4

X/
*

Scientifi
o2 Resoarch
0.00 Publishing

American Journal of Computational Mathematics, 2023, 13, 533-577
https://www.scirp.org/journal/ajcm

ISSN Online: 2161-1211
ISSN Print: 2161-1203

Stochastic Chaos of Exponential Oscillons and

Pulsons

Victor A. Miroshnikov

Department of Mathematics and Data Analytics, College of Mount Saint Vincent, New York, USA
Email: victor.miroshnikov@mountsaintvincent.edu

How to cite this paper: Miroshnikov, V.A.
(2023) Stochastic Chaos of Exponential Os-
cillons and Pulsons. American Journal of
Computational Mathematics, 13, 533-577.
https://doi.org/10.4236/ajcm.2023.134030

Received: October 1, 2023
Accepted: November 28, 2023
Published: December 1, 2023

Copyright © 2023 by author(s) and
Scientific Research Publishing Inc.

This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

(ORORN e s

Abstract

An exact three-dimensional solution for stochastic chaos of 7 wave groups of
M random internal waves governed by the Navier-Stokes equations is devel-
oped. The Helmholtz decomposition is used to expand the Dirichlet problem
for the Navier-Stokes equations into the Archimedean, Stokes, and Navier
problems. The exact solution is obtained with the help of the method of de-
composition in invariant structures. Differential algebra is constructed for six
families of random invariant structures: random scalar kinematic structures,
time-complementary random scalar kinematic structures, random vector kin-
ematic structures, time-complementary random vector kinematic structures,
random scalar dynamic structures, and random vector dynamic structures.
Tedious computations are performed using the experimental and theoretical
programming in Maple. The random scalar and vector kinematic structures
and the time-complementary random scalar and vector kinematic structures
are applied to solve the Stokes problem. The random scalar and vector dy-
namic structures are employed to expand scalar and vector variables of the
Navier problem. Potentialization of the Navier field becomes available since
vortex forces, which are expressed via the vector potentials of the Helmholtz
decomposition, counterbalance each other. On the contrary, potential forces,
which are described by the scalar potentials of the Helmholtz decomposition,
superimpose to generate the gradient of a dynamic random pressure. Various
constituents of the kinetic energy are ascribed to diverse interactions of ran-
dom, three-dimensional, nonlinear, internal waves with a two-fold topology,
which are termed random exponential oscillons and pulsons. Quantization of
the kinetic energy of stochastic chaos is developed in terms of wave structures
of random elementary oscillons, random elementary pulsons, random inter-
nal, diagonal, and external elementary oscillons, random wave pulsons, ran-
dom internal, diagonal, and external wave oscillons, random group pulsons,
random internal, diagonal, and external group oscillons, a random energy
pulson, random internal, diagonal, and external energy oscillons, and a ran-
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dom cumulative energy pulson.
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1. Introduction

Deterministic chaos of exponential oscillons and pulsons was developed in [1]
with the help of the method of Decomposition in Invariant Structures (DIS) [1]
[2] [3] [4], where a family of deterministic scalar and vector invariant structures
have been constructed to solve the kinematic Stokes problem and the dynamic
Navier problem. Quantization of the kinetic energy of the deterministic chaos
has been treated for the Fourier set of wave parameters [3] and for the Bernoulli
set of wave parameters [4] that enables to model turbulization of deterministic
chaos.

The sequence of studies [1] [2] [3] [4] was initiated by paper [5] about con-
servative interaction of NV three-dimensional internal waves controlled by the
Navier-Stokes equations. The family of stationary kinematic Euler-Fourier func-
tions of the later paper resulted in an extreme sophistication of the functional so-
lution, which was derived with the help of experimental and theoretical program-
ming in Maple, and inspired construction of the invariant structures in [1] [2] [3]
[4] in order to make exact solutions of the Navier-Stokes equations more robust.

Another continuation of paper [5] was considered in the area of stochastic
waves [6], which model perturbations of deterministic waves. In [6], smooth ran-
dom functions of time are used as wave parameters of stochastic waves. However,
the obtained results are limited by two dimensions and the nonstationary kin-
ematic Euler-Fourier functions. The purpose of the current paper is develop-
ment of the structural approach to stochastic, three-dimensional, nonlinear, in-
ternal waves governed by the Navier-Stokes equations.

The contents of this paper are as follows. Theoretical Random Scalar Kin-
ematic (tRSK) structures, experimental Random Scalar Kinematic (eRSK) struc-
tures, time-complementary tRSK (tRSK,) structures, and time-complementary

eRSK (eRSK)) structures are systematically developed in Section 2. In Section 3,

DOI: 10.4236/ajcm.2023.134030

534 American Journal of Computational Mathematics


https://doi.org/10.4236/ajcm.2023.134030

V. A. Miroshnikov

the random scalar kinematic structures are complemented by experimental Ran-
dom Vector Kinematic (eRVK) structures, theoretical Random Vector Kinemat-
ic (tRVK) structures, time-complementary eRVK (eRVK)) structures, and time-
complementary tRVK (tRVK,) structures. The random scalar and vector kin-
ematic structures and the time-complementary random scalar and vector kin-
ematic structures are utilized to find scalar and vector variables of the kinematic
Stokes problem. Section 4 deals with experimental Random-Random Scalar
Dynamic (eRRSD) structures and theoretical Random-Random Scalar Dynamic
(tRRSD) structures, which are required to describe scalar variables of the dy-
namic Navier problem. To express vector variables of this problem, experimental
Random-Random Vector Dynamic (eRRVD) structures and theoretical Random-
Random Vector Dynamic (tRRVD) structures of the mth and nth families are
introduced and studied in Section 5. The Helmholtz decomposition of the ran-
dom Navier-Stokes problem into the Archimedean, the random Stokes, and the
random Navier problems is considered in Section 6, where a kinematic solution
of the random Stokes problem, which is subjected to the Dirichlet boundary
conditions and conditions at infinities, is obtained. A dynamic solution of the
random Navier problem is computed and verified in Section 7 with the help of
the tRRSD and tRRVD structures. Section 8 is devoted to decomposition of a
matrix of the kinetic energy of the stochastic chaos of exponential oscillons and
pulsons. Random wave pulsons, random group pulsons, and a random energy
pulson are described in Section 9, which is proceeded by Section 10 dealing
with random diagonal wave oscillons, random diagonal group oscillons, and a
random diagonal energy oscillon. In Section 11, we treat random internal wave
oscillons, random internal group oscillons, and a random internal energy oscil-
lon. Section 12 is dedicated to random external wave oscillons, random external
group oscillons, and a random external energy oscillon. Random elementary
pulsons, random internal elementary oscillons, random diagonal elementary os-
cillons, and random external elementary oscillons are represented in Section 13.
Session 14 contains a summary of quantization of the stochastic chaos of expo-

nential oscillons and pulsons and a concise review of open problems.

2. Random Scalar Kinematic Structures
2.1. Definitions of the tRSK and eRSK Structures

Similar to the theoretical Deterministic Scalar Kinematic (tDSK) structures (13)

of [1], the tRSK structures s, ,» S,x;m Syyim Sixyim are defined as follows:
sr,i,m :[Sr,l,m'Sr,z,m'Sr,B,m'Sr,zl,m:I :|:ar m?~r,m? rm' rm:|
Sroxim :I:sr,x,l,m'Sr,x,z,m’sr,x,3,m'Sr,x,4,m] _[br ms & m rm'cr m] (1)
Sryim = |:Sr,y,1,m 1Sty 2m1Sry3m Sr,y,4,m] = |:Cr,m' rmr & m br m:|
Srxyim = |:Sr,x,y,l,m 1S xy,2m Sr,x,y,3,m’sr,x,y,4,m:| = [dr m1 Ceomo O, m’a' ]

b

i

where a

. Comp d,,, are the eRSK structures, 7=1,2, ..., /=1,2,3,41isa

counter of random wave groups, and m =1, 2, ..., Mis a counter of random in-
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ternal waves.
The tRSK structures are [1, 4, M, 1] arrays, which are visualized by 1 x 4 rows

of the eRSK structures (1) and by M x 4 matrices, for instance,

ar,l br,l Cr,l dr,l

Sr,i,m: ar,m br,m Cr,m dr,m . (2)
dr,M

Analogous to the experimental Deterministic Scalar Kinematic (eDSK) struc-

tures (1) of [1], the eRSK structures are specified via the following relations:

a = +Avr'm SSE oy + BVr,m cse, ., + Cvr'm SCe, n + Dvrym cce

r,m?

b= —Bv,ym sse, , + Av, cse. . —Dv,  sce  +Cv,  cce .,

3)
Cm=-Cv, sse ,—Dv  cse  +Av  sce  +Bv  cce .,
d,,=+Dv,  sse  —Cv,  cse  —Bv,  sce  +Av  cce ,

where functional amplitudes of a harmonic variable W(x, y; z 9

AV, , =Av, . (t), By, =By, (t), Cv,, =Cv, . (t), Dv,, =Dv, . (t) (4

are smooth random functions of time from C*. If Av,,,= 1, Bv,, = Cv,,,= Dv,,,
=0, the eRSK structures are reduced to the eRSK functions, i.e.

a,,=sse ., b =cse ,c  =sce , d  =cce._. (5)

The eRSK structures are [A4, 1] arrays, which are displayed via A/ x 1 columns,
for example,

ar 1

ar,m: a‘r‘m ' (6)

ar,M

The three-variables (3-v) eRSK functions [sse,,, cse,,, sce,,, cce, |(X, > ¥,
z) are products

Sser,m = SXr,m Syr,m le,m’ Cser,m = cxr,m Syr,m ezr m

(7)
scer,m = er,m Cyr,m ezr,m’ Ccer,m = CXr,m Cyr,m ezr m
of the following 1-v (one-variable) eRSK trigonometric functions [sx,,, cx;,,](X,,,),
[8Vymp CVrml(Y,,,) and an exponential function ez, ,, = ez, ,,(2)
X, =SIN (K; n X, 1), X :cos(’(r,mxr,m)!
Y, =SiN(4 Yo ) Y, m =€08( 21, ), (8)

ez, , = exp((—l)" L z),

where X, ,,= X, .(x; ) and Y,,, = Y, (); ©) are propagation variables defined by
Xr,m =x-U r,m t+ Xr,m,O' Yr,m =Yy _Vr,m t +Yr,m,0' (9)
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In Equations (1)-(9), (x, y; 2) is the Cartesian coordinate of a motionless frame
of reference, ¢is time, (X, ,,, Y,,, 2) is the Cartesian coordinate of a frame of ref-
erence moving with the mth random elementary oscillon (209)-(210), [U,,, V,.»
0] is a celerity of propagation, and [X, o, Y, is a reference value of [X,,, ¥, ]
at =0, x=0, y=0. A sign parameter 7= 0 for z<0and 77=1for z> 0, k,,;, A,

M., are wave numbers in the x-, y-, zdirections such that

7. =./x§m + A2 (10)

The wave numbers are constants since otherwise the temporal derivative of the
velocity potential does not commutate with the gradient. Propagation param-

eters

Ur,m =Ur,m (t)’ Vr,m =Vr,m (t)’ Xr,m,O = Xr,m,O (t)’ Yr,m =Yr,m,O (t) (11)

together with (4) are smooth random functions of time from C*.

2.2. Definitions of the tRSK; and eRSK; Structures

We also define the tRSK, structures

Sr,t,i,m :[Sr,t,l,m’Sr,t,2,m’sr,t,3,m’sr,t,4,m] :[ar,t,m’br‘t,m’cr‘t,m'dr,t,m]'
Sr,x,t,i,m :|:5r,x,t,l,m'Sr,x,t,z,m’Sr,x,t,s,m'sr,x,t,4,m:| :[br,t,m’ar,t,m’dr,t,m’Cr,t,m:|’

(12)
Sr,y,t,i,m =[Sr,y,t,1,mlsr,y,t,2,m'Sr,y,t,3,m’sr,y,t,4,m:| =[Cr,t,m'dr,t,m'ar,t,m' r,t,m:|'
Sr,x,y,t,i,m = I:Sr,x,y,t,l,m ! Sr,x,y,t,z,m ' Sr,><,y,t,3,m ! Sr,x,y,t,A,m] = [dr,t,m ' Cr,t,m ' br,t,m ' ar,t,m]'

where a,,,, b, Cotmp d,en are the eRSK, structures.
The tRSK, structures are [1, 4, M, 1] arrays, as well, which are represented in

terms of 1 x 4 rows of the eRSK, structures (12) and M x 4 matrices, e.g,

a'r,t,l br,t,l Cr,t,l dr,t,l

r.ti,m

S = & tm br‘t,m Crtm dr,t.m . (13)

ar,t,M br,t,M Cr,t,M dr,t,M

Parallel to (3), the eRSK, structures take the following form:
& m=+AV, sse ., +Bv cse  +Cv . sce  +Dv  cce .,

br,t,m =-BV, 1 SS€ nm + AV, , CSE, , — DV, , SCE,  + Cvmym CCe, 1 (14)
Cim=-—CV,  sse ,—Dv, cse  +Av, _ sce +Bv., cce .,
d n=+Dv, sse ,—Cv, cse  —Bv,  sce  +Av., . cce .,
where functional amplitudes
dAv, , dBv
AV, 0 =AY, (1) :—d; BV, =BV, (1) :—dtr’m ,
dC dD (15)
v, v
Cvr,t,m = Cvr,t,m (t) = d; T ) Dvr,t,m = DVr,t,m (t) = dtr =

are the first derivatives of (4). Along with (4) and (11), functional amplitudes (15)

are smooth random functions of time from C”.
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Together with the eRSK structures, the eRSK, structures are [A4, 1] arrays,

which are exposed as M x 1 columns, such as

ar,t,l

A& m=|Aim |- (16)

r,t,m

a'r,t,M i

2.3. Differentiation Tables

Computing first spatial derivatives of the eRSK functions (7)-(11) gives the fol-

lowing differentiation table:

0sse, 0sse 0sse,

m rm r,m n
—=+K, CSE, ., —=+A__SCe, , —=(-1)" u, .SS€ .,
8X r,m r,m r,m r,m 62 ( ) r,m r,m
ocse, ocse, ocse, .
ox — = _Kr,msser,m’ ay —= +/1r,mccer,m’ o7 —= (_1) fur,mcser,m’
0 0 0 (17)
SCe, SCe, SCe, .
— =+, _CCE _, —=-1 Sse _, —=(-1)" u, .Sce, .,
ax rm rm r,m rm az ( ) rm rm
occee, , occee, , occe
M -k sce MmN —_2 cse ., L0 = (=1)" p, . cce,
aX r,m r,m 8)/ r,m r,m az ( ) rm rm

that shows completeness of the eRSK functions with respect to differentiation in
(x, 35 2) of any order.

In agreement with differentiation table (17), the first derivatives of eRSK
functions in x and y are covariant since they are proportional to eRSK cofunc-
tions in the x- and y~directions, respectively. The first derivatives with respect to
zare invariant because they are proportional to themselves.

It is a straightforward matter to show completeness of the eRSK structures
(3)-(4) with respect to differentiation in (x; y; 2) of any order for the reason that

a table of first spatial derivatives becomes

oa da oa
- =_H(r mbr m? - =+;Lr mCrm' - _(_1)” Hy marm'
ox ST oy T a
ab ab ob
6;m ==Ky m8 a;m = +ﬂ*r,mdr,m' arzm = (_1)’] Hy mbr m1 e
acr m aCr m acr m n
: =+K'rmdrml _VZ_/Irmarm’ ’ =(_1) ,Llrmcrm,
ox n oy Ta
ad od od
6;m = K mbrme a;m =~ mby 6;m - (_1)” ;ur,mdr,m

In accordance with differentiation table (18), the first derivatives of the eRSK
structures in x and y are covariant as they are proportional to eRSK costructures
in the x- and y-directions, correspondingly. The first derivatives of the eRSK
structures with respect to zare invariant.

Similarly, completeness of the eRSK, structures (14)-(15) with respect to spa-

tial differentiation of any order follows from the following table of first spatial
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derivatives:
oa oa. oa
—ntm =+Kr mbrtml L =+ﬂ’r mcrtm’ . z(_l)’7 ,Ur ma”m’
ox gy c o
L= r,mar,t,m’ LD = +ﬂ'r,mdr,t,m' . :(_1)77 'ul’vmb"v‘!m'
ox oy o (19)
oc oc oc
ﬂ:_'_’(r mdrtm7 N :_/lr mBr tm -~ :(_:I')’7 Hr mCr g
ox ek oy T o o
6r)?m =K mCrim ar); = _ir,mbr,t,ml a'ztm = (_1)r] :ur,mdr,t,m'

Due to (19), the first derivatives of the eRSK, in x and y are also covariant be-
cause they are proportional to eRSK, costructures in the x- and y-directions, re-
spectively. The first derivatives of the eRSK, structures with respect to z are in-
variant.

A differentiation table of the tRSK structures (1) in x; y; and zturns out to be

Brim =+(-1)" Ky St i Frin =+(-1)" 28,y

OX oy

asré% =—(-1)" K, nSr i as;é;i'm =+(-1)" A pSesyim:

asa_; = (1) Ky S,y asg;‘”“ =~(-" ZenSeim o0
asrg_:xvm:_(_l)"i Ky mSryim as"jT‘y‘”“}(—l)”‘ e mSrxime

asé% =+(=1)" tr mSrims as,é% =+ () HrnSrnim

where sign parameters
a, = [, a,,05,0,] =[0,1,0,1],
B, = [B. BB B:] =[0,0,1,1].
A set of first spatial derivatives of each tRSK structure in the x-, y-, and

z-directions for /=1, 2, ..., Iis equivalent to the differentiation table of eRSK
structures (18). Similar to [1], we observe quadrality of the theory: there are four

(21)

equivalent theoretical ways of explaining the experimental results. It may be
shown that the quadrality of the tRSK structures holds with respect to the second
spatial derivatives, the Laplacian, and the first temporal derivative, as well. For
the aim of brevity, further theoretical results will be demonstrated mainly for the
tRSK structure s, , that is sufficient to describe experimental results.

Analogous to the eRSK structures, the first derivatives of the tRSK structures
in x and y are covariant since they are proportional to tRSK costructures in the
x- and p~directions, correspondingly. The first derivatives of the tRSK structures
with respect to zare invariant.

Computation of a differentiation table of the tRSK, structures (12) in x, y; and
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zyields
oS, . a 08y i :

Sra,_t,l,m :J,-(—l) 'Ky S xtime % :+(_1)ﬂl A mSry timo
X v A ! R
asrg;'i’m = _(_1)ai Kr,msr,l,i,m' asrg(% = +(_1)ﬁi ﬂ“"-ms"vx!y'l’i'm'

oS i P 0s FASR i

ray): = =+(_1) Kr,msr,x,y,t,i,m’ r:Ttm :_(_1)ﬂ lr,msr,t,i,m'

(22)
asrygy’t'i'm = _(_1)0‘i KemSe y,tim? 65'&% = _(_1),Bi j“r mSrxtim
X 3 [B AL ! B

aSr im aSr X,t,i,m

812 :+(_1)’7 /ur,msr,t,i,m’ a—Zt :+(_1)’7 /ur,msr,x,t,i,m’
0s i 08 X,y

rﬁyzl = = +(_1)” Hr ey timo ra—?m - +(_1)” He Sty tim:

Alike the tRSK structures, a set of first spatial derivatives of each tRSK, struc-
ture in the x-, y-, and zdirections for /=1, 2, ..., /is equivalent to the differen-
tiation table of eRSK, structures (19). So, differentiation tables (22) and (19)
again show quadrality of the theory. For the aim of simplicity, further theoretical
results will be displayed mainly for the tRSK, structure s,,,,, that is enough for
generalization of experimental results.

Analogous to the eRSK, structures (19) and the tRSK structures (20), the first
derivatives of the tRSK, structures in x and y are covariant as they are propor-
tional to tRSK, costructures in the x- and p-directions. The first derivatives of the
tRSK, structures with respect to zare invariant.

Similarity of differentiation tables (17), (18), (19), (20), (22) is visualized in
terms of a differentiation diagram in Figure 1. The differentiation diagram de-
monstrates transformation of the eRSK functions, the eRSK structures, the eRSK,
structures, the tRSK structures, the tRSK, structures, the eRVK structures, and
the tRVK structures (see Section 3) produced by spatial differentiation that is

shown with the help of blue arrows for derivatives in x; green arrows for derivatives

1) 1)
( ) Lr,m -Kr,m +Kr,m ( ) }'r,m
+A _/ Q +A
L Scer,m Cr,m Cr,t,m Ccer,m dr,m dr,t,m L
Sr,y,i,m Sr,y,t,i,m Sr,x,y,i,m Sr,x,y,t,i,m
Com  Sryim dim  Sixyim
Sser,m ar,m ar,t,m cse,,m br,m br,t,m
Sr,i,m Sr,t,i,m Sr,x,i,m Sr,x,t,i,m
_}\‘r/m ‘) O m  Siim br,’” Sy xim f' _}\’r/m
K +K
i LT it i BT -,

Figure 1. A differentiation diagram of the first spatial derivatives of the eRSK functions
and the eRSK, eRSK, tRSK, tRSK, eRVK, and tRVK structures.
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in y; and red arrows for derivatives in z The length of arrows visualizing deriva-
tives in x, y; and z are proportional to differentiation scales «,,, A,,, and
(-1)"u, ,» respectively, which are shown with colors corresponding to those of
arrows.

Differentiation in x, y; and (x, y) moves elements of a given list of a random

function and random structures

[155€, 1+8r 110 s St Seim Br o S |

rm! “rm @rtme Orim Ortime

from one corner of the differentiation rectangle to another one, while differen-
tiation in z does not change a location of elements of the given list. For the given
list of the random function and the random structures, there are three lists of a
random cofunction and random costructures. First, a list of the random cofunc-

tion and the random costructures in the x-direction

[ €58, 1Dy By s Sr i S B s Seim |

,m Memo Met,m e x,i,m o IroxGti,m o Me,m e Proxi,m

which are located on the same horizontal leg as the elements of the given list at a
distance «,,,. Second, a list of the random cofunction and the random costruc-

tures in the y-direction

[sceccs s c .S ]

r,m¥rme Prt,m? Pryime Vroytim? Yrm? Pryim

which are located on the same vertical leg as the elements of the given list at a
distance A, ,, Third, a list of the random cofunction and the random costructures
in the (x; y)-direction

[ccedd s s d s }

r,m? Prme Yrtme Oroxy,ime O xytime Yrme O x,yLim

which are located in the opposite corners with respect to the elements of the
given list.
With the help of table (20) of the first spatial derivatives of the tRSK structures,

we find second spatial derivatives of the tRSK structure s, in x, y; and z

o%s o%s, . o+
6;;,m = _Kfzvmsfvivm' 6Xré;/m - (_1) KrmArmSexyime
625 ) 623 ; o+
r;m :_)’rzmsrim’ - :(_1) o Ky my msrxim’ (23)
ay M oxoz .
825r im 2 azSr im Bi+n
az'z' =—i_lur,msr,i,m’ ayaz =(_1) ﬂrvm/ufvms"»yxivm'

The differentiation diagram in Figure 1 clearly explains invariance of the re-
peated second spatial derivatives. The second-order differentiation moves the
tRSK structure from a corner to an adjacent corner of the differentiation rectan-
gle, transforming it into the tRSK costructure, and then returns the tRSK co-
structure back both in the x- and y-directions, restoring the original tRSK struc-
ture. Similar to physical oscillation, this effect of differentiation is called the sca-
lar structural oscillation [1] of the tRSK structures.

In line with the differentiation diagram, the second derivative of the tRSK

structure in (x, y) becomes the tRSK costructure covariant in (x, y), which is lo-
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cated at an opposite vertex of the differentiation rectangle to that of the original
tRSK structure. The second derivatives of the tRSK structure in (x, z) and (y; 2)
become the tRSK costructures in the x- and y-directions, respectively, since dif-
ferentiation in zis invariant.

Summation of the repeated second derivatives of (23) gives that the tRSK
and the eRSK structures are harmonic as

0%s o%s S im
aXZ ayz azz =A Sr,i,m = [07 01 O’ 0] (24)

structure s

1,5m

r,i,m r,i,m

due to (10).
Using definitions (9), (11) and the spatial derivatives (20), we compute a first

temporal derivative

0s, . " _
S(;t,,m =—(=1)" & 0 X, S i —(_1)ﬂ- A oYetmSeoyim + Sepimo (25)
where time-dependent amplitudes
X, m (Xt du._(t) dX. . (t
Xrtm:Xrtm(t):_M:Urm(t)ﬁ- r,m()t_ r,m,O(),
” H ° | dt dt (26)
N (Yt dv. (t). dy, (t
Vo V) =m0y g Vel Doms 1)

So, the first temporal derivative of the tRSK and eRSK structures is a superpo-
sition of the tRSK and eRSK costructures in x, y; and ¢, while the time-dependent
amplitudes depend on temporal derivatives of U,,, V,,, X, .o, and Y, ... The
tRSK, tRSK, and eRSK, eRSK, structures are closed with respect to temporal dif-
ferentiation of the first order.

If

Ur,m (t)zud,m’ Vr,m (t)zvd,m’ Xr,m,O (t) = Xd,m,O’ Yr,rn,O (t)sz,m,O' (27)

where U,,,, V. Xyme and Yy, are correspondent deterministic values, then
the temporal derivative of the tRSK structure (25)-(26) is reduced to the tempo-
ral derivative of the tDSK structure (19) of [1].

3. Random Vector Kinematic Structures
3.1. Definitions of the eRVK and tRVK Structures

Analogous to the eDVK structures (20) of [1], the eRVK structures a,,, b, ,» C..»

d,, are defined as gradients of the eRSK structures a,,,, b, ¢..» d.,» respectively,
by
+Kr,mbr,m _Kr,mar,m
ar,m = Var,m = + ﬂ’r,mcr,m ! br,m = Vbr,m = + /lr,mdr,m !
7 "
(_1) lur,mar,m (_1) :ur,mbr,m
- (28)
+ Kr,mdr,m _Kr,mcr,m
Cr,m = VCr,m = - )“r.mar,m ’ dr,m = Vdr,m = - j’r,mbr,m
" "
(_1) lur,mCr,m (_1) /ur,mdr,m
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The eRVK structures are [3, 1, M, 1] arrays, which are visualized by 3 x 1
columns (28) of the eRSK structures multiplied by coefficients. Therefore, el-

ements of columns (28) are [, 1] arrays that are displayed by M x 1 columns
(6).

Consequently, the tRVK structures are introduced as follows:
Sim  =VSiim :[ar,m’br,m'cr,m’dr,m ,
r,,i,m rx,i,m =|:br,m'ar,m'dr,m’cr,m:|’
Syim = YSryim Z[Cr‘m’dr,m'ar,m'br,m]’

Sr,><,y,i,m = VSr,x,y,i,m = [dr,m’cr,m!br,m'ar,m '

S =Vs

(29)

Equations (29) yield a row definition of the tRVK structures.
With the help of the definition of gradient and the first spatial derivatives of
the tRSK structures (20), we obtain definitions of the tRVK structures in the

column form. For the tRVK structure s,;,,, we have

_asr,i,m
OX L
(_1) Kr,msr,x,i,m
_ 85r,i,m _ 1 Bi 30
Sim = | T, |7 (_ ) rmSryim |- (30)
ay n
6Sr,i,m (_1) /’lr,msr,i,m
L az -
Expansions (1) of the tRSK structures s, ;,» S,,im Syim for 1=1,2, 3, 4 give the

following matrix definition of the tRVK structure s, ,;:

+x. b -k _a +x _d -k, C

r,m=r,m r,m=r,m r,m=r,m r,m=r,m

S, . = +A C +A d -1 a -4 b . (31)

(—1)” ’Llrvmar,m (_1)’7 Iur,mbr,m (_1)77 lur,mcr,m (_1)” :ur,mdr,m

Since substitution of the eRVK structures in the column form (28) into the

row definition of the tRVK structure s,,,. (29) results in the same matrix (31),

the first of four-dimensional (4-d) row definitions (29) is equivalent to the
three-dimensional (3-d) column definition (30). Therefore, s,,,, is a [3, 4, M, 1]
array, which is visualized by 3 x 4 matrix (31) of the eRSK structures multiplied
by coefficients. Thus, elements of matrix (31) are [A4, 1] arrays that are

represented via M x 1 columns (6).

3.2. Definitions of the eRVK; and tRVK; Structures

Following (28), the eRVK, structures a,,,, b...,» C.ipp d..., are defined as gra-

I

dients of the eRSK, structures a,,,, b,,,» C..p d...p correspondingly, in the fol-
lowing column form:
+ Kr,mbr,t,m K metm
A im=Van= +/1r,mcr,t,m , br,t,m = Vbr,t,m = +/?‘r,mdr,t,m '
7 n
(_l) /ur,mar,t,m (_1) lur,mbr,t,m
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+K, mdrtm _Kr,mCr,t,m
Crim = VCr,t,m = ﬂ'r m&rem | dr,t,m = Vdr,t,m = _ﬁ'r,mbr,t,m . (32)
(_l)ﬂ lur,mcr,t,m (_1)’7 /ur,mdr,t,m

The eRVK, structures are also [3, 1, M, 1] arrays, which are displayed by
means of 3 X 1 columns (32) of the eRSK, structures multiplied by coefficients.
Elements of columns (32) are [A4 1] arrays that are visualized through A/ x 1
columns (16).

Accordingly, the tRVK, structures are set in the row form by

r,ti,m =VSrtim [artm’brtmlcrtm’drtm]

r.xti,m _vsrxtlm _[brtm’ rtm’drtm’ rtm]

ry.tim :Vsrytlm _[Crtm'drtm' rtms rtm:l
)

S
S

(33)
S

Sr,x,y,t,i,mzvsrxytlm [drtm'crtm' rt,m? rtm

The column form of the tRVK, structures follows from the first spatial deriva-
tives of the tRSK, structures (22). For the tRVK, structure s,,,,,, we get

| Besim
aSratxim - 1); Kot
n = Tay (L) AunSeyaim | (34)
38, 1im (=1)" S im
| oz |

With the help of (12), the matrix form of s,,,,, becomes

+ &, b — K@ im +x, ,d — K, nC

r,m-rtm rit,m

Sr,t,i,m = +ﬂ'r mcrtm +ﬂ'r mdrtm ﬂ“r martm ﬂ’r mbrtm ' (35)
(_1)’ /Ur,mar,t,m (_1) /ur,mbr,t,m (_l) :ur,mcr,t,m (_1)’ /ur,mdr,t,m

So, 8., 18 a [3, 4, M, 1] array, as well, which is exposed as 3 x 4 matrix (35) of
the eRSK, structures multiplied by coefficients, whereas elements of matrix (35)
are [M, 1] arrays that are displayed through A x 1 columns (16).

Definitions of the tRVK structures (29) and tRVK, structures (33), which are
similar to definitions of the tRSK structures (1) and tRSK, structures (12), again
stipulate quadrality of theoretical formulas. Quadrality of the tRVK and tRVK,
structures is also confirmed by tables of the divergence, the curl, the first spatial
derivatives, the second spatial derivatives, the Laplacian, and the first temporal
derivative. For the purpose of conciseness, further theoretical results will be
shown mostly for the tRVK structure s,;,, and the tRVK, structure s,,;,, that are

sufficient for explanation of experimental results.

3.3. Differentiation Tables

Calculation of the divergence of the tRVK structure s,;,, with the help of (24)
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r,i,m

6zsrim aZS azsri m
. 0 As,,, =[0,000] G6)

r,,m

shows that s,,,, and eRVK structures are divergence-free because of (10).

Using definitions of the curl of the tRVK structures (29) and the first spatial
derivatives (20) of the tRSK structures, we find that the tRVK structures together
with the eRVK structures are irrotational due to the commutativity of the second

spatial derivatives of the tRSK structures. Namely, for s,,,, we obtain

0s, oS, i
1 n r.i,m 1 Bi Oryim
+( ) /ur,m ay ( ) r,m az 0
08, ; ) 0s. .
\v/ =] = _177 r,i,m —l 2 r,X,i,m — O . 37
><Sr,|,m ( ) Hem ox +( ) Kem oz . ( )
. 0s, oS, .
1 Bi 2 r,y,i,m ;i rx,i,m
Y ), S

A tedious but straightforward computation of the differentiation table of the
tRVK structures using both the column definition (34) and the row definition
(33) yields

s, ; @ OSy.i i
é;('m = +(_1) Ky mSrxim? ﬁ - +(_1)ﬂ ﬂr,msr,y,i,m'
3, o 05 i i
ré;hm = _(_1) K mSrims % - +(_1)ﬁ ﬂvr,msr,x,y,i,m'
s, o Oy, i
ré))l(YI'm = +(_1) Kr,msr,x,y,i,m’ ra);ll "= _(_1),6 ﬂ’r,mshi:m’
(38)
aSr><yim aj aeryim A
:_(_1)IKrmsryim! #:_(_1)Ilfmsr“m’
X . % -
s, ; 01 x,
é;m - +(_1)7 He mSeim % - +(_1)’] M mSr ximo
s, . Oy .y,
ra); = = +(_1)77 Hy Sy yim % - -'-(_]')77 Hr St x,yim-

Therefore, differentiation table (38) of the tRVK structures is similar to differ-
entiation table (20) of the tRSK structures since the differentiation tables of the

scalar and vector structures become identical after substituting

Sr,i,m = Sr,i,m' Sr,x,i,m = Sr,x,i,m’ Sr,y,i,m = Sr,y,i,m' Sr,x,y,i,m = Sr,x,y,i,m' (39)

This property of the tRSK, tRVK and eRSK, eRVK structures is called the sca-
lar-vector invariance [1] of the theoretical and experimental invariant structures.
The scalar-vector invariance is also illustrated by the differentiation diagram in
Figure 1. The scalar-vector invariance holds for the second spatial derivatives,
the Laplacian, and the first temporal derivative, as well.

Explicitly, a differentiation table of the second spatial derivatives of the tRVK
structure s,;,, which have been computed with the help of both the column defi-
nition (34) and the row definition (33),
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d%s, . , d%s, . @i h

6);2”“ =K mSrimo axré;m = (_1) Kr,mﬂ“r,msr,x.y,i,m'
d%s, . d%s, . vt

a;gvm = _ﬂ’rz,msr,i,m’ axra’lzym = (_1) ! Kr,mlur,msr,x,i,m' (40)
0%s, ; 0%s, ; G+

azrglm = +/ur2,msr,i,m1 ayralzm = (_1) ! ﬂr,m/ur,msr,y,i,m

resembles differentiation table (23). In agreement with the differentiation dia-
gram in Figure 1, the repeated second spatial derivatives of the tRVK structure
S, and the eRVK structures are invariant and the mixed second spatial deriva-
tives are covariant, what is consistent with the second spatial derivatives of the
tRSK structure s,;,, and the eRSK structures.

Harmonicity of the tRVK structures and the eRVK structures immediately
follows after summation of the repeated second spatial derivatives of (40). Al-

ternatively, the column definition of the tRVK structure s,,,, (30) and harmoni-

ri,m

city of the tRSK structures return a column Laplacian of s,,,, in the following

form:
_(_1)04 Ke.m (Krz,m +ﬂ’r2,m _;urz,m)sr,x,i,m 0

(0" A (K0 + A = 12 )Seyim |=| O | (41)
0

As

rim
_(_1)” Hem (Krz,m + ﬂ’rzm - Iurzm )Sr,i,m

Eventually, we compute a first temporal derivative of s,;,, in the column form

as

0S, . a; i
M: _(_l) I K m X tmSroxim _(_]‘)/}I ArmYr S +S

at r,m rt,m>r,y,im

(42)

r.ti,m?

where the time-dependent amplitudes X, ,, and Y,

ntm

are provided by (26). The
first temporal derivative of any tRVK structure is a superposition of the tRVK
costructures in x, y; and ¢

The tRVK structures and the eRVK structures are closed regarding spatial dif-
ferentiation in (x, y; 2) of any order due to (38). Completeness of the tRVK
and the tRVK, structure s,,,,, and the eRVK and eRVK, structures

structure s b
with respect to temporal differentiation of the first order follows from (42).

r,i,m

4. Random Scalar Dynamic Structures
4.1. Definitions of the eRRSD and tRRSD Structures
We define the eRRSD structures as all kinds of products of the eRSK structures

of the mth family a, ,, b, ,, ¢, d.,, and the nth family a,, b,,, ¢,,, d., with wave
indices m=1,2,..,Mand n=1,2, ..., M

ar,mar,n’ a'r,mbr,m a'r,mcr,n7 ar,mdr,n'
br,mar,n’ br,mbr,n’ br,mcr,n' br,mdr,n’ (43)
Cr,mar,n’ Cr,mbr,n' Cr,mcr,n' Cr,mdr,n’
dr,mar,n' dr,mbr,n’ dr,mCr,n’ dr,mdr,n'
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The eRRSD structures are closed since they include all possible products of
the eRSK structures of the mth and nth families. The eRRSD structures (43) are

[M, M] arrays, which are visualized by M x M matrices. For instance,

ar,lbr,l e ar,lbr,n o ar,lbr,M
ar,m br,n = ar,mbr,l a'r,mbr,n a'r,mbr,M . (44)
_ar,Mbr,l ar,Mbr,n ar,Mbr,M i

Consequently, the tRRSD structures are set via all kinds of products of the
tRSK structures of the [4 m] family s,;,, S,im Sppim Spxpim @and the [ n] family

S, S, S, S,

i Srxjm Styim Stxpin
Sr,i,msr,j,n' Sr,i,msr,x,j,n' Sr,i,msr,y,j,n’ Sr,i,msr,x,y,j,n!
Sr,x,i,msr,j,n’ Sr,x,i,msr,x,j,n' Sr,x,i,msr,y,j,n' Sr,x,i,msr,x,y,j,n’ (45)
Sr,y,i,msr,j,nl Sr,y,i,msr,x,j,n' Sr,y,i,msr,y,j,n’ sr,y,i,msr,x,y,j,n’
S S S S S S S S

rXy,i,mor,j,n’ rX,y,0,merx, j,n? rxy,i,mery,jn? r,x,y,i,m>rxy,j,n’

where the indices of wave groups /=1, 2, ..., Jand j= 1, 2, ..., /and the indices of
internal waves m=1,2, .., Mand n=1,2, ..., M.

The tRRSD structures are closed since they include all possible products of the
tRSK structures of the [ m] and [/ n] families. Due to quadrality of the tRSK
structures, it is sufficient to consider s,;,,s,;, to explain formulas for all eRRSD

structures as

a.a., a.b.  a.c. a.d,
r,m=r,n r,m=r,n rm=r,n r,m=r,n
dopd,, dob, doc. . d.d.,

The tRRSD structure s,;,,8,;, s a [4, 4, M, M] array, which is represented via
4 x 4 matrix (46) of the eRRSD structures. Elements of matrix (46) are the [, M)]
arrays (44) that are exposed as M x M matrices. Other tRRSD structures are also

4 x 4 matrices of the eRRSD structures listed in various orders.

4.2, Differentiation Tables

Taking the first spatial derivatives of s,;,,s,,, substituting the first spatial deriva-

tives of the tRSK structures (20), and using (20) with substitution [/ = j, m = n]

gives
ols.. s . )
%:( 1) Kr msr lesr jn +(_1) ! Kr,nsr,i,msr,x,j,nx
ols, . S .
w:(_l)ﬂl lr’msr'yvi:mshjvn +( 1)ﬂj A nSeimSe y.jn (47)
O(S;imSti.
%:(—1)" (Ko + Hen)SyimSe. o

Expansion of (47) in all group and wave indices demonstrates completeness of
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the eRRSD structures with respect to spatial differentiation of any order. The
first derivative of the tRRSD structure s and the eRRSD structures with

1,5,m r/n

respect to zis invariant and with respect to xand yis covariant.
We then take repeated second derivatives of (47) and substitute the first de-
rivatives (20) and the repeated second spatial derivatives of (23) to obtain the

as follows:

r1m r/n

repeated second derivatives of s,

2
Mzz(_l)“i“ﬁ,( X S . §

2 r,m™r,n°r x,i,m°r x,j,n
OX

2 2
~(K 4520 )8 i

r,i,m>r,j,n?

(S, i mS: i N

%:2( 1 2 o2 nSeyimSey.in = (A0 +A20)S0imSe e (48)
(s, s . )

w:(ﬂr,m +/ur,n) Sr,i,msr,j,n'

Similar to the eRRSD structures, the repeated second derivatives of the tRRSD

structure s, ,.s,,, in x and y are partially invariant and the repeated second de-

1,5,m°r,jn

rivative in zis completely invariant.
Summation of (48) and simplification with the help of (10) return the Lapla-

cian of the tRRSD structure in the following form:

):2(—1)0““’1( K S .. S

r,m™r,n>r,x,i,m>rx,j,n

A(sr,i,msr,j,n

(49)
+2(=0) 2 A SeyinS

r,m”r,n>ry,imery,j.n +2/ur,m:ur,nsr,i,msr,j,n'

Comparison of the dot product of the tRVK structures of the [, m] and [}, 2]

families
Seim Srin = (1) K K0St imSr i (50)
(0" A Sty imSeoy.in + 2He mbenStimSe. -
with (49) yields
A(Sr,i,msr,j,n)zz(sr,i,m 'Sr,j,n)- (51)

and the eRRSD structures is

r1m r}n

So, anhramonicity of the tRRSD structure s,

stipulated by non-orthogonality of tRVK structures of the [4 m] and [}, n] fam-
ilies and the eRVK structures of the mth and nth families, respectively.

Theoretical Equations (47)-(51) for s

tion tables of the eRRSD structures using the experimental and theoretical pro-

have been verified by differentia-

r1m r}n

gramming in Maple, while each theoretical formula corresponds to a table of 16

experimental formulas. Maple codes will be published elsewhere.

5. Random Vector Dynamic Structures
5.1. Definitions of the eRRVD and tRRVD Structures

The eRRVD structures of the mth family are defined alike (40) of [1] as all kinds
of products of the eRVK structures of the mth family a,,,, b,,,, ¢, d.,, and the
eRSK structures of the nth family a,,, b,,, ¢,,, d., with wave indices m=1, 2, ...,
Mand n=1,2,.., M
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a ., a b,
[N RPN < N B
Comrns  Crmbrns
d na.,, d..b.,

o o T o

mCrns A e,
mCrmr B, (52)
mCrns Crmlrns
mCrns Oppndp o

Since the eRVK structures are computed as gradients (28) of the eRSK struc-

tures, the eRRVD structures a,,a,,» @0, @pmCrm a:md,,» €tc. are visualized by

the following columns:

a

r,m%r,n

(

r,m~r,n

(

+x. b _a

r,m=r,m=r,n

+A C a

r,m~r,m%rn
n

_l) /ur,mar,mar,n
+Kr,mbr,mcr,n

+A C C

r,m~r,m>r,n

n
_1) ,ur,mar,mcr,n

a

b =

r,mr,n

a d

r.mYrn =

+x b b

r,m=r,m=r,n

+A ¢ b |,

r,m>r,m>r,n

(_1)’] Iur,mar,mbr,n

(53)
+x, b, d

r,m=r,n

+A ¢ d

r,m~r,m~r,n

_(_1)" /ur,mar,mdr,n

Thus, the eRRVD structures of the mth family are [3, 1, M, M] arrays, which

are manifested via 3 x 1 columns (53) of the eRRSD structures multiplied by

coefficients, where elements of columns (53) are [, M] arrays that are exposed

as M x M matrices, which are analogous to matrix (44).

Consequently, the eRRVD structures of the nth family are set as all kinds of

products of the eRSK structures of the mth family a,,, b,,,
eRVK structures of the nth family a,, b, ,

Mand n=1,2, ..., M

a 8, a b,
QT RPN N N
Com@rns Crmbins
d na.,, dob o,

a nConr A
B nCrns B
ComCrns G,
d .Crnr d

C,

L

C,

o

d,,, and the

d,, with wave indices m=1, 2, ...,

r,n?
m-r,n? (54)

m*r,n?

3 3
o o o o

r,n*

The eRRVD structures of the mth and nth families are closed since they in-
clude all possible products of the eRSK and eRVK structures of the mth and nth

families.

As the eRVK structures are gradients of the correspondent eRSK structures,

the eRRVD structures

lowing columns:

r.m“r.n —

r,m>r,n

af,mal',ﬂ’ al‘,mbf,ll’ a CI‘,II’

nm

+x a b

r,n=r,m=r,n

+A a ¢

r.n%,m¥r.n
(_1)?7 :ur,nar,mar,n

+x a d

rn“rmrn

-A a _a

r.n%r,m%r.n

_(_1)77 lur,nar,mcr,n

b =

r,m=r,n

a

a d

r,mYr,n

(—1)” /ur,nar,mdr,n

a,,d.,, etc are displayed by the fol-

—-K, . a a

r,n=r,m=r,n

+A .a d

r.n%,mYrn
(_1)” :ur,nar,mbr,n ]

-k, .,a .C

r,n“r,m>rn

-A a b

r,n“%r,m~rn

(55)
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So, the eRRVD structures of the nth family are also the [3, 1, A, M] arrays,
which are exposed via 3 x 1 columns (55) of the eRRSD structures multiplied by
coefficients, where elements of columns (55) are [A, M] arrays that are
represented in terms of M x M matrices, like (44).

We then introduce the tRRVD structures of the mth family as all kinds of
products of the tRVK structures (29) of the [4 m] family and the tRSK structures
(1) of the [/, n] family. Namely,

StimSrin  SrimSrxint  SrimSryimr SrimSrxy.ins

SeximSrint  SrximSrxint  SrximSryimr  SrximSray.in: (56)
StyimSeine  SeyimSrxin SryimSeyin SryimSexy.ine

s s s s s s s s

r.x,y,i,m>vr,j,n? rXy,i,mer.x,j,n? rXy,i,mvry,jn? rXy,i,merxy,jn?

where /=1, 2, .., Tand j= 1, 2, ..., I are the indices of wave groups and m = 1,
., Mand n=1, 2, ..., Mare the indices of internal waves.
Due to quadrality of the tRSK and tRVK structures, it is sufficient to consider
the tRRVD structure of the mth family s, ,,s,,, to explain formulas for all eRRSD
structures of the mth family (52) as

ar marn a mb ar,mcr,n ar,mdr,n
s s _ b a br mbrn br,mCr,n br,mdr,n (57)
nhmendn c ma c mb Cr,mcr,n Cr,mdr,n .

d m d mb dr,mCr‘n dr,mdr,n

The tRRVD structure of the mth family s,,,s,,, is a [4, 4, 3, 1, M, M] array
that is represented in terms of 4 x 4 matrix (57) of the eRRVD structures of the
mth family. Elements of matrix (57) are displayed as the [3, 1, M, M] arrays that
are visualized via 3 x 1 columns (53) of M x M matrices of the eRRSD structures
(44) multiplied by coefficients. Other tRRVD structures of the mth family are
4 x 4 matrices of the eRRVD structures of the mth family arranged in different
orders.

The tRRVD of the nth family are set as all kinds of products of the tRSK
structures of the [Z m] family and the tRVK structures of the [/ n] family. Ex-

plicitly,
Sr,i,msr,j,n’ Sr,i,msr,x,j,m Sr,i,msr,y,j,m Sr,i,msr,x,y,j,n’
Sr,x,i,msr,j,n’ sr,x,i,msr,x,j,n’ Sr,x,i,msr‘y,j,n’ Sr,x,i,msr‘x,y,j,n' (58)
Sr,y,i,msr,j,n’ Sr,y,i,msr,x,j,n' Sr,y,i,msr,y,j,n' Sr,y,i,msr,x,y,j,n’
S S S S S S S S

r,xy,imr,jn? r,x,y,i,mor.x,j,n? r.x,y,i,mory, jn? rx,y,i,morxy,jn?

where /=1, 2, .., fand j= 1, 2, ...,  are the group indices and m=1, 2, ..., M and
n=1,2,.., Mare the wave indices.

The tRRVD structures of the mth and nth families are closed since they in-
clude all possible products of the tRVK and tRSK structures of the [/ m] and
[, n] families. Because of quadrality of the tRSK and tRVK structures, it is
enough to consider the tRRVD structure of the nth family s,,,,s,,, to generalize
formulas for all eRRSD structures of the nth family (54) since
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a .., a.b . a.c.  a.d,
,m=r,n r,m=r,n ,m¥r,n r,m-r,n
da, d.b.  d.c d. d.,.

The tRRVD structure of the nth family s,;,s,;, is the [4, 4, 3, 1, M, M] array
that is visualized by 4 x 4 matrix (59) of the eRRVD structures of the nth family.
Elements of matrix (59) are again the [3, 1, M, M] arrays that are displayed via 3
x 1 columns (55) of M x M matrices of the eRRSD structures multiplied by coef-
ficients. Other tRRVD structures of the nth family are 4 x 4 matrices of the

eRRVD structures of the nth family listed in various orders.

5.2. The Helmholtz Decomposition of the Directional Derivatives

Substitution of the first spatial derivatives of the tRSK (20) and tRVK (38)
structures in the vector definitions (42) of [1] of the derivative of the tRVK

structure s, .. in the direction of the tRVK structure s, and the derivative of the

)0 rjm

tRVK structure s, ,, in the direction of the tRVK structure s,

1.j,m 1,j,n

yield the directional derivatives in the following vector form:

and simplification

<Sr'i’m.v)sr,j,n:(—1)ai+ajfc K.S .. S

r,m>r,n°r,x,i,m>r,x, j,n

+( 1)ﬂ”ﬂj,1 A .S .S + He e nSreimSr jns

r,m”r,neryimry,j.n

(60)

r,m™r,n>rx,i,m>r,x j,n

_ aj+aj
(Sein V) Srim =() " K e S, i
Bi+h
+(_1) C /Ir,m/lr,nsr,y,i,msr,y,j,n +ﬂr,m/ur,nsr,i,msr,j,n'

We then sum up and subtract the directional derivatives (60) to find an anti-

and s, , via the

19

commutator and a commutator of the tRVK structures s, ,
tRRVD structures of the nth and mth families as

(SeimV)Srin +(sw.vn 'V)Sr,i,m

= (_1)0‘i+0‘j Kt mKen (Sr,x,i,msr,x,j,n + Sr,x,i,msr,x,j,n)
- (61)
+ (D™ Ay nden (SeyimSeyiin + SeyimSryin)

r,m”rn r,y,i,m>ryy,j,n r,y,im>r,y,j,n

+/ur,m/ur,n (Sr,i,msr,j,n +Sr_i,msr,j,n)’

(Seim V)i =(S0in V) Srim

=(-1)" K, & (s s -s .. S )

r,m™rn \ 2r,xi,m>r.x, j,n r,x,0,merx, j,n

(0" 2, A (SyimSeyiin = SryimSry.in)

r,m”r,n \ Cry,im>-ry,jn r,y,im>r,y,j,n

(62)

+

+/ur,m/ur,n(sr,i,msr,j,n _Sr,i,msr,j,n)'

Verification of the directional derivatives (60), the anticommutator (61), and
the commutator (62) in terms of eRRDV structures shows that each theoretical
formula via the tRVK structures and the tRRVD structures corresponds to a ta-
ble of 16 formulas in the eRVK and eRRVD structures and demonstrates com-
pleteness of the eRRVD structures with respect to the directional derivatives, the

anticommutator, and the commutator.
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Above computations (60)-(62) in the component form, which are straightfor-
ward but too tedious to be shown in this paper, have been also implemented
with the help (44) of [1]. Comparison of the gradient of the dot product of the
RVK structures s,

r,L,m

and s

1,j,n

the anticommutator (61) in the component form yields

V(Sr,i,m : Sr,j,n): +(Sr,i,m 'V)Sr,j,n +(Sr,j,n 'V)Sr,i,m' (63)

that has been implemented using (49) of [1] with

Using (55) of [1], we similarly compute the curl of the cross product of the
RVK structures s,

1,5m

and s

1)1

in the component form and compare the curl with

the component form of the commutator (62) to find that
Vx (Sr,i,m x Sr,j,n ) = _(Sr,i,m V) Sr,j,n + (Sr,j,n : V) Syim (64)

Computations of (63) and (64) via the component form prove that the gra-
dient of the dot product of the tRVK structures and the curl of the cross product
of the tRVK structures s,;, are expandable through the eRRSD struc-
tures (43) and the tRRSD structures (45) and component decompositions in the
tRRSD and eRRSD structures completely match each other.

Solving the vector expansions (63) and (64) with respect to the directional de-

and s

1)1

rivatives yields
1
(vaivm'v>5r,j,n: V(S .S, . )—EVx(s XS, . ),

rim *°r,jn r,i,m r,j,n

(65)
(Sr,j,n ‘V)Sr,i,m =

r,i,m r.j.n

N N

V(Sr,i,m'sr,j,n)-‘r%vx(s XS 0):

In agreement with the Fundamental Theorem of Vector Analysis [7], a vector
field of the directional derivatives may be decomposed into the gradient of a
scalar Helmholtz potential and the curl of a vector Helmholtz potential as fol-

lows:

(Sr,i,m 'v)sr,j,n = v(Dr,i,m,r,j,n +Vx Ar,i,m,r,j,n’

(66)
(Sr,j,n 'V)Sr,i,m = Vq)r,j,n,r,i,m +Vx Ar,j,n,r,i,m!
where the scalar Helmholtz potential is symmetric because
1 1

cI)r,i,m,r,j,n = E(Sr,i,m : Sr,j,n ) = (Dr,j,n,r,i,m = E(Sr,i,m ’ sr,j,n) (67)

and the vector Helmholtz potential is asymmetric since

1 1
Ar,i,rn,r,j,n = _E(Sr,i,m X Sr,j,n ) = _Ar,j,n,r,i,m = _E(Sr,i,m X Sr,j,n ) (68)

So, the scalar Helmholtz potential equals to a positive half of the dot product
of the tRVK structures s

rim

and s

rjn

and the vector Helmholtz potential is equal

to a negative half of the cross product of the tRVK structures s,;,, and s

L),

Finally, we compute the gradient of the tRRSD structure by the vector

sr,i,msr,j,n

product rule and substitute definitions of the tRVK structures (29) and the
tRRVD structures (56) and (58) to obtain

V(s S )—s S . +S .S (69)

ri,m<r,j,n )7 Zrim®°r,jn rim>r,jn*
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Thus, the gradient of a tRRSD structure may be decomposed into the sum of
correspondent tRRVD structures of the ith and mth families.

6. The Random Stokes Field

6.1. The Helmholtz Decomposition of the Navier-Stokes Equations

Random internal waves of a Newtonian fluid with a constant density p.and a
constant dynamic viscosity 4. in a field of gravity g= (g, g, g,] are governed by

the momentum conservation law [8] [9]
ou,
P E+(ur-v)ur =-Vp,, + 14, AU, + p.g (70)

and the mass conservation law

V-u =0, (71)

r

where
u, =, U, (XY, 2,t) (72)
is a velocity field of a random flow,
pc,r = pc,r(x’ylzlt) (73)

is a cumulative pressure of the random flow. The quasi-scalar Dirichlet problem
for the Navier-Stokes Equations (70)-(71) may be set on the upper and lower

boundaries of the upper domain

U =|:X€(—oo,oo),ye(—oo,oo),zE(0,00):' (74)

for u,, by

limu,, =0, u =u, (75)

Z—>+0

rz T

z=0

and on the upper and lower boundaries of the lower domain

L:[Xe(—oo,oo),ye(—oo,oo),ze(—oo,O):| (76)
via
Ur | o =Uprs ZliﬁrpmurvZ =0, (77)
where
Uy,r =y, (X, Y1) (78)

is a random boundary function, which will be treated in Section 6.3. Configura-
tion of the upper and lower domains of internal waves is shown in Figure 2 of
[1]. In agreement with boundary conditions (75), (77), the internal waves are
produced by surface waves propagating in a generation domain.

From the viewpoint of the Fundamental Theorem of Vector Analysis [7], the
quasi-scalar Dirichlet problem (74)-(78) for the random Navier-Stokes equations
(70)-(71) in vector and scalar variables (72)-(73) may be treated as a problem of

construction of the Helmholtz decomposition for the Archimedean field
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FA =P gl (79)
the random Stokes field
ou
F..=p——u Au,, 80
S,r pc 6t /uc r ( )
and the random Navier field
Fur =2 (U -V)u,. (81)

The Archimedean, the random Stokes, and the random Navier fields are de-
composed using the scalar Helmholtz potentials p,, p;, and py,, respectively, as

follows:
FA =-Vp,, FS,r = _Vps,r’ I:N,r = _va,r' (82)

where p, stands for the hydrostatic pressure of the Archimedean problem, p;,
for the kinematic pressure of the random Stokes problem, and p,, for the dy-
namic pressure of the random Navier problem.

Summation of (79)-(81) and (82) yield the Helmholtz decomposition of the

random Navier-Stokes equation (70)

FA + FS‘r + FN,r =_vpc,r7 pc,r = pA + pS‘r + pN,r7 (83)

where a cumulative pressure of the random flow p,, is a scalar Helmholtz poten-
tial of the sum of the Archimedean, the random Stokes, and the random Navier
fields.

The problem of finding the scalar Helmholtz potential p, of the Archimedean
field F, has a general solution [8] [9]

pA=po(t)+pc(gxx+gyy+gzz)7 (84)

where p)(9) is a reference pressure, which is a smooth function of time from C~.

A problem of calculating the velocity field u, which is subjected to the boun-
dary conditions (74)-(78), and the scalar Helmholtz potential p,, of the random
Stokes field F;, becomes:

Pe aali’ - M. AU +Vpg, =0, (85)

V.u, =0. (86)

It will be called afterwards the random Stokes problem. Contrary to the clas-
sical Stokes equations that are treated for small Reynolds numbers, the random
Stokes problem (85)-(86), (74)-(78) is set for all Reynolds numbers.

A problem of computing the scalar Helmholtz potential p,, of the random
Navier field F,, for the velocity field u, which is given by a solution of (85)-(86),
(74)-(78),

P (U -V)u, +Vp, =0 (87)
will be later referred to as the random Navier problem. Since we are looking for

an exact solution of the Dirichlet problem (70)-(78), the random Navier problem

is set for all Reynolds numbers, as well.
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6.2. The Random Stokes Problem

A general wave solution of the random Stokes problem (85)-(86) is

u, :V(pu,r' (88)
OPur
pS,r ==p; at ’ (89)

where ¢,, is the scalar Helmholtz potential of the random velocity field that

should be harmonic, ie

Ag,, =0, (90)

and the temporal derivative of ¢, , should commutate with the gradient.
The random velocity field u, is formed by velocity fields u,; of 7 wave groups

with M internal waves per group. Thus,
!

U => U, (91)

i=1

Because of the quadrality of the tRVK structures, we use the simplest tRVK

structure s,

rim

to expand the velocity fields of 7 wave groups as follows:
M
ur,i = z sr,i,m (92)
=1

fori=1,2,.., I
Combining (91)-(92) and changing the order of summation yields

1 M M 1
ul’ = Zzsr,i,m = Zzsr,i,m' (93)
i=1 m=1 m=1i=1

Using definition (29) of the tRVK structures via the tRSK structures, we get

M
ul’ :szsr,i,m' (94)
m=1i=1
In agreement with the Helmholtz decomposition of the velocity field (88), the
scalar Helmholtz potential represented in terms of the tRSK structure s,;,, takes

1im

the following form:
¢’u,r zzzsr,i,m' (95)

Indeed, the Laplace equation (90) is satisfied identically since s,;,, is harmonic

(24).
We then substitute the velocity potential (95) in (89) and use the temporal de-

rivative of s

1,5m

(25) to find the kinematic pressure of the random Stokes problem

that is expanded in the tRSK structures s, ;,, .., and the the tRSK, structure

Ly,4m
8...m s follows:
A aSr i,m
pS,r ==L z Z Y
m=1i=1 at (96)
Mo
a; Bi
= +chZ|:(_l) I Kr,mxr,t,msr,x,i,m + (_1) I ﬂ’r,er,t,er,y,i,m - Sr,t,i,mi|'

m=1i=1
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To verify the general solution (93), (96) of the random Stokes problem (85)-(86)
in the the tRVK, tRSK, and tRSK, structures, we use the temporary derivative of
the tRVK structure s, (42) to find

r,i,m

ilz r, I m
at m=1i=1 at
v , (97)
:Z |: ( 1) K, Xrtm r><|m_( 1)Iﬂ’rertm ry|m+Sr,t,i,mi|'
m=1i=1
Since the tRVK structure s, ,, is harmonic (41),
M AU, =0. (98)

Computing the gradient of p,, with the help of gradient of the tRSK structures

s, (29) and of the tRSK, structure s, ., ,, (33) gives

1%, 1,1 rylm

VpS,r :chZ[(_l)ai Kr,mxr,t,msr,x,i m ( )ﬂl /Ir ertm ryim Sr,t,i,m:|' (99)

m=1i=1
Substitution of Equations (97)-(99) in the momentum conservation law (85)
of the random Stokes problem shows that it is satisfied identically. Because the

tRVK structure s,,,, is divergence-free (36), the mass conservation law (86) of

the random Stokes problem is fulfilled identically, as well.

6.3. The Random Boundary Function

To find an admissible form of the random boundary function (78), we compute
a general solution for a z-component u,, of the random velocity field. In agree-
ment with (88), (95), (20), and (10),

8 M |
(p”’ —ZZ —(—1)” DK A D S (100)

m=1i=1 m=1 i=1

Similar to the 3-v tRSK structure s,;,, = (2., Drpp Conp Do) (X Yoo 2) (1),

define a two-variables (2-v) tRSK boundary structure
Sb‘r,i,m :[ab,r‘m’bb,r,m'cb,r,m’db,r,m:|’ (101)

where (&, Dy Corn Dorm) (X rmw Yorm) are the 2-v eRSK boundary structures,
which are set up as follows:
ab,r,m = +Avb,r,m SSb,r,m + BVb,r,m CSb,r,m + Cvb,r,m SCb,r,m + Dvb,r,m ch,r,m’

bb,r,m = _Bvb,r,m ssb,r,m + AVb,r,m CSb,r,m - DVb,r,m 5cb,r,m + va,r,m CCb,r,m’

(102)
Cb,r,m = _va,r,m SSb,r,m - Dvb,r,m CSb,r,m + AVb,r,m SCb,r,m + Bvb,r,m CCb,r,m’

db,r,m = +Dvb,r,m SSb,r,m _va,r,m CSb,r,m - BVb,r,m SCb,r,m + Avb,r,m CCb,r,m'

Here, m =1, 2, ..., M is a counter of random boundary waves, M is a number
of boundary waves per wave group,
AVb,r,m = Avb,r‘m (t)' Bvb,r,m = Bvb,r.m (t)’

(103)
CVb,r,m = va,r,m (t)' Dvb,r,m = Dvb,r,m (t)

are random boundary amplitudes of a harmonic variable W(x, y; z 7).

The 2-v eRSK boundary functions [sy,,.» CSp.n> SChrm CCorml(Xorm Yorm) are
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products

Ssb,r,m = SXb,r,m Syb,r,m ' Csb,r,m = CXb,r,m Syb,r,m ’

(104)
SCb,r,m = SXb,r,m Cyb,r,m’ CCb,r,m = be,r,m Cyb,r,m

of the 1-v eRSK boundary functions [, ,» X0 (X)) a0d [8V i Sl (Vi)
SXb,r,m =sin (Kb,r,m Xb,r,m )’ CXb,r,m = COS(Kb,r,m Xb,r,m ) '

. (105)
Syb,r,m =sin (ﬂb,r,mYb,r,m )’ Cyb,r,m = COS(%,r,mYb,r,m>'

where X, ., = X, (% 0 and Y,,,, = ¥,,.(5; O are boundary propagation vari-
ables defined by

Xb‘r,m =X _Ub,r,m t+ Xb,r,m,07 Yb,r,m =Yy _Vb‘r,m t +Yb,r,m,0' (106)

In Equations (101)-(106), [X},.» Y.l is the Cartesian coordinate of a frame
of reference moving with the mth random boundary wave, [Uj,,, V..l is a
boundary celerity of propagation, [X,, .00 Ys.mol i @ reference value of [X, .,
Y, at t=0,x=0, y= 0, and parameters

Ub,r,m =Ub,r,m (t)' Vb,r,m =Vb,r,m (t)' Xb,r,m,O = Xb,r,m,O (t)' Yb,r,m =Yb,r,m,o (t) (107)

together with (103) are smooth random functions of time from C”. The wave
numbers k., and A, are constants.

In terms of the tRSK boundary structure s,,;, (101), the random boundary

function
Uy r = (_1)” i sz,r,m + ﬂbz,r,m Zl:sb,r,i,m' (108)
m=1 i-1
If and only if
Kem = Korme Aem = Aormo
Ui =Usrm Vim =Vorm: Ximo=Xormor  Yrmo =Yormor  (109)

Avr,m = Avb,r,m' BVr,m = BVb,r,m' Cvr,m = va,r,m’ Dvr,m = Dvb,r,m'

then the Cartesian coordinate of the moving frame, the 1-v eRSK functions, the

3-v eRSK functions, the 3-v eRSK structures, and the 3-v tRSK structure s,,,, are
related with the correspondent boundary variables as follows:
Xim = Xorms Yim =Yorm
SXem = KXo r,mo CXm = CXpr s Yem = Yorm CYrm = CYorm:
S5, |, = SSrms €€ | =Sy s SCE | =Gy s CC8 | =CCh s
& ml,_o = Bbrm br,m =0 bb,r,m’ Crml,o = Corme dr,m 10 db,r,m'
Stim =0 Sp,rim
(110)
and the Dirichlet boundary conditions of (74)-(78)
U 2|, o =Uor (111)

are fulfilled exactly for Uand L. The conditions at infinities of (74)-(78) are also
satisfied since ez, ,(2) represents the decay model both for U and L due to the

sign parameter 7.
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7. The Random Navier Field

7.1. Expansion of the Random Navier Field

For the random Navier field F,, (81), the random Navier problem (82) of com-
puting the scalar Helmholtz potential p,, of F,, is reduced to solving of the
random Navier equation (87).

The random velocity field u, is a superposition (91) of the velocity fields of /

wave groups

IZur, DU (112)

j=1

In agreement with (92), velocity fields u,; and u,; are expanded in the tRVK

Structures 8, ,» 8. Syim 5,0 @S follows:
M M M
U = r|m zsrln’ ur,':zsr,j,mzzsr,j,n' (113)
m=1 m=1 n=1
Combining (112) and (113) yields four equivalent presentations of the ran-
dom velocity field
M M M
ZZSr.m ZZSr,m 2.2 S ZZS”N (114)
m=1 i=: m=1 j=1 n=1i=1 =1 j=1

Le. quadrality of the of the random velocity field.
Substitution of the group decomposition (112) in the Navier field (81), expan-
sion of the dot product of u, and V, and reduction of the product of two
one-dimensional (1-d) sums to a two-dimensional (2-d) sum by
| | | |
ZA\,izBr,j :ZZAr,iBr,j (115)
i1 i-1 j=1

yield

FN,r:Pc[ilelUr,. qu” pCZZ( VU (116)

i=1 j=1

We then reduce the rectangular summation to the diagonal and triangular

summations using (89) of [4]

IZiAr,iBr,j ZA B, +ZZ(A B, +A B ) (117)

i=1 j=1 i=1 j=i+l

to find a decomposition of Fy, into two Navier fields

Fu,=F +F (118)

N,g,rir,i N,g,rir,j"

First, the diagonal (/= i) Navier field F, of interaction of [/ selfsame ran-

LG LA LI
dom wave groups

Ngrlrl ZFNFITI’ Nr,i,r,i:pc(ur,i'v)ur,i' (119)

i=1

where F,, ., is the Navier field of diagonal interaction of the selfsame 7th ran-
dom wave group, which is given by the half-anticommutator of [u,, u,] for /=1,

P
2, .5 L
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- of interaction between

Second, the non-diagonal (j > 7) Navier field Fy,,,,;

K(I— 1)/2 distinct random wave groups

1-1 |
I:N,g,r,i,r,j :Z Z FN,r,i,r,j’ FN,r,i,r,j =P |:<ur,i 'V)ur,j +(ur,j 'v)ur,i:|! (120)

i1 j=iel
where Fy, ;. is the Navier field of non-diagonal interaction between the distinct
ith and jth random wave groups, which is expressed via the anticommutator of
[a,, u,,j] fori=1,2,.,1-1,j=i+1,i+2, .., I

We then substitute the decomposition of the velocity field u,; (113) of the ith
wave group via the tRVK structures in (119), expand the dot product of u,; and
V, and combine the product of 1-d sums into a 2-d sum to get the following rec-
tangular expansion:

M M M M
FN,r,i,r,i =P [Zsr,i,m 'ijsr,i,n = chZ(Sr,i,m 'V)sr,i,n' (121)
m=1 n=1

m=1n=1
To use Equation (117) in the case of rectangular summation in waves (121),
we substitute in (117) 7= m, j= n, I= Mto find

S ALBL, = ABL Y S (ABa+ABL)  (22)

m=1n=1 m=1 m=1 n=m+1

where the first general term A,,,B,,, sums up elements of the diagonal summa-
tion matrix, the second general term A, B,, sums up by rows elements of the
upper triangular summation matrix, and the third general term A, B, , sums up
by columns elements of the lower triangular summation matrix.

Using (122) for the rectangular sum (121) yields that the random Navier field
Ey,..; (119) of diagonal interaction of the selfsame ith wave group is expanded
in two sums:

M-1 M
FN,r,i,m,r,i,m+z Z I:N,r,i,m,r,i,n- (123)

1 m=1 n=m+1

M=

F -

N,riri

3
]

First, the internal (12 = m) sum of the random Navier field F,,; ..., of propa-

gation of the mth wave from the selfsame ith wave group
FN,r,i,m,r,i,m =pc(sr,i,m 'V)Sr,i,m' (124)

which is represented via the half-anticommutator of the tRVK structures [s,;,,
S,ml fori=1,2,.., land m=1,2, .., M.
Second, the external (22 > m) sum of the Navier field Fy,;,,.;, of diagonal inter-

action between the distinct mth and nth waves from the selfsame ith wave

group
I:N,r,i,m,r,i‘n = P |:(Sr,i,m 'V)Sr,i,n +(Sr,i,n 'V)Sr,i,m:ll (125)

which is described by the anticommutator of the tRVK structures [s,,,, §,;,] for 7
=1,2,..,,m=12,.,M-1l,and n=m+1, m+2, .., M.

Substituting in (120) the expansions of the velocity fields u,;and u,; (113) of
the /th and jth wave groups in terms of the tRVK structures and simplifying

analogously to (121) return the following rectangular expansion:
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M
FN,r,i,r,j = pc [z

1

= pCZi[(s,m V)S,in+ (S ~V)sr,i'n].

m=1n=1

M M M
Sr,i,m 'v)zsr,j,n +(zsr,j,m 'ijsr,i,n:|
n=1 m=1 n=1

(126)

Reduction of the rectangular sum (126) with the help of (122) gives that the
random Navier field F,,,; (120) of non-diagonal interaction between the dis-
tinct /th and jth wave groups may be also decomposed in two sums as follows:

M M-1 M
I:N,r,i,r,j = z I:N,r,i,m,r,j,m + Z Z I:N,r,i,m,r,j,n' (127)
m=1

m=1 n=m+1

Primarily, the internal sum of the Navier field F,

N.nLm,rj,m

of non-diagonal inter-

action between the mth waves from the distinct /th and jth wave groups
FN,r,i,m,r,j,m =P |:(Sr,i,m ' V)Sr,j,m + (Sr,j,m 'V) Sr,i,m:|l (128)

which is represented in terms of the anticommutator of the tRVK structures
[Spim Spjml fOr i=1,2,.., I-1,j=i+1,i+2,..,Land m=1,2, .., M.
Secondly, the external sum of the random Navier field Fy,,,,..,

interaction between the distinct mth and nth waves from the distinct #th and jth

wave groups

of non-diagonal

I:N,r,i,m,r,j,n =P |:(Sr,i,m 'V>Sr,j,n +<Sr,j,n 'V)Sr,i,m
+(Sr,i,n 'V)Sr,i,m +(Sr,j,m 'V)Sr,i,n]'

which is given by two anticommutators of the tRVK structures [s

1,4, m> sr,j,n]

(129)

and [s,;,» 8, for i=1,2,..,I-1,j=i+1,i+2,..., L m=1,2,.., M- 1,and
n=m+1l,m+2,..,M

7.2. Potentialization of the Random Navier Field

The Navier fields Fy,, . (124) and Fy,;,.,;, (125) and may be converted into
the potential form with the help of the Helmholtz decomposition (65) of the de-

the derivative of s,,, in the direction of

nin

in the direction of s,

1,507

rivative of s

r,L,m

S,

I,

m and the derivative of in the direction of s,,,, namely,

Spim
(Sr,i,m 'V)Sr,i,m =%V(Sr,i,m : Sr,i,m)’

1 1
(Sr,i,m 'V)Sr,i,n =Ev<sr,i,m : Sr,i,n)_EvX(Sr,i,m x Sr,i,n)v (130)

1

1
(Sr,i,n ‘V)Sr,i,m =Ev<sr,i,m : Sr,i,n)—i_EVX(sr,i,m x Sr,i,n)'

Computation of the anticommutator
(sr,i,m 'V)Sr,i,n +(Sr,i,n 'V)Sr,i,m = V(Sr,i,m : Sr,i,n) (131)

results in cancellation of the vector Helmholtz potentials and potentialization of

the anticommutator of [ s

Ssim m’,n] .

Substituting anticommutators (130)-(131) in Fy,;,; (123)-(125) and pulling
out the gradient operator give
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i (Seim -sr,i,n)}- (132)

m=1 m=1 n=m+1

Similarly, the Helmholtz decomposition (65) of the derivative of s,,, in the
direction of s,,,, the derivative of s,,,, in the direction of s,,,, the derivative of
s, in the direction of s,,,, the derivative of s,;,, in the direction of s, ,, the de-

rivative of s, in the direction of s,,,, and the derivative of s,;, in the direction

of s,,,, are following:

1,j,m

( V)sr j,m %V(Sr,i,m Sr,j,m)_%vx(sr,i,m XS, j m)’
1 1
(S V)Srlm EV(Sr,i,m Sr,j,m)+va(Sr,imxerm)'
(srlm V)srjn %V(Sr,i,m Sr,j,n)_%vx(sr,i,m><Sr,j,n)7
L 1 (133)
(Srjn v)Srlm Ev(sr,i,m'Srj,n)+EVX(Sri,mXSrj,n)'
(sr|n V)Ser %V(Sr,i,n'Sr,Jm)_%VX(Sr,i,nXSr,Jm)’
1 1
(Sr jm ) rin =Ev(sr,i n 'Sr,J m)+EVX(Sr,i,n Xsr,] m)'

We then compute three anticommutators
(Srim V)8 im +(sr,i,m -V)s,'i,m = (Sr,i,m 'Sr,j,m)’
(gmm~v)gin+(ng~V)rlm V( i rJn) (134)
(Sein V)Se i +(Seim V) Sein =V (Srin Srjm )

and again observe results cancellation of the vector Helmholtz potentials and
potentialization of the anticommutators of [s,;.,» 8.l [S5im S, and [s,;,
8, ml-

Substituting anticommutators (134) in Fy,,,; (127)-(129) and pulling out the
gradient operator yield

M M-1 M
FN,r,i,r,j :,DCV|:Z:1( rim’ er)+Z:1 21< rim  Sejn Sryi'n'sr'jym):|. (135)

Eventually, we substitute (132) and (135) in (118)-(120), combine terms and
pull out the gradient to show that the Navier field F,, (81) is potential since

(136)
1-1 M M-1 M
+ Z|: (Srlm Sr]m)+z z Sr|m SrJn+Sr|n Ser)}
i=1 j=i+1L.m=1 m=1 n=m+

Cancellation of the vector Helmholtz potentials correlates with the third New-
ton law since the vector Helmholtz potentials describe internal forces of inter-
action between the random waves. In agreement with the third Newton law, the
internal forces have the same magnitudes and opposite directions. The scalar

Helmbholtz potentials describe external forces with a non-trivial resultant, which
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moves the random system in agreement with the second Newton law.

7.3. Reduction of the Random Navier Field

It is a straightforward but tedious matter to show that the orders of diagonal
summations in 7 and m and triangular summations in (4 J) and (m, 1) may be

interchanged as follows:

IZ% Aim =ii/¥i,m, (137)

i=1l m=1 m=1i=1
I M-1 M M-1 M |
z z A’,i,mrln Z ZA\,i,m,r,i,n' (138)
i=1 m=1 n=m+1 m=1 n=m=1i=1
-1 1 M M 1-1 |
Z ZA’,i,m,r,j,m Z z A’,i,m,r,j,m’ (139)
i=1 j=i+lm=1 m=1i=1 j=i+1
-1 | M-1 M M-1 M I-1 1
Z Z Arlmrjn Z Z A’,i,m,r,j,n' (140)
i=1 j=i+1 m=1 n=m+1 m=1 n=m=1i=1 j=i+1

With the help of (137)-(140), the Navier field (136) may be converted to

o 5 3] S 500) £ 2 (00500

m=1| i=1 i=1 j=i+l

(141)

M-1 M 1-1 |
+ Z Z |:Z( rim’ r i n)+z Z (Sr,i,m 'Sr,j,n +5r,i,n 'Sr,j,m):|}
m=1 n=m+1| i=1 i=1 j=i+1
Using (117) and (122), we then compute the following inverse reductions of
the diagonal and triangular summations to the rectangular summation:
1 | 1 | |
S (A A+ ZZ(A AR 2(AA) )
i= i=1l j=i+l i=l j=

1-1 |

(A B+ S Y (A B 4B A ) =D (A B 043

%;(A,m-ﬁ,mﬁ :1 ,Zl(A“m'Afv”):%Z;Z;(Ar,m-Ar,n), (144)
1 d YE
SN[ A A S 3 35 (A A)

(145)

To derive Equation (145), the general term A4, ,-A,, of sums of Equation (144)
is replaced with the summation matrix of 4,;,-4,;, in (4 j). Equation (145) is
reduced to Equation (144) for 7= 1. All theoretical relationships between the di-
agonal, triangular, and rectangular summations (115), (117), (122), (137)-(140),
(142)-(145), (161) have been also justified experimentally.

Usage of (142) and (143) helps to eliminate the diagonal and triangular sum-

mations in (4 j) and transform (141) to

9 $ 55 )

<

-1

M_

>

1i=1j

( rim’ rJn) . (146)

Il
§M§

1n

3
]
’L
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We then use (145) to reduce the diagonal and triangular summations in (2, n)

and to conclude with a last form of the potentialized Navier field

Fu =V chZIZi( i Sin ) (147)

m=1n=1i=1 j=1

Using the definition of the kinetic energy K, ,and velocity expansions (112)-(114),

we change the orders of summation to get the alternative presentations of X,

1 1 &

Ke,rzzp( )zngZZ( ri’ I’j)
1 I I M M e 1 M M I 1 (148)
Epcéémzﬂ;(s i,m rjn)_Epcmz::an:;;JZ:( rim’ rJ,n)'

Comparison of (147) with (148) and (82) yields a relationship between the
random Navier field and the kinetic energy

Fur =VK,, (149)

and the scalar Helmholtz potential of the random Navier field

Pn,r =K, (150)

7.4. The Pressure Field of the Random Navier-Stokes Problem

Substitution of the kinetic energy (148) in (150) gives the dynamic pressure

:__pCZZZZ( rim’ rJn) (151)

m=ln=li=1 j=1

in terms of the tRVK structures. Substituting the dot products of the tRVK
structures (50) yields p,, in terms of the tRRSD structures

Pre =5 2 22 S (U K151

m=1n=1i=1 j=1 (152)

Bi+PBj
+( 1) ﬂ’r mﬂr nsr y,i, msr y,j,n + :ur,m:ur,nsr,i,msr,j,nj|'

Combining the scalar Helmholtz potentials of the Archimedean (84), the
Stokes (96), and the Navier (152) fields returns the cumulative random pres-

sure

o B
+chZ|:( 1) K >(rtm r,x,i,m ( ) Ilrertm ry,i,m_sr,t,i,m:|
1 M M 1 | v
_EIOCZZZZ[(_]') ]KrmKrnsrmerxln

Bi+Pj
+ (_1) ]’r,mﬂ’r,nsr,y,i,msr,y,j,n + :ur,m:ur,nsr,i,msr,j,n :|

(153)

in the tRSK, tRSK, and tRRSD structures.
Expressing the dot product of the tRVK structures via the Laplacian of the
tRRSD structures (51)

(Sr,i,m 'Sr,j,n)=%A(Sr,i,msr,j,n)7 (154)
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substituting the dot product in Equation (151), and combining terms yield

M M |
pCAZZZZSr,i,er,j,n :_4pN,r' (155)

m=1n=1i=1 j=1

Equation (155) demonstrates a mathematical meaning of the dynamic random
pressure: —4p, . is a source of the stationary diffusion of the superposition of all

tRRSD structures with a diffusion coefficient p.

7.5. Verification of the Random Navier-Stokes Problem

To verify the random solution (114) and (152) by (87), we use an expanded vec-

tor form of the directional derivative

ou ou ou
u -vVju = u —-+u  —-+u L. 156
pc( r ) r pc[ r,x GX ry ay r,z 82 j ( )
In agreement with (114) and (29), the x-, y-, z-components of u, are
M 65 M | as i M | as
urX: rlm, ur _ r,|,m’ urZ: ri,m (157)
22 o TRy TR

u, :iisr‘jyn. (158)

Substitution of (157)-(158) in (156) and combining sums gives

OSim OS¢ jn 0,y OS OS¢ im OS¢ in
St sm L (159)
oX  OX oy oy oL oz

r,j,n
LU

We then substitute the spatial derivatives of the tRSK (20) and tRVK (38)
structures and collect like terms to represent the directional derivative in terms
of the tRRVD structures of the nth family as follows:

M M I a
Pe (ur ‘V)u = pczzzz[(‘l) K mKenSein S in
m=in=1i-1 j=1 (160)
+(_l)ﬂi+ﬂj Ar,mlr,nsr,y,i,msr,y,j,n +ﬂr,mﬂr,nsr,i,msr,j,n]'

Application of a 4-d transposed summation for a superposition of the tRRVK

structures with symmetric coefficients yields

M | L
Z Z[(_l)al+a1 Kr,mKr,nSr,x,i,msr,x,j,n
= 1 j=1

m=ln=1i=1 j

M 1

r,m7rnSry,imery, jn

M M | |
= ZZZZ[(_l)aiﬂlj Kr,mKr,nSr,x,i,msr,x,j,n

Bi+Bj
+(—l) YA A S S +/'lr,m/ur,nsr,i,msr,j,n:|'

r,m7r Ny imer,y, jn

+(_l)ﬂi+ﬁjl A s S +ﬂr,mﬂr,nsr,i.msr,i.ﬂ:|
(161)

Therefore, directional derivative (160) may be represented via the tRRVD

structures of the mth and nth families in the following symmetric form:
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1 M M I e
Pe (U -V)u =§AZZZZ[(—1} " nSeximStx i
m=1 i=1j
+(_1)Bi+ﬂj ﬂ’r,mﬂ'r,nsr.y,i,msr,y,j,n +/ur,mlur,nsr,i,msr,j‘n:|

M 1 o
+§pc2222|:(_1)al ]Kr,mKr,nsr,x,i‘msr,x,i,n

m=1n=1i=1 j=1

(162)

Bi+Bi
+(_1) Y ﬂ’r,m/lr,nsr,y,i,msr,y,j,n +/Jr,m/ur,nsr,i‘msr,j,n:|'

Using (69), we then split the gradient Vp,, of the dynamic random pressure
(152) into two parts. In the first part named V,p,, terms including V[s,, .,

Syyim Suim) = [Spxim Sipim Ssim) are collected. In the second part termed V,py,
terms with V[s,, ., 8, » 8.0 = [840,m 85y 8s.] are combined.
Namely,
VpN,r :vm pN,r +Vn pN,r' (163)
where
1 MM e
Vm pN,r == ZPCZZZZ[( ) ! r mKr‘nsr,x,i,er,x.j,n
in=ti=l =1 (164)

FitBi
+ (_1) : lr,mﬂ’r,nsr,y,i,msr,y,j,n + :ur,m:ur,nsr,i,msr,j,nj|
is computed in terms of of the tRRVD structures of the mth family and

Vn pN,r = chZZZ[( )alﬂll r mKr,nSr,x,i,er,x,j,n
m=ln=1li=1 j=1 (165)
i+ B
+( 1) ' ﬂ’r mﬂ’r nsr y,i, er y,j.n + zur,m:ur,nsr,i,msr,j,n:|
via the tRRVD structures of the nth family.
Finally, combining (162) and (163)-(165) yields that the random Navier PDE
(87) is satisfied identically.

8. Decomposition of a Random Matrix of the Kinetic Energy

We proceed computation using for the kinetic energy K, of the stochastic chaos

of random internal waves sum (148) in wave groups, viz.

Co-tn 33 () 16

i=1 j=1

For clarification of summation, primarily, we define a random matrix of the

kinetic energy M, , by
Ke,r :%pc {Me,r}’ Me,r = (ur,i : ur‘j )’ {ur,i : ur,j } = iIZ(ur,i : ur,j )’ (167)
i1 j=1

where the braces notation {,,} denotes the rectangular summation of all el-
land j=1,2, .., I

Due to expansions in the tRVK structures (113), the summation matrix takes

ements of the summation matrix M, for /=1, 2, ..,

the following form:

Me,r:(ur,i'ur,j):{ rim’ rjn} ZZ( rim’ rJ,n)! (168)

m=1n=1
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where the summation braces {s,,,s,;,} signify the rectangular summation of all
elements of a summation matrix with the general term s, ,,+s,,, for i=1, 2, ..., [,
j =1, 2, ..., I Hence, elements of summation matrix (168) are matrices of size
Mx M.

Second, we decompose M, , with the help of a generalization of (117) in ran-
dom wave groups as follows:

M,, =M, ,+M

er

(169)

erul
where
M g = {Sr,i,m 'Sr,i,n} (170)
is a diagonal matrix for 7 =1, 2, ..., 1, which includes all diagonal elements of A,
and
M wi = {Sr,i,m “Sein TSt im 'Sr,i,n} (171)
is a complementary matrix for /= 1,2, .., /—land j=7+ 1, 7+ 2, ..., [, which is

composed of the upper and lower triangular matrices of A, .

The kinetic energy is correspondingly expanded as

Ke,r = Ke,r,d + Ke,r,u,l' (172)
where a first sum
I
Ke,r,d :zKr,i,r,i (173)
i-1
is produced by the elements of A4, , ;and a second sum
1-1 |
Ke,r,u,l :Z Z Kr,i,r,j (174)
|
by the elements of M, .
In (173)-(174), the general term of K, ,is
1
Kr,i,r,i :Epc {Sr,i,m : Sr,i,n} (175)
fori=1,2,.,Lm=1,2,.,Mand n=1,2, .., Mand the general term of X, ,
is
1
Kr,i,r,j :Epc {Sr,i,m : Sr,j,n + Sr,j,m ' Sr,i,n} (176)

fori=1,2,.,/-1,j=i+1,i+2,.., L, m=1,2,..,Myand n=1,2, ... M.

Third, in agreement with a generalization of (122), we expand all random rec-
tangular sums into internal wave sums with n = m, which correspond to internal
interaction of random elementary oscillons from the mth family (209)-(210), and
external wave sums with n # m, which describe external interaction of random
elementary oscillons from the mth and nth families (see Section 13).

The summation matrix of the diagonal general term X, ;(175) of K, ;(173)

M rimrin — Sr,i‘m : Sr‘i,n (177)
due to the commutative property of the dot products
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S . -S. =S. S (178)

ri,n " Orim rim " Orin

yields the following reduction of the rectangular summation to the diagonal and

triangular summations:

M M-1 M
{Sr,i,m 'Sr,i,n}ZZ(sr,i,m 'Sr,i,m>+22 z (Sr,i,m 'Sr,i,n> (179)
m= m=1 n=m+1

fori=1,2,.., I
The summation matrices of the non-diagonal general term K, (176) of K,
(174)

M rimrjn = sr‘i,m : Sr,j,n' Mr,j‘m,r,i,n = Sr,j,m : Sr,i‘n (180)
because of the commutative properties of the dot products
Sr,j,m 'sr,i,m =Sr,i,m 'Sr,j,m’ (181)
sr,i,n : Sr,j,m + sr,j,n : Sr,i,m = sr,i,m : sr,j,n + Sr,j,m : Sr,i,n

produce the following reduction of the rectangular summation to the diagonal

and triangular summations:

1

_{Sr,i,m ’ Sr,j,n + Sr,j,m : Sr,i,n}
M-1

2
BNV
(Sr,i,m 'sr,j,m)+ Z Z (Sr,i,m : Sr,j,n + Sr,j,m 'Sr,i,n)

1 m=1 n=m+1

(182)

M=

3
]

fori=1,2,..,1-1,j=i+1,i+2,.., I If j= i the asymmetric reduction (182) is

converted into the symmetric reduction (179).

9. Random Wave, Group, and Energy Pulsons of Propagation
The general term of internal sum of (179) produces a a random wave pulson of
propagation (a random wave pulson for brevity)

1
Kw,r,i,m,r,i,m :Epc(sr,i,m 'Sr,i,m)' (183)

of the mth el-
ementary oscillon (209)-(210) from the selfsame th random wave group for 7= 1,
2, ., land m=1,2, ..., M.

In the view of (30), the random wave pulson in the tRRSD structures takes the

which describes vector self-interaction of the velocity field

Sr,l}m

following form:

K =1pc(1(2 2 im AL S? +lur2,msr2,i,m)' (184)

w,r,i,m,r,i,m 2 r,m>r,x,i,m r,.m>r,y,i,m

A superposition of a group of the random wave pulsons is termed a random
group pulson
|
Kg,r,i,m,r,i,m = Z Kw,r,i,m,r,i,m = pc:urz,m (arz,m + brzm + Crz,m + drzm)
i-1 (185)
= Pl m€ZE (Avfym +BV2, +CVZ, +DV? | )

Here, K

&550,55m

(10) and the definitions of the eRSK structures (3) and the 3-v eRSK functions

is simplified by the Pythagorean identity for the wave numbers
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(7)-(8).
Eventually, the diagonal summation of all random group pulsons results in a
random energy pulson

M

M
Kerimrim = Kg,r,i,m,r,i,m = ch/urz,mezrz,m (Avrz,m + Bvrz,m +CVr2,m + Dvrz,m)' (186)
m=1

e,r,,,mr,i,m
m=1
which shows a cumulative energy of M/ random group pulsons.

10. Random Wave, Group, and Energy Oscillons of Diagonal
External Interaction

The general term of external sum of (179) generates a random wave oscillon of

diagonal external interaction (a random diagonal wave oscillon for brevity)
KW,r,i,rn,r,i,n :pc(sr,i,m 'Sr,i,n)’ (187)

of

the distinct mth and nth elementary oscillons from the selfsame #th random

and s,

L0

which expresses vector external interaction of the velocity fields s,

1'1m

wave group for i=1,2,.., L, m=1,2,...., M- 1l,and n=m+ 1, m+ 2, .., M.
Using (30) and Equation (30) with m = n, we obtain the random diagonal

wave oscillon
Kw,r,i,m,r,i,n =pc(KrmKrnSr><|m r><|n+ﬂrmﬂrnsry|m ry|n+;urm:urn I'Im I'II'I) (188)

via the tRRSD structures
Summation of (188) yields a random diagonal group oscillon in terms of the

eRRSD structures

r,m=r,n r,m=r,n r,m=r,n

|
Kg,r,i,m,r,i,n :sz,r,i,m,r,i,n :pcMr,m,r,n (ar marn +b b +C, ,C +d d ) (189)
i=1

where a nonlinear amplitude
Mr,m‘r,n rm rn+ﬂr mj’rn+:urmurn (190)
is produced by the wave numbers.

The triangular summation of the random diagonal group oscillons results in a

random diagonal energy oscillon

<

-1

M
Ke,r,i,m,r,i,n = Z Kg,r,i,m,r,i,nl (191)

1 n=m+1

3
Il

which gives a cumulative energy of all random diagonal group oscillons.
So, summation of the diagonal constituents K ,,; (173) of the kinetic energy

K., 41s completed with the following result:
Ke,r,d = Ke,r,i,m,r,i,m + Ke,r,i,m,r,i,n' (192)
If n = m, then the random diagonal wave oscillon (188) is converted into the
doubled wave pulson (184). Namely,
K

W, ri,m, N oy = 2Kw,r,i,m,r,i,m' (193)

Analogously, the random diagonal group oscillon (189) becomes equal to the
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doubled random group pulson (185)

K =2K

m

(194)

g.rimrinf,_ g.rimrim?

since

M, rm = 20 - (195)

11. Random Wave, Group, and Energy Oscillons of
Non-Diagonal Internal Interaction

The general term of internal sum of (182) yields a random wave oscillon of in-

ternal interaction (a random internal wave oscillon for brevity)
Kw,r,i,m,r,j,m =pc(sr,i,m 'Sr,j,m)1 (196)

which represents vector internal interaction of the velocity fields s,,,, and s,;,, of
the mth elementary oscillons from the distinct ith and jth random wave groups
fori=1,2,..,/-1,j=i+1,i+2,..,Land m=1,2, .., M.

In the tRRSD structures, the random internal wave oscillon becomes
aij+aj 2
Kw,r,i,m,r,j,m = pc |:(_1) : Kr,msr,x,i,msr,x,j,m

BBy 52 2
+(—1)| YAS s S +1ur,msr,i,msr,j,m:|'

r,m>r,y,i,m>r,y,j,m

(197)

Adding the random internal wave oscillons, we get a random internal group

oscillon via the eRRSD structures

1-1 1
Kg,r,i,m,r,j,m :Z Z Kw,r,i,m,r,j,m
i=1 j=i+l (198)

:ZpC[/lfm(a b+ Cony )+ K7 (8, oGy +10, )J

r,m~r,m r,m=r,m r,m~r,m r,m=r,m

The diagonal summation of the random internal group oscillon results in a

random internal energy oscillon
M
Ke,r,i,m,r,j,m = Z Kg,r,i,m,r,j,m’ (199)
m=1

which returns a cumulative energy of M random internal group oscillons.

12. Random Wave, Group, and Energy Oscillons of
Non-Diagonal External Interaction

The general term of external sum of (182) describes a random wave oscillon of

non-diagonal external interaction (a random external wave oscillon for brevity)
KW,r‘i,m,r,j,n =P (Sr,i,m ' Sr,j,n + Sr,j_m ' Sr,i,n ), (200)

s.and s,

i jn 1,j,m>

of the distinct mth and nth elementary oscillons from the distinct #th and jth

which exposes vector external interaction of the velocity fields
Srin
random wave groups for i=1,2,..,/-1,j=i+1,i+2,.., L, m=1,2,..,M-1,
and n=m+1, m+2,.., M.

In the same manner as (188), we compute the random external wave oscillon

DOI: 10.4236/ajcm.2023.134030

569 American Journal of Computational Mathematics


https://doi.org/10.4236/ajcm.2023.134030

V. A. Miroshnikov

_ aj+aj
Kw,r,i,m,r,j,n - pc |:(_1) Kr,mKr,n (Sr,x,i,msr,x,j,n + Sr,><,j,msr,><,i,n )

+(—1)'B‘+ﬁj/1 A (s S +s S ) (201)

r,m”r,n \ Pr,y,im°ry,jn ry,i,mory,in
+ tur,m/'lr,n (sr,i,msr,j,n + Sr,j,msr,i,n ):|

via the tRRSD structures.
A random external group oscillon takes the following form in terms of the
eRRSD structures:

1-1 |
Kg,r,i,m,r,j,n :z z Kw,r,i,m,r,j,n

i=1 j=i+l

=pe[Arpen (B, +bpa, +c 0 +d ) (202)

r,m~r,n r,m%r,n r,mr,n r,m>r,n

+K, e (@nCon + Gy +b, 00 +d, b )

r,m=r,n rm=r,n rm=r,n r,m=r,n

N e (B8 + 0 g@ +D 0 Cy +€, by )

r,mYr,n r,m%r,n r,m>r,n r,m~r,n

where nonlinear amplitudes

K =+ mKen — AemAen T Mmoo

r,mmr,n r,m=r,n r,m”“7r,n

A =K mKen A Aen T MM s

r,m.r,n r,m=r,n r,m-T,n (203)
M =+ Ko 0+ A A + M b 0

r,mr,n r,m=r,n r,m”*r,n

N =K oKy + A Ao = Hembhe o

r,m,r,n rm-r,n r,m= r,n
are generated by the wave numbers.
We then imply the triangular summation of the random external group oscil-
lons to find a random external energy oscillon

M-1 M
Ke,r,i,m,r,j,n = Z z Kg,r,i,m,r,j,n’ (204)

m=1 n=m+1

which demonstrates a cumulative energy of M(M — 1)/2 random external group
oscillons.

Thus, summation of the non-diagonal constituents K, ;,; (174) of the kinetic
energy K, ,,for i=1,2,.,/-1and j=i+ 1, i+2, .., [is finished as follows:

Ke,r,u,l = Ke,r,i,m,r,j,m + Ke,r,i,m,r,j,n' (205)

If n = m, then the random external wave oscillon (201) is transformed into the
doubled random internal wave oscillon (197). Explicitly,

K =2K

n=m

(206)

w,ri,mr,j,n w,r,i,m,r,j,m*

Similarly, the random external group oscillon (202) becomes equal to the

doubled random internal group oscillon (198), i.e.

K =2K

n=m

(207)

g.,ri,mr,in g,rimr,im?

because

K =2x7,, A =220 Mynem =200, Noom=0. (208)

r,m,r,m r,m? r,m,r,m r,m?

13. Random Elementary Oscillons and Pulsons

The mth random elementary oscillon of propagation of the velocity potential
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S.;m (the random elementary oscillon for brevity) from the selfsame jth random

wave group is defined by

Ko,r,i,m = Sr,i,m' (209)
wherei=1,2,..,/and m=1,2, ..., M.
Explicitly, four random elementary oscillons of the mth family
Ko,r,a,m = ar,m’ Ko,r,b,m = br,m' Ko,r,c,m = Cr,m' Ko,r,d,m = dr,m (210)

are expressed via the eRSK structures (3).

A random wave oscillon

wr|m Z o,r,i,m Zsrlm (211)
i=1

i=1

consists of /random elementary oscillons.

Similarly, a random group oscillon

M M M
Kg,r,i,m = Z Kw,r,i,m = Zz Ko,r,i,m = Zzsr,i,m (212)
m=1 m=1i=1 m=1i=1

is composed of M random wave oscillons.
In the tRRSD structures, a random elementary pulson of propagation (a ran-
dom elementary pulson for brevity) is defined by

1
Kprimrim :Epcsrz,i,m' (213)

The random elementary pulson (213) describes scalar self-interaction of the
velocity potential s,;,, of the selfsame mth elementary oscillon (209)-(210) from
the selfsame /th random wave group for /=1, 2, ..., Jand m=1, 2, ..., M.

In terms of the eRRSD structures, the random elementary pulsons become

1

Kp,r‘a,m,r,a,m =5 2 pc T, m' Kp,r‘b,m,r,b,m =5 br2m7
R (214)
2

K pc rm’ Kp,r,d,m,r,d,m :Epcdrz,m'

p,r,c,m,r,c,m -

The random wave pulsons (184) via the eRRSD structures take the following

form:

1 2 2

Kw,r,a,m,r,a,m :Epc( rmarm +Kr mbrm +ﬂ’ r,m m)’
1 2 42 2 2 2

Kw,r,b,m,r,b,m :Epc(’(r,mar,m +:ur mb +ﬂ’r mdrm)'
1 (215)

Kw,r,c,m,r,c,m :Epc (ﬂ“rm r,m +:urm r,m +Kr mdrzm)’
1 2 K2

w,r,d,mr,d,m =E (lr mbrm +Kr mCrm +/urm r,m )

The random wave pulsons (215) and the random group pulson (185) then

become the following superpositions of the random elementary pulsons (214):

2 2 2
Kw,r,a,m,r,a,m - rur,m Kp,r,e;\,m,r,a,m + Kr,m Kp,r,b,m,r,b,m + /lr,m Kp,r,c,m,r,c,m'
_ 2 2 2
Kw,r,k:»,m,r,b,m - Kr,pr,r,a,m,r,a,m +:ur,pr,r,b,m,r,b,m +ﬂ’r,pr,r,d,m,r,d,m’
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K = 2%, K

2
w,r,c,m,r,c,m K +Kr,mK

2
p.,r,a,m,r,a,m +lurvm p.r.c,mr.,c,m
K

=17.K

p.r.d,mrdm?

(216)

~

2 2
w,r,d,m,r,d,m p,r,b,m,r,b,m +Kr,pr,r,c,m,r,c,m e Rordmrdms

and
Kg,r,i,m,r,i,m = 2;ur2m (Kp,r,a,m,r,a,m + Kp,r,b,m,r,b,m + Kp,r,c,m,r,c,m + Kp,r,d,m,r,d,m)' (217)

In the tRRSD structures, a random elementary oscillon of internal interaction
(a random internal elementary oscillon for brevity) is specified by

K S (218)

o,r,i,mr,j,m = pcsr,i‘m r,jm*

The random internal elementary oscillon (218) represents scalar internal inter-

and s

action of the velocity potentials ,m Of the mth elementary oscillons

Stim
from the distinct #th and jth random wave groups for 7=1,2, ..., /-1, j=7i+1,
i+2,.,Landm=1,2,.., M

In terms of the eRRSD structures, there are six random internal elementary
oscillons

K

Ko,r,a,m,r,d,m

Ku,r,b,m,r,d,m = pc br,mdr,m’ Ko,r,c,m,r,d,m = pc Cr,mdr,m'

=p. 8, .0 s K

r,m=r,m? oramrem Pc a'r,mCr,m!

=p.a. 0 ., K =p.b, .C (219)

r,m=r,m? o,r,.b,mr.cm r,m>r,m?

o,r,a,m,r,b,m

The random internal wave oscillons (197) via the eRRSD structures may be

written as follows:
2
Kw,r,a,m,r,b,m = +Kw,r,c,m,r,d,m = pc/lr,m (ar,mbr,m + Cr,mdr,m)'
2
Kw,r,a,m,r,c,m = +Kw,r,b,m,r,d,m = pcKr,m (ar,mcr,m + br,mdr,m )’ (220)

2
Kw,r,a,m,r,d,m = _Kw,r,b,m,r,c,m = pc/ur,m (ar,mdr,m - br,mCr,m )

The random internal wave oscillons (220) and the random internal group os-

cillon (198) are decomposed via the random internal elementary oscillons (219)

as follows:
w,r,a,m,r,b,m = +Kw,r,c,m,r,d,m = ﬂ’rzm (Ko,r,a,m,r,b,m + Ko,r,c,m,r,d,m)'
Kw,r,a,m,r,c,m = +Kw,r,b,m,r,d,m = Krz,m (Ko,r,a,m,r,c,m + Ko,r,b,m,r,d,m )’ (221)
w,ramrdm — _Kw,r,b,m,r,c,m = :urz,m (Ko,r,a,m,r,d,m - Ko,r,b,m,r,c,m)'
and
Kg,r,i,m,r,j,m = 2j’rzm (Ko,r,a,m,r,b,m + Ko,r,c,m,r,d,m)

, (222)
+ 2Kr,m (Ko,r,a,m,r,c,m + Ko,r,b,m,r,d,m )

In the tRRSD structures, a random elementary oscillon of diagonal external

interaction (a random diagonal elementary oscillon for brevity) is established by

K S (223)

o,r,imrin pcsr,i,m rin*

The random diagonal elementary oscillon (223) manifests scalar external inter-

and s, of the distinct mth and nth el-

ri,n

action of the velocity potentials s,

ementary oscillons from the selfsame 7th random wave group for /=1, 2, ..., ]
m=1,2,.,M-1l,andn=m+1, m+2,.., M.
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In terms of the eRRSD structures, there are four random diagonal elementary

oscillons
K =P 8 s K

o,r,a,mr,a,n

Ko,r,c,m,r,c,n = pc cr,mcr,n’ Ko‘r,d,m,r‘d,n = pc dr,mdr,n'

o,rb,mrbn — pc br,mbr,n!

(224)

The random diagonal wave oscillons (188) via the eRRSD structures become

Kw,r,a,m,r,a,n = pC (ﬂr,m/ur,nar,mar,n + Kr,mKr,nbr,mbr,n + ﬂ’r,m/lr,ncr,mcr,n )7

w,r,b,m,r,b,n:pc(K K 0@ m@ +;ur,m:ur,nbr,mbr,n+ﬂ’ A 00 nd )'

r,m=r,n~r,m>r,n r,m“r,n~rm=r,n

~

(225)
Kw,r,c,m,r,c,n :pc(i l a a +Il'lr,m/'ll’,ﬂc C +K K d d )’

r,m”r,n“r,m%rn r,m>r,n r,m®rn¥rmYrn

~

W,r,d,m,r,d,n:pc(j’ A b b + K K nCr mC +tur,mlur,nd d )

rm=Tr,n=r,m=r,n rm-r,nTr,m=r,n rm=r,n

The random diagonal wave oscillons (225) and the random diagonal group
oscillon (189) then are subsequent superpositions of the random diagonal ele-

mentary oscillons (224):

Kw,r,a,m,r,a,n = lur,mlur,nKo,r,a,m,r,a,n + Kr,mKr,n Ko,r,b,m,r,b,n + ﬂ“r,mﬂ“r,nKo,r,c,m,r,c,n’
Kw,r,b,m,r,b,n = Kr,mKr,n Ko,r,a,m,r,a,n + lur,m/ur,nKo,r,b,m,r,b,n + ﬁ’r,mj“r,nKo,r,d,m,r,d,n’ (226)
Kw,r,c,m,r,c,n = ﬂ’r,m/lr,nKo,r,a,m,r,a,n + :ur,m/ur‘nKo,r,c‘m,r,c,n + Ky mKrn Ko,r,d‘m,r,d‘m
Kw,r,d,m,r,d,n = j‘r,mj’r,n Ko,r,b,m,r,b,n + Kr,mKr,nKo,r,c,m,r,c,n + Iur,m:ur,n Ko,r,d,m,r,d,n '

and
Kg,r,i,m,r,i,n :Mr,m,r,n (Ko,r,a,m,r,a,n + Ko,r,b,m,r,b,n + Ko,r,c,m,r,c,n + Ko,r,d,m,r,d,n)' (227)

In the tRRSD structures, a random elementary oscillon of non-diagonal ex-

ternal interaction (a random external elementary oscillon for brevity) is set by
Ko,r,i,m,r,j,n = pc (Sr,i,msr,j,n + Sr,j,msr,i,n ) (228)

The random external elementary oscillon (228) expresses scalar external inter-
and s, ,, S,;, of the distinct mth and

rjm> °nin

action of the velocity potentials s,;,, s,

nth elementary oscillons from the distinct ith and jth random wave groups for

i=1,2,.,1-1,j=i+1,i+2,., L, m=12,.,M-1l,andn=m+ 1, m+2, .., M
In terms of the eRRSD structures, there are six random external elementary

oscillons

Ko,r,a,m,r,b,n :pC (ar,mbr,n + br,mar,n)' Ko,r,a,m,r,c,n = pC (ar,mcr,n +Cr,mar,n)'

Koramrdn =P (8 men +dnar ) Ko oo =20 (BnCon +Conby ), (229)

r,m-r,n r,m%r,n r,m>r,n r,m~r,n
Ko,r,b,m,r,d,n =P (br,mdr,n +dr,mbr‘n)’ Ko,r,c,m,r,d,n =P (cr,mdr,n +dr,mcr,n)'

The random external wave oscillons (201) via the eRRSD structures may be

represented in the following form:

Kw,r,a,m,r,b,n =P [_(Kr,m’(r,n _:ur,m:ur,n)(ar,mbr,n + br,mar,n)
+/1/1(cd+dc)]

r,m”rn \Mr,mrn r,m>r,n

r,m”7r,n r,m=r,n r,m=r,n

Kw,r,c,m,r,d,n:pc[ + A4 0 (a b +b a )

- (Kr,mKr,n ~ Hr by o )(Cr,mdr,n + dr,mcr,n )j|'

DOI: 10.4236/ajcm.2023.134030 573 American Journal of Computational Mathematics


https://doi.org/10.4236/ajcm.2023.134030

V. A. Miroshnikov

Kw,r,a,m,r,c,n :pc[_(ﬂ'r m”r,n /ur m/ur n)(ar mcr n +Cr ma‘r n)
Ky e (B 0 b ) .
(

r,m®rn\MrmYrn r.m~r.n (230)
Kw,r,b,m,r,d,n = pcI: +Kr m&rn a mCr nt Cr m&r n)
_(ﬂ’rm r.n :urmturn)(br mdrn +dr mbrn)]’
Kw,r,a,m,r,d,n = pc[ +/,lr mHr n (ar mdr,n + dr,mar,n)
(Kr m&rn +ﬂ“r mﬂ’r n)(br mCr n +Cr mbr n)]'
Kw,r,b,m,r,c,n = pcI: (Kr m&rn + )“r m)“r n )(ar mdr nt dr m&r n)

T He My (br mCr nt Cr mbr n )]

The random external wave oscillons (230) and the random external group os-
cillon (202) are expanded in the random external elementary oscillons (229) in
the following way:

Kw,r,a,m,r,b,n = (Kr m&r n :ur,m:ur,n ) Ko,r,a,m,r,b nt ﬂ“r mj’r n Ko r.c,mr,d,n?
Kw,r,c,m,r,d n +ﬂ“r m/1r n Ko r,a,mr,b,n (Kr m&r n /ur,m/ur,n ) Ko,r,c,m,r,d,n’
Kw,r,a,m,r,c,n == (ﬂ'r m/lr n /ur,m/'lr,n ) Ko,r,a,m,r,c n T K mKr nKo r.b,m,r.d,n? (231)
Kw,r,b,m,r,d n +Kr mKr nKo ramrecn (lr mﬂ’r n /ur,m/ur,n ) Ko,r,b,m,r,d,n’
Kw,r,a,m,r,d,n = +/ur,m:ur,nKo,r,a,m,r,d n (Kr mKr nt Ar m//Lr n) o,r,b,mr.c,n?’
Kw,r.b,m‘r,c,n = (Kr mKr n + /1r mﬂ’r n) o,r,a,m,r,d,n + tur,mlur,n Ko,r.b,m,r,c,n’
and
Kg,r,i,m,r,j,n = Ar,m,r,n (Ko,r,a,m,r,b,n + Ko,r,c,m,d,a,n)
+ I<r,m,r,n (Ko,r,a,m,r,c,n + Ko,r,b,m,r,d,n) (232)
- Nr,m,r,n (Ko,r,a,m,r,d,n + Ko,r,b,m,c,a,n )

If n = m, then the random diagonal elementary oscillons (223)-(224) are re-

duced to the doubled random elementary pulsons of propagation (213)-(214), ie.
K =2K_ .. (233)

p,r.L,mr,i,m

o,r,1L,m,rILn [,

In the similar way, if » = m, then the random external elementary oscillons
(228)-(229) are transformed into the doubled random internal elementary oscil-
lons (218)-(219). Namely,

K . =2K . (234)

orimrjin]_m o,r,i,mr,j,m

14. Conclusions

Finally, we summarize quantization of the kinetic energy of the stochastic chaos
of exponential oscillons and pulsons. The random cumulative pulson of the ki-

netic energy (172) may be decomposed as follows:

I‘(e,r:Kerimrim+Kerimrjm—i_Kerimrin+Kerimrjn
(235)
_Z( gr|mr|m grlmrjm) Z Z( g,r,i,mr,in Kg,r,i,m,r,j,n)’
m=1 n=m+1
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where K

&nLm,L5m

is the random energy pulson (186), K, ;... is the random in-

ternal energy oscillon (199), is the random diagonal energy oscillon

[(e,r,i,m,r,i,n
(191), and K., ., is the random external energy oscillon (204).

The random group pulson X,

& 55m,n5m

(185) is composed of 7/ random wave pul-

sons K

Wi, 4,1, 154,01

(183) that describe vector self-interaction of the velocity field s,,,,
of the mth elementary oscillon (209)-(210) from the selfsame ith random wave
group for i=1,2,..,land m=1,2, ..., M.

The random internal group oscillon K, ,;,, .., (198) consists of (/- 1)/2 ran-

dom internal wave oscillons K, (196) that represent vector internal inter-

WiL4,m, 1 f,m

action of the velocity fields s,,,, and s,

r.j,m

of the mth elementary oscillons from
the distinct #th and jth random wave groups for 7= 1,2,.., /-1, j=i+1,i+ 2, ..,
Land m=1,2,.., M

The random diagonal group oscillon K, ,;,,.,, (189) is constructed of 7 ran-

dom diagonal wave oscillons K,

WL i,m, 150

(187) that express vector external interac-
of the distinct nth and nth elementary os-
cillons from the selfsame ith random wave group for i=1,2, .., , m=1, 2, ..,
M-1l,andn=m+1, m+2, .., M.
The random external group oscillon

and s

in

tion of the velocity fields s,

1,i,m

(202) includes (/- 1)/2 random
(200) that expose vector external interaction of
of the distinct mth and nth elementary
oscillons from the distinct /th and jth random wave groups for 7=1, 2, ..., /- 1,

[%m;m,r,j,n
external wave oscillons X,

WiL,5m, 1)1

s...and s,

Spim rjn 1,j,m> Srin

the velocity fields

Jj=i+1,i+2,.,L,m=1,2,..,. M-1l,and n=m+ 1, m+2, .., M.

The random wave pulsons (184), (215) are composed of three of 7/ random
(213)-(214) that describe scalar self-interaction of
the velocity potential s,,,, of the selfsame mth elementary oscillon (209)-(210)

elementary pulsons K, ;. ...

from the selfsame ith random wave group for /= 1,2, .., fand m=1,2, ..., M.
The random internal wave oscillons (197), (220) consist of two of {7 — 1)/2

(218)-(219) that represent scalar

internal interaction of the velocity potentials s,;,, and s,

1,j,m

random internal elementary oscillons K, ;.
of the mth elementary
oscillons from the distinct /th and jth random wave groups for /=1, 2, ..., /-1,
j=i+1,i+2,..,Land m=1,2, .., M.

The random diagonal wave oscillons (188), (225) are constructed of three of 7
(223)-(224) that express scalar
of the distinct mth and
nth elementary oscillons from the selfsame #th random wave group for /=1, 2, ...,
Im=1,2,..M—1l,andn=m+1, m+2, .., M.

The random external wave oscillons (201), (230) include two of X7 — 1)/2

(228)-(229) that expose scalar
Spim Sin @0d S, 8, of the dis-

tinct mth and nth elementary oscillons from the distinct ith and j#h random

random diagonal elementary oscillons X,

o,nim,rin

and s,

rin

external interaction of the velocity potentials

SI',l;m

random external elementary oscillons K,

0,5,5,m, 5,1

external interaction of the velocity potentials

wave groups for i=1,2,..,/-1,j=i+1,i+2,...,, m=1,2,.., M- 1, and
n=m+1,m+2,.., M

The vector non-diagonal external interaction for j# 7and n # mis described
by a superposition of dot products s,;,,8.;, + 8. S.in (200). Consequently, the

93 rj,m Ln
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vector non-diagonal internal interaction for j # 7/ and n = m is expressed by a
single dot product s,;,,s,,,, (196) and the vector diagonal external interaction for
(187), as well. Ul-

timately, the vector diagonal internal interaction for j = 7and n = m also is re-

j=1Iand n# mis represented by a single dot product s, 5.,
duced to a single dot product s,; S, ;,, (183).

Topology of the random cumulative pulson, the random energy pulson, the
random group pulsons, the random wave pulsons, and the random elementary
pulsons is the same as topology of the solitons on shallow water, the solitary
waves on shallow water with uniform and linear vorticity [10] [11], the solitary
waves generated by crossed electric and magnetic fields [12], and the pulsatory
waves of the Korteweg-de Vries equation [13].

Topology of the random internal energy oscillon, the random diagonal energy
oscillon, the random external energy oscillon, the random internal group oscil-
lons, the random diagonal group oscillons, the random external group oscillons,
the random internal wave oscillons, the random diagonal wave oscillons, the
random external wave oscillons, the random internal elementary oscillons, the
random diagonal elementary oscillons, and the random external elementary os-
cillons resembles topology of the nonlinear waves and solitons on deep water
[14].

To continue the classical Reynolds approach to fluid-dynamic turbulence it is
necessary to describe interaction between the deterministic chaos of exponential
oscillons and pulsons [1] and the stochastic chaos of random exponential oscil-
lons and pulsons developed in the current paper. Another open problem is con-
struction of smooth random functions of time, which will give an opportunity to
visualize and analyze quantization of the stochastic chaos, as it was done for the
deterministic chaos in [3] [4] for the Fourier and Bernoulli sets of wave parame-

ters, respectively.
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