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Abstract 
 
The problem of heat and mass transfer of Sisko nanofluid flowing through a nonlinear stretching sheet under 

the influence of chemical reaction, heat source, magnetohydrodynamics, and thermal radiation is examined in 

this study. The controlling model equations are rendered dimensionless, and the resulting set of nonlinear 
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ordinary differential equations are solved utilizing the shooting technique for the nondimensional velocity, 

temperature, and concentration profiles, along with Runge-Kutta-Fehlberg's method of fourth order. Using 

symbolic software MAPLE, the properties of numerous relevant parameters, including the chemical reaction 

parameter, Lewis number, thermophoresis parameter, Brownian motion parameter, Biot number, material 

parameter of the Sisko fluid, magnetic field parameter, power law index, radiation parameter and generalized 

Prandtl number are presented graphically and quantitatively discussed. Further, the local Sherwood number 

and the local Nusselt numbers are calculated, presented in the table, and compared with existing literature. 

The results of our investigation show that the Sisko fluid's material properties increase the velocity profile, 

while increase in magnetic field and chemical reaction decrease it. In the same vein, the temperature 

distribution of the fluid decreases with increasing magnetic field, Biot number, thermophoresis parameter, and 

Lewis number, but increases when chemical reaction occurs. Concentration profiles are augmented by 

positive increases in the magnetic field and Brownian motion, but they plunge with increases in Lewis 

numbers, Biot numbers, chemical reactions, and thermophoresis parameters. 

 

 

Keywords: Magnetohydrodynamics; nonlinear sheet, chemical reaction; sisko nanofluid; heat and mass 

transfer. 

 

Nomenclature 
 

𝑢, 𝑣 : Velocity components along 𝑥 and 𝑦 

𝐷𝐵 : Brownian diffusion coefficients 

𝐷𝑇  : Thermophoresis diffusion coefficient 

𝑓′ : Nondimensional velocity 

𝑅𝑒𝑎, 𝑅𝑒𝑏 : Local Reynold numbers 

𝑁𝑢𝑥 : Local Nusselt number 

𝑆ℎ𝑥 : Local Sherwood number  

𝐿𝑒 : Lewis number 

𝑃𝑟 : Prandtl number 

𝐵 : Brownian motion 

𝑇𝑝 : Thermophoresis parameter 

𝐴 : Sisko fluid parameter 

𝐵𝑖1 : Thermal Biot numbers 

𝐶𝑓𝑥 : Local Skin friction 

𝑀 : Magnetic field 

𝑅 : Radiation parameter 

𝐵0 : Induced magnetic field. 

𝑇∞ : Ambient temperature 

𝐶𝑤 : Concentration of the walls 

𝐶∞ : Ambient concentration 

𝐶𝑝 : Specific heat capacity of nanoparticles at constant pressure. 

𝑎, 𝑏 : Material constants of the fluid 

 𝑟 : Power law index 

 𝑈 : Stretching sheet velocity 

𝑇𝑤 : Uniform wall temperature 

𝑘1 : Chemical reaction coefficient 

𝑞𝑤 : Heat transfer 

𝑗𝑤 : Surface mass flux 

𝑠 : Stretching rate 

𝑇 : Temperature of the fluid 

𝐶 : Concentration of the fluid 

 𝑥, 𝑦 : Direction of velocity along and perpendicular to the plate 
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Greek Letters 
  

𝛼 : Fluid thermal diffusivity 

𝜃 : Dimensionless temperature of the fluid 

𝜑 : Dimensionless Concentration 

𝛾 : Chemical reaction parameter 

𝜂 : Similarity variable 

𝜌𝑓 : Fluid density 

𝜎 : Electrical conductivity of the fluids 

𝜅 : Thermal conductivity 

𝜐 : Kinematic viscosity 

𝜓 : Stream function 

𝜏 : Ratio of the effective heat capacity of the nanoparticles to heat capacity of the fluid. 

 

1 Introduction 
 

Sisko nanofluid is a specific kind of nanofluid that displays shear-thinning behavior, whose viscosity decreases 

as the shear rate rises. Excellent heat transmission capabilities of Sisko nanofluid have been demonstrated, 

making it appropriate for use in cooling systems, heat exchangers, and electronic devices, among other 

applications. [1]. The unique characteristic of Sisko nanofluid lies in its rheological behavior. Traditional 

nanofluids, such as those derived from water or oil, frequently display Newtonian behavior, where the viscosity 

remains constant with shear rate. Sisko nanofluid, on the other hand, differs from this pattern of behavior and 

demonstrates shear-thinning characteristics. This indicates that when the shear rate rises, the viscosity of the 

substance falls, improving the flow and heat transfer properties [2]. The existence of surface-modified 

nanoparticles and their interactions with the base fluid are attributed for the Sisko nanofluid's shear-thinning 

characteristic. Reduced viscosity is the result of the fluid's network-like structure, which the nanoparticles 

create, disintegrating under shear stress. As a result, the efficiency of heat transmission is increased [3]. This 

behavior makes it easier to pump through and flow via small channels. The temperature and flow properties of 

the Sisko nanofluid have been studied in many investigations. According to research studies, Sisko nanofluids, 

compared to conventional fluids, can greatly increase the heat transmission coefficient. They have also been 

discovered to have better thermal conductivity, which improves the efficiency of their heat transfer. [4]. Khan 

and Shahzad [5] obtained analytical solution to only integral values of the power-law index for the boundary 

layer equations of a Sisko fluid through a flat stretched surface. Malik et al. [6] investigated the partial slip 

effects on the flow and heat transfer of an incompressible Sisko fluid over a nonlinear stretching sheet and 

stretching cylinder with variable thermal conductivity. 

 

Several industrial and technical operations in the fields of metallurgy and chemical engineering are affected by 

heat transport phenomena in a laminar boundary layer flow across a stretching sheet. Numerous researchers 

have examined the flow past a stretching surface with various stretching velocities, including linear, exponential, 

quadratic, hyperbolic, radially, and even oscillatory [7- 9]. However, there are only a few studies on the transfer 

of heat and mass in laminar boundary layer flow through a nonlinear stretching sheet. It is widely known in 

literature that stretching in many industrial applications is not always linear, for this reason academics have 

studied nonlinear stretching sheets for various fluid flows. Rashidi et al. [10] conducted a lie group analysis to 

examined free convective flow of a nanofluid through a horizontal porous plate in the presence of chemical 

reaction. The mixed convective heat and mass transport of nanofluids over a nonlinear stretching sheet under the 

influence of suction/injection parameter, magnetic parameter, and thermophoresis parameter has been studied by 

Mondal et al. [11] in their analysis. The shooting technique has used by Dhanai et al. [12] to investigate the 

impact of viscous dissipation for the problem of magneto-hydrodynamic boundary layer flow of nanofluid that 

results from a power-law stretching/shrinking permeable sheet. The problem of boundary layer flow of 

nanofluid through nonlinear permeable stretching sheet at specified surface temperature in the presence of 

partial slip has been investigated numerically by Das [13]. Megahed et al. [14] have researched on the 

significance of thermal buoyancy and continuous heat flux on the steady two-dimensional flow and heat transfer 

of non-Newtonian power-law fluid under the influence of thermal radiation.The two-dimensional boundary 

layer flow of a viscous, incompressible, and electrically conducting fluid over a nonlinearly stretching non-

isothermal sheet in the presence of a variable transverse magnetic field, thermal radiation, viscous dissipation, 

and a nonlinearly moving free stream was studied numerically by Kumbhakar and Rao [15]. The motion of 
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MHD heat and mass transfer of nanofluid due to a stretching sheet through a porous medium with radiation 

effect was implemented by Reddy et al. [16] Many technical processes, such as nuclear power plants, gas 

turbines, and the numerous propulsion systems for airplanes, missiles, satellites, and spacecraft, use heat 

transfer, which is influenced by thermal radiation. It is important to note that the nonlinear approximation 

problem is controlled by three parameters, including the Prandtl number, radiation parameter, and temperature 

ratio parameter, whereas the linearized Rosseland approximation only uses the effective Prandtl number as a 

dimensionless parameter. Krishnamurthy et al. [17] considered the magnetohydrodynamic and nonlinear 

radiative heat transfer of Sisko nanofluid through a nonlinear stretching sheet under the influence of chemical 

reaction. The problem of Sisko liquid over a stretching surface in the presence of nonlinear thermal radiation, 

chemical reaction and magnetic field has been perused by Nagendramma [18]. A flat plate with partial slip at the 

surface subjected to the convective heat flux in the presence of nonlinear thermal radiation was explored by 

Parida et al. [19] for two-dimensional steady MHD boundary layer flow of heat and mass transfer. The boundary 

layer flow induced by a continuous stretched sheet in a quiet fluid in the presence of nonlinear Rosseland 

thermal radiation was the subject of a computational approach carried out by Cortell [20]. Using a novel 

radiation parameter known as the film radiation parameter, Pantokratoras [21] examined the impact of linear and 

nonlinear Rosseland radiation on steady laminar natural convection down a vertical isothermal plate. 

 

Equally, non-Newtonian nanofluids have gained prominence during the past year because of their industrial 

applications. It has been demonstrated previously that the use of a working fluid containing nanoparticles may 

significantly improve the efficiency and performance of heat transfer phenomena. Numerous studies have placed 

emphasis on non-Newtonian fluid over a stretched sheet as the basic fluid with dispersed nanoparticles. For 

instance, the effects of thermophoresis and Brownian motion on the flow of Jeffrey nanofluid in a three-

dimensional boundary layer and convective heat transfer through a bidirectional stretching surface were 

investigated by Hayat et al. [22] utilizing a recently developed boundary condition with zero nanoparticle mass 

flux. In the presence of thermal radiation, Brownian motion, and thermophoresis effects, Khan et al. [23] have 

implemented the impact of convective boundary conditions on two-dimensional boundary layer flow and heat 

transfer of Sisko nanofluid over a nonlinearly stretching sheet. Mabood et al. [24] have researched the 

consequences of non-uniform heat sources on steady two-dimensional hydromagnetic mixed convective heat 

and mass transfer flow of a micropolar fluid over a stretching sheet embedded in a non-Darcian porous medium 

with thermal radiation, variable thermal conductivity, Soret parameter and viscous-Ohmic dissipation. Heat and 

mass transfer of two-phase nanofluid flow in a rotating system in the presence of a transverse magnetic field 

have been addressed analytically by Ebiwareme et al. [25] using an Adomian decomposition approach. It was 

found in their study, that the pertinent parameters have profound influence on the flow distributions. Masood et 

al. [26] studied the flow of heat transfer on Sisko nanofluid across a nonlinear stretching sheet. The influence of 

thermal radiation on the convective heat and mass transfer flow of a Sisko nanofluid across a nonlinear 

stretching sheet has been taken into consideration by Venkata et al. [27]. Mansood Khan et al. [28] has 

investigated the flow and heat transfer of Sisko fluid incorporating convective boundary condition through a 

non-isothermal stretching sheet using Homotopy analysis method in comparison with the exact solution. Using 

Homotopy analysis method along with the shooting technique, analysis of forced convective heat transfer in a 

boundary layer flow of Sisko fluid over a nonlinear stretching sheet with variable temperature and heat flux 

boundary conditions has been addressed by Asif Munir et al. [29]. Pal and Mandal [30] has numerically studied 

the stagnation-point flow of a Sisko nanofluid through a stretching sheet on the impression of suction, 

magnetohydrodynamics, joules heating and viscous dissipation. The characteristics of radiation, magnetic field, 

and thermo-diffusion on nano fluid over a stretching sheet has been analytically researched by Mahmood et al. 

[31]. A numerical study of heat and mass transfer flow viscous nanofluid via a convective stretching sheet with 

the influence of chemical reaction, magnetohydrodynamics, viscous dissipation and thermal radiation has been 

perused by Narender et al. [32]. MHD boundary flow and heat transfer to Sisko nanofluid through a nonlinear 

stretching sheet under the impression of radiation has been considered by Gireesha et al. [33]. Ankita and Singh 

[34] have examined a mathematical model and heat transfer of magnetohydrodynamics Sisko nanofluid due to 

solar radiation through a stretching sheet in the presence of heat source and thermal conductivity using the 

nanofluid as a working fluid in the Solar collector. The effect of Newtonian heating on the flow of power-law 

nanofluid over a stretching surface has been theoretically addressed by Hayat et al. [35]. 

 

In this present study, our main objective is to add the novelty of concentration based internal heat source on the 

heat and mass transfer flow of Sisko nanofluid through a nonlinear stretching sheet under the impression of 

chemical reaction, magnetohydrodynamics and nonlinear Rosseland approximation. Using fourth order Runge-

Kutta-Felberg method along with the shooting technique, the solution for velocity, temperature and 
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concentration profiles and their graphical representations are obtained using MAPLE boundary value subroutine 

as they are influenced by thermophoresis parameter, Brownian motion parameter, Biot number, magnetic field 

parameter, radiation parameter, chemical reaction parameter, Lewis number, generalized Prandtl number, 

material parameter of the Sisko fluid, and power law index. The study is categorized as follows. In section one, 

introduction of the study exploring exhaustive literatures for possible gaps in the study is given. The 

mathematical formulation comprising the governing equation as well as the reduction of the governing boundary 

layer equations subject to the prescribed boundary conditions using self-similar transformation is presented in 

section two. In the next section, solution to the nondimensionalised equation for the flow distributions including 

Nusselt and Sherwood numbers are implemented using MAPLE Solver. Section four gives the presentation of 

the results for different values of the pertinent parameters presented in graphs and figures. The conclusion of the 

study highlighting the major outcomes is given in section five. 

 

2 Mathematical Formulations 
 

We examine a laminar, two-dimensional, continuous flow of a Sisko nanofluid in the domain 𝑦 > 0, induced by 

a stretching sheet with a power-law velocity profile, 𝑈 = 𝑐𝑥𝑠. Here, c denotes a non-negative real constant and 

𝑠 > 0  represents the rate at which the sheet is stretched. The temperature of the stretched surface and 

nanoparticles are considered to be constant variables, represented by 𝑇𝑤 and 𝐶𝑤, respectively. When y tends to 

infinity, the ambient values of temperature and nanoparticle fraction are denoted by 𝑇∞ and 𝐶∞, respectively. 

The magnetic field is applied normally to the stretching sheet. The flow is along the x-axis, while the y-axis is 

normal to the plane of the sheet, as shown in Fig. 1. Essentially, the fixed temperature and nanoparticle fraction 

for the stretching surface are presumed greater than the ambient temperature and nanoparticle fraction.  

 

 
 

Fig. 1. Physical configuration of the model 

 

In the context of the assumptions stated herein, the appropriate governing equations following [27] 

 

are given by 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                                                                                                                  (1)    

                                                  

𝑢
𝜕𝑢

𝜕𝑥
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𝜕𝑢
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=
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𝜌

𝜕2𝑢
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𝑏
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𝜕

𝜕𝑦
(−

𝜕𝑢

𝜕𝑦
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𝑟

−
𝜎𝐵0

2

𝜌
𝑢                                                                      (2)   

                                                         

𝑢
𝜕𝑇

𝜕𝑥
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𝜕𝑇

𝜕𝑦
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𝜕

𝜕𝑦
(𝛼 +

16𝜎∗𝑇∞
3
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𝜕𝑇

𝜕𝑦
+ 𝜏 [𝐷𝐵

𝜕𝐶

𝜕𝑦

𝜕𝑇

𝜕𝑦
+

𝐷𝑇

𝑇∞
(

𝜕𝑇

𝜕𝑦
)

2

]                                                              (3)   

                                                                                

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷𝐵

𝜕2𝐶

𝜕𝑦2 +
𝐷𝑇

𝑇∞

𝜕2𝑇

𝜕𝑦2 − 𝑘1(𝐶𝑤 − 𝐶∞)                                                                                      (4)            

 

The associated boundary conditions prescribed in this problem are given as: 
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𝑢(𝑥, 𝑦) = 𝑈 = 𝑐𝑥𝑠, 𝑣(𝑥, 𝑦) = 0, 𝑘
𝜕𝑇(𝑥,𝑦)

𝜕𝑦
= −ℎ𝑓 (𝑇𝑓 − 𝑇(𝑥, 𝑦))  at 𝑦 = 0 

 

𝐷𝐵
𝜕𝐶(𝑥,𝑦)

𝜕𝑦
= −𝑘𝑚 (𝐶𝑓 − 𝐶(𝑥, 𝑦))                                                                                                           (5)   

                               𝑢 ⟶ 0, 𝑇 ⟶ 𝑇𝑤 , 𝐶 ⟶ 𝐶∞ as 𝑦 ⟶ ∞ 

 

Let 𝑢 and 𝑣 denote the velocity components along the 𝑥 and 𝑦 axes, respectively. The material constants of the 

Sisko fluid are represented by 𝑎, 𝑏 , and 𝑟  (𝑟 ≥ 0), 𝑇  refers to the temperature of the fluid, C is the mass 

concentration of the solid nanoparticle volume fraction, 𝜌, 𝜎, 𝛼, 𝑎𝑛𝑑 𝑘  are the fluid density, electrical 

conductivity, thermal diffusivity, and thermal conductivity, 𝐷𝐵  denotes the Brownian motion diffusion 

coefficient and 𝐷𝑇  represent the thermophoresis coefficient.  

 

The non dimensionless velocity, temperature and the nanoparticles fraction volume are defined as follows. 

 

 𝑓′ =
𝑢

𝑈
, 𝜃 =

𝑇−𝑇∞

𝑇𝑓−𝑇∞
, 𝜑 =  

𝐶−𝐶∞

𝐶𝑓−𝐶∞
                                                                                                             (6)                                   

 

where 𝑇 − 𝑇∞, 𝑇𝑓 − 𝑇∞, 𝐶 − 𝐶∞, 𝐶𝑓 − 𝐶∞ are the fluid temperature, and the concentration of Sisko nanoparticles 

respectively. Following [27], we define the similarity transformation given by: 

  

𝜂 =
𝑦

𝑥
𝑅𝑒𝑏

1

𝑟+1, 𝑣(𝑥, 𝑦) = −𝑈𝑅𝑒𝑏

1

𝑟+1 1

𝑟+1
[{𝑠(2𝑟 − 1) + 1}𝑓(𝜂) + {𝑠(2 − 𝑟) − 1}𝜂𝑓′(𝜂)],  

 

 𝑢(𝑥, 𝑦) = 𝑈𝑓′(𝜂)                                             (7)                                                                                                                                                           

 

The non dimensional variables are given as: 

 

𝑅𝑒𝑎 =
𝜌𝑥𝑈

𝑎
, 𝑅𝑒𝑏 =

𝜌𝑥𝑟𝑈2−𝑟

𝑏
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𝑅𝑒𝑏

2
𝑟+1

𝑅𝑒𝑎
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𝑋𝑈

𝛼
𝑅𝑒𝑏

2

𝑟+1,   𝐵𝑖1
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ℎ𝑓

𝑘
𝑥𝑅𝑒𝑏𝐵 =

𝜏𝐷𝐵(𝐶𝑓−𝐶∞)

𝛼
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𝜏𝐷𝑇(𝑇𝑓−𝑇∞)

𝑇∞𝛼
 ,  𝐿𝑒 =

𝛼

𝐷𝐵
, 𝐵𝑖2

=
ℎ𝑚

𝑘
𝑥𝑅𝑒𝑏

−1

𝑟+1,   R =
16σT∞

3

3kρCp
 , 𝑘1 =

𝛾𝑎

𝐿𝑒
𝐷𝐵 =

∝

𝐿𝑒
𝑀 =

𝑅𝑒𝑎𝜎𝐵0
2

𝑅𝑒𝑏

1
𝑟+1

  , 𝛾 =
𝑘1𝐿𝑒

𝑎
                                                      (8) 

 

Using Eqs (6), (7) and (8), the governing Eqs. (1−4) reduced to the form. 

 

𝐴𝑓′′′ + 𝑟(−𝑓′′)𝑟−1𝑓′′′ + (
𝑠(2𝑟−1)+1

𝑟+1
) 𝑓𝑓′′ − 𝑠𝑓′2

− 𝑀𝑓′                                                              (9) 

 

(
1

1+𝑅
) 𝜃′′ + 𝑃 (

𝑠(2𝑟−1)+1

𝑟+1
) 𝑓𝜃′ + 𝐵𝜑′𝜃′ + 𝑇𝑝𝜃′2

= 0                                                              (10)  

                                                                                                                                            

          𝜑′′ + 𝐿𝑒 (
𝑠(2𝑟−1)+1

𝑟+1
) 𝑓𝜑′ +

𝑇𝑝

𝐵
𝜃′′ − 𝛾𝜑 = 0                                                                          (11) 

 

The corresponding transformed boundary conditions are given as follows. 

 

𝑓(0) = 0, 𝑓′(0) = 1, 𝜃′(0) = −𝐵𝑖1
[1 − 𝜃(0)] , 𝜑(0) = 1 

𝑓′ → 0, 𝜃 → 0, 𝜑 → 0 𝑎𝑠 𝜂 → ∞                                                                                                           (12)                                                                                                                                                      

 

In the above equations, primes represent differentiation with respect to  𝜂, 𝛾 =
𝑘1𝐿𝑒

𝑎
 is the chemical reaction 

parameter,  𝑀 =
𝑅𝑒𝑎𝜎𝐵0

2

𝑅𝑒𝑏

1
𝑟+1

  for magnetic parameter, 𝑅 =
16σT∞

3

3kρCp
 for  radiation parameter, 𝐿𝑒 =

𝛼

𝐷𝐵
  Lewis number, 

𝐵 =
𝜏𝐷𝐵(𝐶𝑓−𝐶∞)

𝛼
 is the Brownian motion parameter,  𝑇𝑝 =

𝜏𝐷𝑇(𝑇𝑓−𝑇∞)

𝑇∞𝛼
 is the thermophoresis parameter, 𝑃 =

𝑋𝑈

𝛼
𝑅𝑒𝑏

2

𝑟+1 for the  generalized Prandtl  number, A = 
𝑅𝑒𝑏

2
𝑟+1

𝑅𝑒𝑎
  material parameter of the Sisko fluid,  𝑅𝑒𝑎 =

𝜌𝑥𝑈

𝑎
,   and  
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𝑅𝑒𝑏 =
𝜌𝑥𝑟𝑈2−𝑟

𝑏
 are the local Reynolds numbers, a, b, and r are the material constants of the Sisko fluid, and  

𝐵𝑖1
=

ℎ𝑓

𝑘
𝑥𝑅𝑒𝑏 is the generalized thermal Biot number. The physical quantities of interest are the Local skin 

friction, 𝐶𝑓𝑥Nusselt number, 𝑁𝑢𝑥 and Sherwood number, 𝑆ℎ𝑥. These are expressed as. 

𝐶𝑓𝑥 =
𝜏𝑤

1

2
𝜌𝑈2

 , 𝑁𝑢𝑥 =  
𝑥𝑞𝑤

𝑘(𝑇𝑤−𝑇∞)
, 𝑆ℎ𝑥 =  

𝑥𝑗𝑤

𝑘(𝐶𝑤−𝐶∞)
                                                                                   (13)     

 

Here 𝜏𝑤 , 𝑞𝑤 , and 𝑗𝑤  are the shear stress along the stretching surface, heat flux, and the surface mass flux 

respectively whose expressions are stated below as: 

 

𝜏𝑤 =  (𝑎 + 𝑏 |
𝜕𝑢

𝜕𝑦
|

𝑟−1

)
𝜕𝑢

𝜕𝑦
         at  𝑦 = 0 

 

 𝑞𝑤 = −𝑘
𝜕𝑇

𝜕𝑦
+ (𝑞𝑟)𝑤 at 𝑦 = 0                                                                                                              (14) 

 

𝑗𝑤 = −𝐷𝐵
𝜕𝐶

𝜕𝑌
at        y s= 0s 

 

Plugging Eqs. (6) and (7) in (13) we have the non-dimensional forms as: 

 

1

2
𝑅𝑒𝑏 

1

𝑟+1𝐶𝑓𝑥 = 𝐴𝑓′′(0) − [𝑓′′(0)]𝑟                                                                                                        (15)   

                                                                 

𝑅𝑒𝑏 

−
1

𝑟+1𝑁𝑢𝑥 = −𝜃′(0)                                                                                                                           (16)  

                                                                                      

𝑅𝑒𝑏 

−
1

𝑟+1𝑆ℎ𝑥 = −𝜑′(0)                                                                                                                           (17)  

                                                                                     

3 Method of Solution 
 

The Runge-Kutta-Fehlberg fourth-order method combined with the shooting method is used to solve the set of 

nonlinear boundary value problems in Eqs. (9)– (11) subject to the boundary conditions (12) in view of [28]. 

Using transformational variables, Eqs. (9), (10), and (11) subject to Eq. (12) are transformed into a system of 

first-order ODEs in Eqs. (19), (21), and (23) with condition (24). 

 

𝑓 = 𝑦1, 𝑓′ = 𝑦2, 𝑓′′ = 𝑦3, 𝑓′′′ = 𝑦𝑦1                                                                                                  (18)   

                                                    

𝑦𝑦1 =
−1

𝐴+𝑟(𝑦3)𝑟−1 [(
2(2𝑟−)+1

𝑟+1
) 𝑦1𝑦3 − 𝑠𝑦2

2 − 𝑀𝑦2]                                                                                (19)   

                          

𝜃 = 𝑦4, 𝜃′ = 𝑦5, 𝜃′′ = 𝑦𝑦2                                                                                                                    (20)    

                                                               

𝑦𝑦2 =  
−1

1+𝑅
[𝑃 (

2(𝑟−1)+1

𝑟+1
) 𝑦1𝑦5 + 𝐵𝑦7𝑦5 + 𝑇𝑝𝑦5

2
 
]                                                                                (21)     

                           

𝜑 = 𝑦6, 𝜑′ = 𝑦7,𝜑
′′ = 𝑦𝑦3                                                                                                                  (22)  

                                                                                                 

𝑦𝑦3 = −𝐿𝑒 (
2(𝑟−1)+1

𝑟+1
) 𝑦1𝑦7 −

𝑇𝑃

𝐵
𝑦𝑦2 + 𝛾𝑦6                                                                                         (23)    

  

The associated boundary conditions are. 

 

𝑦1(0), 𝑦2(0) − 1, 𝑦5(0) + 𝐵𝑖1
[1 − 𝑦4(0)], 𝑦2 → 0, 𝑦4 → 0, 𝑦6 → 0 𝑎𝑠 𝜂 → ∞                                  (24) 

 

The set of transformed Eqs. (19), (21), and (23) with boundary condition, Eq. (24), is solved numerically using a 

shooting algorithm with a Runge-Kutta Feldberg integration scheme. This method involves transforming the 

problem into initial values that must be determined through guessing, and a fourth order Runge – Kutta iteration 
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scheme is employed to integrate the set of initial value problems until the given boundary conditions are 

satisfied. The computational procedure was implemented using the Maple solver. 

 

4 Results and Discussion 
 

This section discusses the main properties of the physical parameters presented in Eqs. (9) through (11). These 

include the thermophoresis parameter, generalized Prandtl number, Lewis number, Brownian motion parameter, 

magnetic parameter, and temperature-dependent Biot number, among others. 

 

Table 1 depicts a comparative analysis of the reduced Nusselt number compared to the results declared and 

published by [26, 5, 17, & 27]. The values have been compared with various values of P for 0.7, 0.2, 7.0, and 

20.0, respectively. The table revealed that the present results agree well with the earlier published works as 

cited.  

 

For different values of the magnetic field parameter, the velocity field is plotted against the similarity variable in 

Figs. 2 and 3. The figures show that, for both linear and nonlinear stretching sheets, the velocity decreases as the 

magnetic field parameter (i.e., the ratio of electromagnetic force to viscous force) increases. The impact of the 

magnetic field parameter M on the fluid temperature and concentration is shown in Figs. 4, 5, 6, and 7. As 

depicted in the profiles, increasing magnetic field strength favors an increase in fluid temperature and 

concentration. This is because of the Lorentz force, which is a resistive force created when a magnetic field is 

introduced to an electrically conducting fluid. The velocity of the boundary layer fluid was reduced by this 

force. The magnetic field, M, is observed as thermal energy in addition to the additional work required to drag 

the conducting nanofluid against the action of the magnetic field. In the presence of a magnetic field, the 

thickness of the thermal boundary layer increases, whereas the thickness of the momentum boundary layer 

decreases. 

 

For nonlinear stretching sheets with r = 2, Fig. 8 shows the effect of changing the generalized Prandtl number P 

on the dimensionless temperature. The temperature profile and related boundary thickness decreases as the 

Prandtl number increases. The thermal diffusivity weakens when the Prandtl number P continues to increase. 

Larger Prandtl numbers have poorer thermal diffusivity from a physical standpoint, while smaller Prandtl 

numbers have better thermal diffusivity. The temperature and thermal boundary layer are reduced owing to the 

gradient between the effects of high and low Prandtl numbers on thermal diffusivity. The effect of various Le 

values on the concentration profile of the nonlinear stretching sheet is shown in Fig. 9. Recall that, in the 

boundary layer phase, Le quantifies the ratio of the thermal diffusion rate to species diffusion rate. The figures 

demonstrate that when Le increases, the thermal boundary layer thickness decreases and were accompanied by a 

decrease in temperature and mass transfer. Further, this shows how increasing Le affects the concentration 

distribution significantly. As Le increases, the volume fraction boundary layer decreases across the plate. Figs. 

10 and 11 show the effect of various values of the thermophoresis parameter 𝑇𝑝  on the dimensionless 

temperature and concentration.  

 

While Figs. 12 and 13 depict the influence of Brownian motion parameters for r = 2, Figs. 10 and 11 illustrate 

the effect of different values of the thermophoresis parameter Tp on the dimensionless temperature and 

concentration. As shown in the graphs, a drop in the Brownian motion parameter results in a decrease in the 

temperature profile and an increase in the concentration profile for the nonlinear stretching sheet. However, 

when the thermophoresis parameter is lowered, the concentration and temperature profiles both drops. The 

effect of lowering the Biot number on the Sisko nanofluid concentration is displayed in Figs. 13 and 14. As the 

Biots number declines, so does the fluid's concentration. 

 

Additionally, Figs. 15 and 16 illustrate how various chemical reaction parameter values for species consumption 

and generation instances affect the dimensionless concentration for r = 2. In the given situations, it is observed 

that the concentration decreases for the constructive chemical reaction parameter and increases for the 

destructive chemical reaction parameter. This is because the molecule is consumed during systemic chemical 

processes, which lowers its concentration profile. The primary result is that the overshot in the profiles of solute 

concentration in the solute boundary layer can be reduced by a first-order chemical reaction.  
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The impact of varying the Sisko nanofluid material parameter value, A, on the dimensionless velocity profile is 

demonstrated in Fig. 17. Recall that the material parameter A represents the high shear rate viscosity 

(consistency index). The graph clearly shows that the velocity distribution increases with the Sisko nanofluid 

material parameter, A. The reason being that when the material parameter A rises, the fluid's viscosity, or 

consistency index, decreases, thereby increasing the fluid's velocity. Fig. 18 shows the effect of thermal 

radiation on the temperature profile (r = 2) for the nonlinear sheet. The profiles unequivocally demonstrate that 

the temperature dispersion widens as R decreases. This suggests that a decrease in the thermal radiation 

parameter favors an increase in the fluid's boundary layer thickness. Figs. 19 and 20 illustrate the effects of the 

nonlinear stretching parameter (r) on the temperature and velocity distributions, respectively. It is obvious that 

while an increase in r barely affects the velocity profile, the temperature profile of the nanofluid also rises 

quickly. ed in Fig. 17. Recall that the material parameter A represents the high shear rate viscosity (consistency 

index). The graph clearly shows that the velocity distribution increases with the Sisko nanofluid material 

parameter, A. The reason for this is that when the material parameter A rises, the fluid's viscosity, or consistency 

index, decreases, thereby increasing the fluid's velocity. Fig. 18 shows the effect of thermal radiation on the 

temperature profile (r = 2) for the nonlinear sheet. The profiles unequivocally demonstrate that the temperature 

dispersion widens as R decreases. This suggests that a decrease in the thermal radiation parameter favors an 

increase in the fluid's boundary layer thickness. Figs. 19 and 20 illustrate the effects of the nonlinear stretching 

parameter (r) on the temperature and velocity distributions, respectively. It is obvious that while an increase in r 

barely affects the velocity profile, the temperature profile of the nanofluid also rises quickly. 

 

 
 

Fig. 2. Effect of M on velocity (𝒓 = 𝟏) Fig. 3. Effect of M velocity profile (𝒓 = 𝟐) 

 

  

Fig. 4. Effects of M on temperature (𝒓 = 𝟏) Fig. 5. Effects of M temperature (𝒓 = 𝟐) 
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Fig. 6. Effects of M on concentration (r= 𝟏) Fig. 7. Effects of M concentration (𝒓 = 𝟐) 

 

 

 

Fig. 8. Effect of P on temperature (𝒓 = 𝟐) Fig. 9. Effect of varying Le concentration (𝒓 = 𝟐) 

 

 

 
 

Fig. 10. Effect of varying temperature(𝒓 = 𝟐) Fig. 11. Effect of varying T concentration (𝒓 = 𝟐) 



 
 

 

 
Ebiwareme et al.; J. Adv. Math. Com. Sci., vol. 38, no. 11, pp. 72-86, 2023; Article no.JAMCS.109519 

 

 

 
82 

 

 

 
 

 

Fig. 12. Effect of B on   concentration (𝒓 = 𝟐) 

 

Fig. 13. Effect of B temperature (𝒓 = 𝟐) 

 

 
 

Fig. 14. Effect of Bi on concentration (𝒓 = 𝟐) Fig. 15. Effect of  𝜸 on concentration (𝒓 = 𝟐, 𝑳𝒆 =
𝟐. 𝟎) 

  

Fig. 16. Effect of   𝜸 on concentration (𝒓 = 𝟐, 𝑳𝒆 =
𝟐) 

Fig. 17. Impact of A on velocity profile 
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Fig. 18. Influence of R temperature (𝒓 = 𝟐) Fig. 19. Influence of r on temperature 

 

 
          

Fig. 20. Influence of r on Velocity profile 

 

Table 1. Comparison of results for reduced Nusselt number −𝜽′(𝟎) for A= 𝑩 =M=R=Bi1=S=0 

        

P Masood [26] Khan & Shahzad 

[5] 

Prasanna kumara  

et.al [17] 

Venkatta  

et.al [27] 

Present 

results 

0.7 0.4539 0.4539 0.4544 0.454470 0.36234 

2.0 0.9113 0.9113 0.9113 0.911353 0.78345 

7.0 1.8954 1.8954 1.8954 1.895400 1.75342 

20.0 3.35395 3.3539 3.3539 3.353902 3.37234 

 

5 Concluding Remarks 
 

The effect MHD on the flow of a Sisko nanofluid with mass transfer under a nonlinear stretching sheet was 

investigated. The effects of the pertinent parameters on the dimensionless velocity, dimensionless temperature, 

and dimensionless concentration are considered and presented graphically. The following conclusions are drawn 

from our study. 

 

• As the material parameter and magnetic field of the Sisko nanofluid increases, the velocity profile 

experiences a sharp decline. 

• Increasing M and r enhances the temperature profile. 

• There is enhancement of concentration as a result of increased magnetic field parameters. This is also 

observed in the case of the destructive chemical reaction parameter, where the concentration is enhanced. 
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• Increase in P lead to a decrease in the temperature profile. 

• The temperature and concentration profiles decrease as the Brownian motion decreases. 

• A decrease in the Biot number decreases the fluid’s concentration while increasing the temperature 

profile. 

• Decreasing the thermophoresis parameter favors a decrease in both concentration and temperature 

profiles. 

• Increasing Lewis number significantly decreased the volume fraction of the boundary layer across the 

plate.  
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