a consistent β even in the presence of

added variability.

In conclusion, this paper has presented two models to explain the phenomenon of RN and

to differentiate it from tumor progression. The first model, a simplistic continuous model, pro-

vides a plausible explanation for the high growth exponents observed in human beings during

RN events. The second model, a stochastic mesoscale simulator, provided a more detailed

representation of the complex interactions occurring within BMs, and explains the growth of

BMs with varying degrees of damage. The simulator was tested to distinguish between recur-

rent lesions and RN events and proved to be a robust theoretical support to the use of the

growth exponent β in differentiating between these two conditions. The development of accu-

rate and detailed models could help improve the management of BMs and ultimately improve

patient outcomes.
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Validation: Beatriz Ocaña-Tienda, Julián Pérez-Beteta, Vı́ctor M. Pérez-Garcı́a.
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References
1. Kaal EC, Niel CG, Vecht CJ. Therapeutic management of brain metastasis. Lancet Neurology. 2005; 4

(5): 289–298. https://doi.org/10.1016/S1474-4422(05)70072-7 PMID: 15847842

2. Lamba N, Wen PY, Aizer AA. Epidemiology of brain metastases and leptomeningeal disease. Neuro

Oncol. 2021; 23(9):1447–1456. https://doi.org/10.1093/neuonc/noab101 PMID: 33908612

3. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022; 72(1): 7–33.

https://doi.org/10.3322/caac.21387 PMID: 35020204

PLOS COMPUTATIONAL BIOLOGY Radiation necrosis in brain metastases: A computational approach

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011400 January 30, 2024 20 / 23

https://doi.org/10.1016/S1474-4422(05)70072-7
http://www.ncbi.nlm.nih.gov/pubmed/15847842
https://doi.org/10.1093/neuonc/noab101
http://www.ncbi.nlm.nih.gov/pubmed/33908612
https://doi.org/10.3322/caac.21387
http://www.ncbi.nlm.nih.gov/pubmed/35020204
https://doi.org/10.1371/journal.pcbi.1011400


4. Suh JH, Kotecha R, Chao ST, Ahluwalia MS, Sahgal A, Chang EL. Current approaches to the manage-

ment of brain metastases. Nat Rev Clin Oncol. 2020; 17(5): 279–299. https://doi.org/10.1038/s41571-

019-0320-3 PMID: 32080373

5. Kohutek ZA, Yamada Y, Chan TA, Brennan CW, Tabar V, Gutin PH, et al. Long-term risk of radionecro-

sis and imaging changes after stereotactic radiosurgery for brain metastases Journal of Neuro-Oncol-

ogy. 2015; 125(1): 149–156. https://doi.org/10.1007/s11060-015-1881-3 PMID: 26307446

6. Kolesnick R, Fuks Z. Radiation and ceramide-induced apoptosis. Oncogene. 2003; 22(37):5897–5906.

https://doi.org/10.1038/sj.onc.1206702 PMID: 12947396

7. Abdulla S, Saada J, Johnson G, Jefferies S, Ajithkumar T. Tumour progression or pseudoprogression?

A review of post-treatment radiological appearances of glioblastoma. Clin Radiol. 2015; 70(11):1299–

1312. https://doi.org/10.1016/j.crad.2015.06.096 PMID: 26272530

8. Peña LA, Fuks Z, Kolesnick RN. Radiation-induced apoptosis of endothelial cells in the murine central

nervous system: protection by fibroblast growth factor and sphingomyelinase deficiency. Cancer Res.

2000; 60(2):321–327. PMID: 10667583

9. Baker DG, Krochak RJ. The response of the microvascular system to radiation: a review. Cancer Invest.

1989; 7(3):287–294. https://doi.org/10.3109/07357908909039849 PMID: 2477120

10. Fike JR, Rosi S, Limoli CL. Neural precursor cells and central nervous system radiation sensitivity.

Semin Radiat Oncol. 2009; 19(2):122–132. https://doi.org/10.1016/j.semradonc.2008.12.003 PMID:

19249650

11. Kudo S, Suzuki Y, Noda SE, Mizui T, Shirai K, Okamoto M, et al. Comparison of the radiosensitivities of

neurons and glial cells derived from the same rat brain. Exp Ther Med. 2014; 8(3):754–758. https://doi.

org/10.3892/etm.2014.1802 PMID: 25120594

12. Nordal RA, Nagy A, Pintilie M, Wong CS. Hypoxia and hypoxia-inducible factor-1 target genes in central

nervous system radiation injury: a role for vascular endothelial growth factor. Clin Cancer Res. 2004;

10(10):3342–3353. https://doi.org/10.1158/1078-0432.CCR-03-0426 PMID: 15161688

13. Sachet M, Liang YY, Oehler R. The immune response to secondary necrotic cells. Apoptosis. 2017; 22

(10):1189–1204. https://doi.org/10.1007/s10495-017-1413-z PMID: 28861714

14. Proskuryakov SY, Konoplyannikov AG, Gabai VL. Necrosis: a specific form of programmed cell death?.

Exp Cell Res. 2003; 283(1):1–16. https://doi.org/10.1016/S0014-4827(02)00027-7 PMID: 12565815

15. Shah R, Vattoth S, Jacob R, Manzil FF, O’Malley JP, Borghei P, et al. Radiation necrosis in the brain:

Imaging features and differentiation from tumor recurrence. Radiographics. 2012; 32(5):1343–1359.

https://doi.org/10.1148/rg.325125002 PMID: 22977022

16. Chao ST, Suh JH, Raja S, Lee SY, Barnett G. The Sensitivity and Specificity of FDG PET in Distinguish-

ing Recurrent Brain Tumor from Radionecrosis in Patients Treated with Stereotactic Radiosurgery. Int J

Cancer. 2001; 96(3):191–197. https://doi.org/10.1002/ijc.1016 PMID: 11410888

17. Kim HY, Cho SJ, Sunwoo L, Baik SH, Bae YJ, Choi BS, et al. Classification of true progression after

radiotherapy of brain metastasis on MRI using artificial intelligence: a systematic review and meta-anal-

ysis. Neurooncol Adv.2021; 3(1):vdab080. https://doi.org/10.1093/noajnl/vdab080 PMID: 34377988

18. Zhang Z, Yang J, Ho A, Jiang W, Logan J, Wang X, et al. A predictive model for distinguishing radiation

necrosis from tumour progression after gamma knife radiosurgery based on radiomic features from MR

images. Eur Radiol. 2018; 28(6):2255–2263. https://doi.org/10.1007/s00330-017-5154-8 PMID: 29178031

19. Larroza A, Moratal D, Paredes-Sánchez A, Soria-Olivas E, Chust ML, Arribas LA, Arana E. Support

vector machine classification of brain metastasis and radiation necrosis based on texture analysis in

MRI. Journal of Magnetic Resonance Imaging. 2015; 42(5):1362–1368. https://doi.org/10.1002/jmri.

24913 PMID: 25865833

20. Lasocki A, Sia J, Stuckey SL. Improving the diagnosis of radiation necrosis after stereotactic radiosur-

gery to intracranial metastases with conventional MRI features: a case series. Cancer Imaging. 2022;

22(1):33. https://doi.org/10.1186/s40644-022-00470-6 PMID: 35794677

21. Barbolosi D, Benabdallah A, Hubert F, Verga F. Mathematical and numerical analysis for a model of

growing metastatic tumors. Math Biosci. 2009; 218(1):1–14. https://doi.org/10.1016/j.mbs.2008.11.008

PMID: 19121638

22. Hartung N, Mollard S, Barbolosi D, Benabdallah A, Chapuisat G, Henry G, et al. Mathematical modeling

of tumor growth and metastatic spreading: Validation in tumor-bearing mice. Cancer Res. 2014; 74

(22):6397–6407. https://doi.org/10.1158/0008-5472.CAN-14-0721 PMID: 25217520

23. Bilous M, Serdjebi C, Boyer A, Tomasini P, Pouypoudat C, Barbolosi D, et al. Quantitative mathematical

modeling of clinical brain metastasis dynamics in non-small cell lung cancer. Sci. Rep. 2019; 9

(1):13018. https://doi.org/10.1038/s41598-019-49407-3 PMID: 31506498
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et al. Universal scaling laws rule explosive growth in human cancers. Nature Phys. 2020; 16(12):1232–

1237. https://doi.org/10.1038/s41567-020-0978-6 PMID: 33329756
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