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Ultra-fast deep-learned CNS tumour 
classification during surgery

C. Vermeulen1,2,6, M. Pagès-Gallego1,2,6, L. Kester3, M. E. G. Kranendonk3, P. Wesseling3,4, 
N. Verburg5, P. de Witt Hamer5, E. J. Kooi4, L. Dankmeijer4,5, J. van der Lugt3, K. van Baarsen3, 
E. W. Hoving3, B. B. J. Tops3 ✉ & J. de Ridder1,2 ✉

Central nervous system tumours represent one of the most lethal cancer types, 
particularly among children1. Primary treatment includes neurosurgical resection  
of the tumour, in which a delicate balance must be struck between maximizing the 
extent of resection and minimizing risk of neurological damage and comorbidity2,3. 
However, surgeons have limited knowledge of the precise tumour type prior to 
surgery. Current standard practice relies on preoperative imaging and intraoperative 
histological analysis, but these are not always conclusive and occasionally wrong. 
Using rapid nanopore sequencing, a sparse methylation profile can be obtained 
during surgery4. Here we developed Sturgeon, a patient-agnostic transfer-learned 
neural network, to enable molecular subclassification of central nervous system 
tumours based on such sparse profiles. Sturgeon delivered an accurate diagnosis 
within 40 minutes after starting sequencing in 45 out of 50 retrospectively sequenced 
samples (abstaining from diagnosis of the other 5 samples). Furthermore, we 
demonstrated its applicability in real time during 25 surgeries, achieving a diagnostic 
turnaround time of less than 90 min. Of these, 18 (72%) diagnoses were correct and 7 
did not reach the required confidence threshold. We conclude that machine-learned 
diagnosis based on low-cost intraoperative sequencing can assist neurosurgical 
decision-making, potentially preventing neurological comorbidity and avoiding 
additional surgeries.

The most common first line treatment for central nervous system 
(CNS) tumours is neurosurgical resection of the tumour. An important  
factor for determining whether the risk of a more aggressive resection 
is acceptable is the tumour type. For instance, diffuse midline gliomas 
with a specific histone H3 (H3K27) mutation are considered incurable, 
indicating that surgery should primarily be aimed at acquisition of 
tumour tissue for diagnosis and preserving quality of life, rather than 
attempting complete resection5. Similarly, medulloblastomas show 
limited prognostic improvement between near-total and total resec-
tion, indicating that maximal resection is not necessarily preferable 
for these tumours6. However, radical resection is beneficial for other 
tumour types: in posterior fossa ependymoma type A and atypical 
teratoid rhabdoid tumour, a strategy of aiming for gross total resection 
should be followed, since this is an important prognostic factor7–10. 
Moreover, in CNS tumours in adults, the extent of resection matters: 
gross total resection has been reported to offer survival benefits for 
isocitrate dehydrogenase (IDH)-wild-type glioblastoma of the receptor 
tyrosine kinase (RTK) I and RTK II subtypes, but not for the mesenchy-
mal subtype11. Similarly, in IDH-mutant astrocytoma, overall survival 
is negatively affected when gross total resection is not achieved12. The 
neurosurgical strategy thus depends on a precise and reliable diagnosis 
of the tumour.

Altered genome-wide DNA methylation patterns are highly distinc-
tive features of neoplasms, and the assessment of DNA methylation 
can reveal information about the origin and prognosis of a tumour13–16. 
High-dimensional CpG methylation profiles can be accurately assigned 
to a specific CNS subtype using machine learning approaches, in  
particular random forest classification14,15. Methylation arrays17,18, 
in combination with the algorithm described by Capper et al.14, are 
widely used in routine diagnostic practice. However, the turnaround 
time for obtaining array-based methylation profiles is in the order 
of several days and therefore incompatible with an intraoperative  
setting.

Current practice consists of preoperative imaging and intraoperative 
diagnosis achieved by rapid histological assessment of frozen tumour 
sections. However, this does not always result in a clear diagnosis, and 
the provisional frozen-section diagnosis is sometimes revised on the 
basis of post-operative tissue-based diagnostics. As a result, some 
patients require a second surgery, whereas others could in hindsight 
have been operated less radically.

Nanopore DNA sequencing has recently emerged as a method that 
enables ultrarapid sequencing-based diagnosis19,20. Major advantages 
of nanopore sequencing include its low setup cost, small form factor 
and instant data availability. In addition, nanopore sequencing enables 
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direct measurement of methylated cytosines and a substantial reduc-
tion in sample preparation times21. Thus a tissue sample can be sent 
for sequencing in the early stages of surgery to obtain a molecular 
diagnosis in time to affect and shape the neurosurgical strategy4. A 
major challenge of this application is that only very sparse methylation 
profiles can be generated in such a short time. Moreover, it is a priori 
unknown which CpG sites will be covered.

To enable tumour classification in an intraoperative setting, we have 
developed Sturgeon, a neural network classifier that is patient-agnostic 
and optimally tuned to deal with sparse data. In the Sturgeon approach, 
extensive computational resources are allocated to train and validate 
complex neural networks prior to surgery. This is a major advantage 
over existing classification algorithms that rely on patient-specific 
model training during surgery4. Our final models are trained on  
36.8 million simulated nanopore runs and validated on a further  
4.2 million simulated nanopore runs (Fig. 1). This enables us to exten-
sively validate and calibrate our models prior to applying them. The 
resulting Sturgeon model is portable and takes only a few seconds to 
run on a laptop computer.

As a proof of concept, we trained Sturgeon models for CNS tumour 
classification and retrospectively applied them on sparse nanopore 
sequencing data in 50 CNS tumour samples and 415 publicly avail-
able22 nanopore-sequenced CNS samples. The model was able to cor-
rectly classify the vast majority of samples (45 out of 50) based on data 
equivalent to 20–40 min of sequencing, in line with a 90-min time 
window between obtaining tissue in the operating room and diagnosis. 
Finally, we demonstrate the ability of Sturgeon to influence surgical 
decision-making by applying it in a realistic intraoperative setting for 
25 CNS tumour resections.

Neural network training via simulation
Within a turnaround time of 60–90 min, only very limited nanopore 
sequencing data—on the order of 100–400 Mb—can be generated.  
As a result, extremely sparse coverage across the genome is expected 
(covering 0.5–4% of the CpG sites in a 450K array). As it is a priori 
unknown which sites will be covered, this poses a substantial chal-
lenge for the downstream machine learning model. There is a lack of 
large, well-annotated nanopore-based methylation datasets and it will 
take years to reach the comprehensiveness of the available array-based 
datasets. We therefore developed a simulation strategy that generates 
realistic training data from array-based methylation profiles. Finally, 
effectively training neural network models requires orders of mag-
nitude more training samples than the number of patient samples 
available. Sturgeon therefore uses a data-augmentation approach 
to upsample the number of training samples available: thousands of 
unique shallow nanopore sequencing experiments are simulated from 
each methylation profile.

Sturgeon is designed to train a neural network on simulated nanopore 
sequencing runs. Here, we used the publicly available Infinium 450 K 
profiles reported in Capper et al.14. This dataset contains 2,801 refer-
ence labelled methylation profiles from CNS tumour and control tissue 
samples. The simulation consists of the following components (Fig. 1a): 
(1) binarization of the array beta values to either methylated or unmeth-
ylated state, to account for the limitation that in shallow sequencing 
the expected coverage is ≤1× for the vast majority of detected sites, 
precluding the ability to reflect heterogeneously methylated sites;  
(2) non-uniform CpG site sampling to account for the fact that nanopore 
sequence reads are approximately 5 kb in length (assuming the rapid 
sample preparation methods used in an intraoperative setting); (3) vari-
able sampling of the number of CpG sites covered, to account for read 
accumulation as time progresses; (4) random noise, to account for the 
expected discrepancy rate of 10–15% in nanopore methylation-aware 
sequencing compared with binarized methylation arrays, resulting 
from a combination of heterogeneous methylation states across alleles 

and cells, and due to methylation calling errors23 (Supplementary Fig. 1 
and Supplementary Table 1).

The simulated nanopore sequencing data are used to train four neural 
networks (Extended Data Fig. 1 and Methods). These neural networks 
are each trained, validated and calibrated independently (Fig. 1b). To 
this end, we split the Capper et al. reference dataset14 into four folds 
while keeping the original class distributions. We then use two folds to 
train the submodel, one fold to determine the best-performing state 
of the submodel and to perform score calibration and the final fold to 
evaluate the submodel’s performance.

We evaluated the performance of the Sturgeon submodels on the 
hold-out test set. The submodels achieved a F1 score of 0.935 across 
all classes at the approximate equivalent of 40 min of sequencing 
(Fig. 1c). Specific classes show an increased error rate, as may be 
expected owing to their biological similarity (for example, melanotic 
schwannoma versus schwannoma, different TSH (thyroid-stimulating 
hormone)-secreting pituitary adenoma subtypes and highly similar 
glioblastoma subclasses). When aggregating scores on the family level, 
performance is even higher, with an average F1 score of 0.984 at the 
same sequencing time (Extended Data Fig. 2b). As expected, Sturgeon’s 
performance is directly correlated to the sequencing depth, and per-
formance increases most markedly within the first 50 min of simulated 
sequencing with 0.6% to 4% of the 450K CpG sites covered (Extended 
Data Fig. 2c and Supplementary Figs. 2 and 3). We then calibrated the 
classifier scores to ensure that for example, a classifier score of 0.9 
corresponds to the classifier being correct 90% of the time. For this pur-
pose we applied temperature scaling24. As a result of temperature scal-
ing, the overall expected calibration error (ECE), decreased from 0.025 
to 0.002 in the test set (Supplementary Table 2 and Supplementary 
Figs. 4–7). We decided to conservatively use a cut-off score of 0.95 to 
confidently classify a sample. Using this cut-off, 80 out of the 91 classes 
in the test set have a true positive rate (TPR) higher than 0.95; With a 
less conservative threshold of 0.8, 26 out of 91 classes do not reach the 
expected 0.8 TPR (Extended Data Fig. 2d and Supplementary Fig. 8).

Classification of paediatric array data
The training dataset for Sturgeon consists of a varied population of 
patients of different ages (mean age of 29 with 36% less than 13 years 
of age). We first aimed to further validate the performance of Sturgeon 
in a paediatric setting. For this purpose, we obtained 94 genome-wide 
methylation profiles generated using the Illumina Infinium Methyla-
tionEPIC v1.0 (hereafter referred to as EPIC) arrays from patients that 
underwent a CNS tumour resection surgery in the Princess Máxima 
Center (PMC) for paediatric oncology. For each of these samples, the 
publicly available Heidelberg classifier (v11b4) was applied as part of 
the routine clinical care. This classifier can be considered an updated 
version of the Capper et al. classifier14. The recommended cut-off for a 
clinical diagnosis25 is 0.84, which the classifier reached for the majority  
(n = 68) of samples. Those classified below the 0.84 cut-off (n = 26) 
are considered difficult to diagnose based on their methylation pro-
file, which is likely to occur for uncommon tumour types that do not 
correspond to any of the previously annotated classes, tumours that 
occur in the context of a genetic tumour predisposition syndrome, 
heterogeneous samples or samples with a low tumour purity.

For each methylation profile we simulated 500 nanopore sequenc-
ing experiments at 7 sequencing depths (Fig. 2a,b and Methods) for a 
total of 332,500 simulated nanopore sequencing experiments, after 
which we applied the Sturgeon classifier (Fig. 2, Extended Data Fig. 3 
and Supplementary Table 3).

For cases with a clear diagnosis (Heidelberg score >0.84), Stur-
geon classified correctly (at the 0.8 threshold) in 95.3% (32,412 out 
of 34,000 simulated samples) in as little as 25 min of simulated 
sequencing. At the conservative threshold of 0.95, 86.2% (29,316 out 
of 34,000) of simulated samples were correctly classified (Fig. 2a, 
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second timepoint). At the same timepoint, only 2.7% and 13.8% of 
simulations did not reach a confidence score exceeding 0.8 and 0.95 
respectively. Incorrect diagnoses were called in 2.0% of simulations 
at the 0.8 threshold, and only 0.5% for the conservative 0.95 thresh-
old. At 50 min of simulated sequencing (Fig. 2a, fourth timepoint) 
performance improved slightly, with 97.1% (33,020 out of 34,000) of 
simulations reaching a correct diagnosis with confidence ≥0.8 and 

90.8% with a score ≥0.95. A total of 1.6% of simulations did not reach 
a score ≥0.8. Wrong diagnoses were called in only 1.3% of simulations 
with a score ≥0.8 and 0.5% with a score ≥0.95. Together, these results 
suggest that a conclusive diagnosis can be reached within 25–50 min 
of simulated sequencing for the vast majority of paediatric cases that 
can be classified using the Heidelberg v11b4 classifier, with a very low  
error rate.
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Fig. 1 | Schematic representation of the simulation, cross-validation 
approach and results on simulated data. a, Nanopore sequencing runs were 
simulated from the Capper et al. reference dataset14 comprising 2,801 labelled 
methylation profiles from CNS tumour and control samples. Sequencing data 
were simulated on the basis of existing nanopore sequencing runs (read length 
distribution and throughput); as these simulations produce very sparse samples, 
millions of unique samples can be simulated. Chr. chromosome. b, Fourfold 
cross-validation was performed by rotating the folds to obtain four models that 

were used in the final prediction of external microarray data and nanopore 
sequencing data. c, Performance of Sturgeon on the four test folds of the 
Capper et al. dataset (added up for the four submodels). F1 scores for each 
reference label at 40 min of simulated sequencing (approximately 97% missing 
values compared with microarray data). Solid bars indicate the F1 score for the 
highest-scoring class and transparent bars show the F1 score for the top three 
highest-scoring classes. Complete class names, adapted from Capper et al.14, 
can be found in Supplementary Table 2.
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The majority of misclassifications (141 out of 155 at timepoint 3) 
occurred in the simulated sequencing experiments from 2 samples 
(Fig. 2a). In both cases, the misclassification occurred within the same 
family (PMC_38: glioblastoma subtype midline misclassified as subtype 
H3K27 mutant; and PMC_64: medulloblastoma subtype group 4 clas-
sified as subtype group 3).

For the difficult-to-diagnose cases, Sturgeon generally performed 
less well. For most of these cases, a definitive diagnosis was reached 
based on the combination of molecular and histological features. In 
11 of the 26 cases Sturgeon reached a diagnosis in concordance with 
the definitive diagnosis (but often at later timepoints) in the majority 
of simulations. All of these 11 cases also reached a Heidelberg classi-
fier score between 0.6 and 0.84 (Fig. 2b and Supplementary Table 3). 
In the remaining cases, both Sturgeon and the Heidelberg classifier 
performed poorly, most frequently resulting in an unclear diagnosis 
(low confidence scores or high confidence scores for control tissue 
classes). This can be attributed to different reasons: low tumour fraction 
based on histology (PMC_1, PMC_28, PMC_82 and PMC_76); classes not 
present in the 2018 classification scheme (PMC_71, PMC_73, PMC_77 
and PMC_88); no definitive diagnosis (PMC_72 and PMC_75); or tumours 
in the context of a germline mutation (PMC_89, PMC_85, PMC_91 and 
PMC_77), which has been suggested to complicate methylation-based 
classification15 (see Supplementary Table 3 for further notes and Sup-
plementary Figs. 9 and 10 for more details).

Together, these simulation results indicate that Sturgeon can per-
form on par with the Heidelberg v11b4 classifier, even when applied to 
a very sparse simulated sequencing run. It also reiterates the limitation 
that Sturgeon (as any other machine learning-based classifier) is only 
able to perform well in samples that are sufficiently represented in the 
training data. Reassuringly, for classes that are not represented in the 
training data, confidence scores are usually low, resulting in an unclear 
outcome rather than a misdiagnosis.

Sample purity affects sensitivity
In an intraoperative setting, time constraints do not always allow for 
sample selection on the basis of purity and samples may therefore con-
tain a larger fraction of normal cells. By contrast, the training dataset 

consists of samples that are relatively pure, with the tumour cell content 
ranging from 40% to 85% (Extended Data Fig. 4a). We therefore aimed to 
further explore the behaviour of Sturgeon on samples with low tumour 
purity by in silico mixing of simulated nanopore reads from one of the 
control tissues included in the Capper et al. dataset14 with simulated 
nanopore reads from a non-control sample (Extended Data Fig. 4b 
and Methods). Simulations show that as expected, a higher fraction of 
admixed control reads reduces performance, increasing the number of 
cases for which the classifier does not reach a confident classification. 
At lower (<50%) tumour fractions, the number of cases for which the 
control class is predicted increases (Fig. 2c,d and Extended Data Fig. 4c). 
Notably, admixing control tissue reads does not lead to significant num-
bers of misclassifications, indicating that high scores are reliable, even 
when the tumour fraction is unknown. Deeper sequencing does not 
seem to resolve the difficulties in classifying samples with low tumour 
fractions (Fig. 2d). To estimate how frequently this lower limit would not 
be reached in clinical practice, we retrospectively collected metadata 
from 44 cases in which intraoperative histology was performed. In 6 
out of 44 paediatric cases the pathologist estimated the tumour frac-
tion to be below 50%, in 5 out of 44 cases the pathologist estimated the 
tumour fraction to be around 50% and in 31 out of 44 cases the tumour 
fraction was estimated to be above this threshold (Supplementary 
Table 4). In two cases, the tumour cell fraction was not estimated. For 
adult glioma cases the mean tumour purity was estimated to be 69% 
in samples obtained from the enhancing fluid-attenuated inversion 
recovery region26, indicating that in these types of samples, material 
of adequate purity can be obtained more consistently. On the basis of 
these results, we expect that in the intraoperative setting, especially 
in paediatric cases, some samples may not be classifiable owing to 
low tumour purity. We do not expect low tumour purity to result in 
misdiagnosis in these samples when using the most stringent cut-off.

Classification of nanopore-sequenced samples
Next, we assessed the performance of Sturgeon on real nanopore 
sequencing data. We retrospectively sequenced and classified 27 pae-
diatric brain tumour DNA samples obtained from the PMC biobank. 
We applied Sturgeon to increasing numbers of reads, mimicking an 
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Fig. 2 | Classification performance over time on nanopore runs simulated 
from paediatric CNS tumour methylation arrays. a–d, For each of 94 
methylation profiles, 500 experiments were simulated per timepoint, 
corresponding to approximately 12.5 min of additional sequencing per 
consecutive timepoint (Methods). a, Each series of bars corresponds to one  
of the 68 cases for which a clear Heidelberg classifier result was obtained 
(Heidelberg score >0.84). Bars indicate at each timepoint the proportion  
of outcomes when a 0.95 confidence score is used. The correct fraction is 
coloured by class; colours correspond to those in Fig. 1c. Unclear (no class 
reached a confidence score ≥0.95 or a control class reached a confidence score 
≥0.95) classifications are shown in grey, wrong classes with a confidence score 
≥0.95 are yellow. b, As a, but for the 26 samples for which the Heidelberg 

classifier was inconclusive (Heidelberg score <0.84; unclear cases). c, Stacked 
bar graph to show the effect of different tumour fractions on classifier 
performance on short sequencing simulations (8,128 CpG sites covered on 
average, equivalent to roughly 20 min of sequencing). Nanopore sequencing 
experiments were simulated from the reference samples from the Capper et al. 
dataset14. The reported sample purity was used as a baseline and control tissue 
reads were added to simulate lower sample purities. The fraction of correct and 
incorrect classifications over or under the confidence threshold (≥0.95) are 
shown, as well as the number of simulations where the classifier predicted the 
sample as control tissue. Avg., average. d, same as c, with a higher sequencing 
depth (17,943 CpG sites covered on average, equivalent to approximately 
40 min of sequencing).
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average minION sequencing experiment in 5-min pseudotime intervals 
(Fig. 3a, Extended Data Fig. 5 and Methods).

The classification results demonstrate that for 24 out of 27 sam-
ples, Sturgeon assigned a score higher than 0.95 to the correct class 
after the equivalent of 25 min of sequencing; on average this threshold 
was achieved in 15–20 min of sequencing (Fig. 3a and Supplementary 
Table 5). Samples PMC_2, PMC_60 and PMC_29 reached the 0.95 thresh-
old at 30, 30 and 35 min of sequencing, respectively. For the majority of 
samples, we generated around 200,000 reads (approximately 3.9 Gb), 
where a typical intraoperative run (60 min of sequencing) would be 
expected to yield approximately 60,000 reads (around 200 Mb) of 
throughput. This enabled us to evaluate the robustness of the results 
by randomly subsampling sequence reads, essentially simulating a  
different order in which the DNA molecules were sequenced. Our results 
show that Sturgeon is very robust, reporting the correct class in 27,980 
(score ≥0.95) out of the 36,000 predictions (77%); and only confidently 
reporting the incorrect class 14 times (0.03%) (Supplementary Table 6). 
The outcomes are more confident and accurate if more sequence 
reads are available (Extended Data Fig. 6). This also showcases how 
some samples (for example PMC_2 and PMC_29) are more difficult to  
classify than others.

To further assess the robustness of Sturgeon and its susceptibility to 
batch and operator biases, we validated it on a publicly available dataset22 

(GSE209865) consisting of nanopore sequencing data for 415 CNS 
tumour sequencing runs, corresponding to 382 unique samples (Fig. 3c, 
Supplementary Fig. 11 and Supplementary Table 7), including from adult 
patients. The provided dataset is already processed—where methyla-
tion calling is performed using Nanopolish (rather than Megalodon  
or Guppy, which we use in our default workflow)—and probe methyla-
tion status is already mapped. We find that despite these differences 
in sample workflow, Sturgeon still performs as expected, even slightly 
outperforming nanoDx, the patient-specific random forest classifier 
used in ref. 22, as it is able to correctly predict nine additional samples 
(Supplementary Fig. 11b). Sturgeon correctly classified 383 (92.2%) 
samples, 343 (82.6%) at a confidence threshold ≥0.8 and 252 (60.7%) 
samples with a confidence ≥0.95. From the 415 samples, 32 (7.7%) were 
incorrectly classified, 8 (1.9%) of which reached a confidence score 
≥0.95 (Fig. 3c and Supplementary Fig. 11a). We note that, for five of these 
eight confidently incorrectly classified samples, four corresponded 
to a single sample that was also incorrectly classified by nanoDx, and 
one is incorrectly classified as a ‘somatotropin hormone-producing 
pituitary adenoma’ instead of a ‘TSH-producing pituitary adenoma’. 
Overall, nanoDx is able to perform better in scenarios with extremely 
low coverage of CpG sites, owing to its patient-tailored model. However, 
Sturgeon performs better and is more confident with a CpG site cover-
age compatible with intraoperative sequencing (Supplementary Fig. 11).
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representative examples of Sturgeon classification on nanopore-sequenced 
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and the y axis indicates the confidence score. Circles indicate the confidence 
score of the correct class; diamonds indicate the confidence score of incorrect 
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Only the confidence score of the correct class is plotted; see Extended Data 
Fig. 5 for complete results for each sample. c, Sturgeon classification results on 
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Copy number variations
In addition to methylation profiling, copy number variations (CNVs) 
have an important role in tumour classification, prognosis and down-
stream treatment. We explored whether CNVs could be detected using 
shallow nanopore sequencing to further support the classifications 
provided by Sturgeon. For example differentiating between IDH-mutant 
oligodendroglioma and astrocytoma can be challenging (Supple-
mentary Fig. 13), and in such cases a chromosome 1p/19q codeletion 
is clear evidence of the former. To this end, we adapted the approach 
described by Euskirchen et al.27. Using a downsampling approach, we 
were able to detect large scale CNVs such as the chromosome 1p dele-
tion from as few as 20,000–50,000 sequence reads (Extended Data 
Fig. 7 and Methods), although smaller CNVs such as the chromosome 
19q deletion are less reliably detected. The clinical relevance of differ-
ent CNVs is context-dependent and we therefore follow the example of 
the Heidelberg classifier: we provide CNV plots in our workflow to the 
pathologist in parallel with the methylation classifier result for further 
interpretation. More examples of CNV profiles derived from nanopore 
sequencing are shown in Supplementary Figs. 14 and 15.

Intraoperative sequencing
To demonstrate the clinical feasibility of Sturgeon in an intraoperative 
sequencing context, we performed the protocol during 25 surgeries at 
two different hospitals in the Netherlands. This produced 20 paediatric 
samples from surgeries performed at the PMC and 5 adult samples from 
surgeries performed at the Amsterdam University Medical Centers 
(AUMC). Samples obtained for histological assessment during surgery 
were split, and one part was used for intraoperative sequencing and the 
other part was used for histological assessment. To rapidly obtain a high 
concentration of input DNA, we optimized the DNA extraction proto-
col to extract DNA from fresh tissue samples in 17–20 min (Methods).

Extended Data Table 1 lists the results and context of the 25 intra-
operative sequencing experiments (Extended Data Fig. 8 and Sup-
plementary Table 8 show the scores as they developed over time). The 
processing and analysis for sample PMC_live_4 was captured on film 
(Supplementary Video available for download from https://zenodo.
org/record/8261128; the timeline for this particular sample is shown 
in Fig. 4).

For the five CNS tumour samples from adult patients, we focused 
specifically on glioma, as surgical strategy may affect the outcome 
differently in IDH-wild-type versus IDH-mutant high-grade glio-
mas28,29. In cases with a high-grade glioma, showing enhancement on T1 
contrast-weighted MRI, intraoperative fluorescence (5-aminolevulinic 
acid) is used to mark tumour cells during resection30, allowing con-
sistent sampling of high tumour content samples and resulting in  
successful classification in 4 out of 5 cases where tumour was sampled.

In summary, Sturgeon was able to correctly classify 72% of tumours 
(18 out of 25) at the subclass level with at most 45 min of sequencing. In 
the other cases the classification was unclear, which can be attributed 

to tumour classes not present in the reference dataset (INTRA_11), low 
tumour purity (INTRA_1, INTRA_3, INTRA_14 and INTRA_15) or exotic 
cases (INTRA_8 and INTRA_13). We encountered several cases where a 
rapid molecular classification would have been of substantial added 
value. For example, in cases INTRA_23 and INTRA_25, the tumour class 
was not known prior to surgery. Intraoperative frozen-section diag-
nosis suggested an ependymoma in both cases, indicating a radical 
resection as the best course of action. Shortly afterwards, Sturgeon 
achieved a high confidence for ependymoma subtype RELA fusion 
and ependymoma subtype A, respectively. Both classifications were 
later confirmed using a methylation array and the Heidelberg V11b4 
classifier. Obtaining the molecular class intraoperatively in these cases 
provided an independent classification that corroborated the intraop-
erative frozen-section diagnosis, reducing the risk of a misdiagnosis 
and providing additional certainty for the neurosurgeon to follow the 
best surgical plan for these patients.

Location-specific models
The Capper et al. dataset14 encompasses 81 tumour classes. However, 
many class distinctions are only relevant within a particular topological 
context, and could therefore already be ruled out prior to surgery. For 
instance, for a surgery of the spinal mass, a classifier generally does not 
need to be able to detect pituitary adenomas. Compared with other 
regions in the brain, the number of relevant classes in the brainstem is 
relatively low (n = 21; Supplementary Table 9). We hypothesized that, 
by merging the irrelevant classes from the training dataset into a single 
class, the model can focus on the truly relevant classes and improve 
its performance. To test this hypothesis, we developed a Sturgeon  
classifier specifically for brainstem tumours. In summary, this adjusted 
approach can slightly improve the required sequencing depth. The 
design, validation and results are discussed in Supplementary Note 
and Supplementary Figs. 16–21.

Adaptive sampling
With the most recent chemistry, nanopore sequencers are able to 
reverse the current in specific channels, thereby ejecting reads as 
they are being sequenced. This has enabled ‘adaptive sampling’, in 
which a read is mapped when the first approximately 400 bases are 
sequenced and subsequently rejected if it falls outside any of the tar-
geted regions31. This strategy can improve the turnaround time by 
rejecting reads that are unlikely to overlap informative CpG sites. We 
designed an adaptive sampling strategy (Methods) and tested this in 
five samples. Overall, the number of informative CpG sites sequenced 
per minute was 15–30% higher with adaptive sampling, and Sturgeon 
was more confident in classifying the same sample (Fig. 5a,b and Sup-
plementary Figs. 22–24). However, we note that adaptive sampling can 
be technically challenging to set up on custom hardware and comes 
with an increased hardware requirement. For simplicity, we opted to 
not use it in an intraoperative setting.
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Discussion
Here we demonstrate the practical feasibility of intraoperative 
methylation-aware nanopore sequencing for paediatric and adult 
CNS tumour classification that can be used to improve surgi-
cal decision-making. Classification during surgery is challenging 
because owing to the short sequencing time, only very sparse data 
are available and it is a priori unknown which CpG sites will be covered.  
Furthermore, nanopore-sequenced reference samples are not widely 
available.

To address these challenges, we developed Sturgeon, a deep learning 
approach that is trained on simulated nanopore sequencing data gener-
ated from readily available methylation array data and can accurately 
classify tumour types based on intraoperatively generated sequence 
data. Sturgeon uniquely moves the computationally intensive model 
training, validation and calibration phase outside the surgical time 
window, providing well-tested highly accurate one-size-fits-all classifi-
cation models. In contrast to previous approaches4,22, Sturgeon models 
are not patient-specific and can be used universally without retraining, 
mitigating the need to have access to privacy-sensitive training data at 
the site of deployment. As a result, limited computational resources are 
required during surgery. For example, the Sturgeon classifiers shown 
here can classify a Megalodon output file containing data from 32,610 
reads in 17 s on an AMD Ryzen 7 6800H central processing unit. As the 
model inference step practically poses no constraint on the time it takes 
to classify a sample, it is possible to run multiple Sturgeon classifiers 
in parallel. Furthermore, we show that the models perform robustly 
across different sequencing flowcell types (MinION and PromethION, 
using R9 and R10 chemistry), laboratories (Utrecht, Amsterdam and 
Oslo) and methylation calling methods (Megalodon/Rerio, Guppy/
Remora and Nanopolish). However, similar to other methylation-based 
classifiers, the performance of Sturgeon is limited by tumour 
purity in the analysed sample, and cannot account for intratumour  
heterogeneity.

We envision training of improved versions of Sturgeon as more 
data become available. The class definition used in the Capper et al. 
data14 used for training Sturgeon has since been updated several 
times, with the addition of many new classes32. When these data or 
data from in-house cohorts are available, retraining and/or fine-tuning 
the Sturgeon model will be straightforward. Leveraging data from 
many different institutes across different countries for training 
machine learning algorithms is complicated owing to data-sharing 
restrictions as a result of privacy legislation that follows from patient 
consent. Sturgeon is ideally suited to address this as it can readily be 
employed in a federated learning setting33. Moreover, owing to the 

simulation approach used by Sturgeon, we envision that different 
types of training data, such as those obtained using other microar-
ray platforms, nanopore or bisulfite sequencing can all be naturally  
accommodated.

Ultra-fast methylation sequencing holds great potential for several 
other fields of application. For routine (post-operative) diagnostics, 
turnaround times can be substantially reduced, reducing patient dis-
tress and anxiety and allowing tailored treatments to start as soon 
as possible. Furthermore, the low investment cost enables applica-
tion in peripheral centres and centres with limited financial means. A 
longer-term future application may be to support administration of 
implantable therapies, which have the potential to bypass the blood–
brain barrier. Current applications are associated with a high compli-
cation rate34 and are so far limited to recurrent tumours35, where the 
specific tumour type is known.

A potential limitation of the Sturgeon approach is the required 
amount of tissue. So far, we have instructed surgeons to obtain a sam-
ple measuring roughly 5 × 5 × 5 mm, as this yields a high concentration 
of DNA suitable for library preparation. We have, however, succesfully 
extracted sufficient DNA from smaller samples, including a biopsy. We 
note that—particularly when using the R10 workflow—as little as 200 ng 
of genomic DNA is sufficient. However, for specific applications—
such as needle biopsies—more sophisticated (but slower) extraction  
protocols may be required to obtain sufficient DNA.

In conclusion, our results demonstrate that turnaround times of 
1.5 h are feasible for the majority of samples. This is fully compatible 
with the surgical timeline, to guide the surgeon on how to proceed 
with the procedure. We envision clinical application of Sturgeon to be 
deployed in parallel to histological assessment by a trained patholo-
gist, who then integrates the histological and molecular results into an 
improved intraoperative diagnosis. Using Sturgeon in this way could 
also reduce the requirement for a confidence score of at least 0.95, 
since the pathologist will always weigh the predicted tumour class 
in the context of the observed tumour histology, patient history and 
tumour location. Sturgeon can have an especially important role in 
guiding decision-making in challenging cases where the histological 
diagnosis is ambiguous.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41586-023-06615-2.

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 p

re
d

ic
tio

ns

Adaptive

10 20 30 40 50 60

Non-adaptive

10 20 30 40 50 60
Sequencing minutes (time) Sequencing minutes (pseudotime) Sequencing minutes (pseudotime)

0

10

20

30

40

50

60

M
ea

su
re

d
 C

p
G

 p
ro

b
e 

si
te

s
p

er
 a

va
ila

b
le

 s
eq

ue
nc

in
g 

ch
an

ne
l

Adaptive
Non-adaptive

a b

Fig. 5 | Adaptive sampling can reduce turnaround time. a, Five samples were 
run with adaptive sampling on half of the available channels. Box plots indicate 
the number of 450K array CpG probe sites during sequencing, normalized to 
the amount of available sequencing channels; minimum and maximum bounds 
represent the 25th and 75th percentiles, respectively; and the center bound 
represents the median; whiskers extend to 1.5 times the interquartile range. 
Dots indicate the underlying data. b, Robustness analysis results of sample 

PMC 68 on adaptive (left) and non-adaptive (right) channels (results for all 
samples are presented in Supplementary Fig. 24). Reads were accumulated in 
resampled orders (n = 100) at a rate based on the average MinION sequencing 
speed. Sturgeon was then applied to all permutations. Colours indicate the 
type of prediction made by Sturgeon: plain colour (correct class and score 
≥0.95), darkened colour (correct class and score <0.95) and grey (incorrect 
class and score <0.95).

https://doi.org/10.1038/s41586-023-06615-2


Nature  |  Vol 622  |  26 October 2023  |  849

1.	 Cohen, A. R. Brain tumors in children. N. Engl. J. Med. 386, 1922–1931 (2022).
2.	 Duffau, H. & Mandonnet, E. The ‘onco-functional balance’ in surgery for diffuse low-grade 

glioma: integrating the extent of resection with quality of life. Acta Neurochir. 155,  
951–957 (2013).

3.	 Yong, R. L. & Lonser, R. R. Surgery for glioblastoma multiforme: striking a balance. World 
Neurosurg. 76, 528–530 (2011).

4.	 Djirackor, L. et al. Intraoperative DNA methylation classification of brain tumors impacts 
neurosurgical strategy. Neurooncol. Adv. 3, vdab149 (2021).

5.	 Karremann, M. et al. Diffuse high-grade gliomas with H3 K27M mutations carry a dismal 
prognosis independent of tumor location. Neuro Oncol. 20, 123–131 (2018).

6.	 Thompson, E. M. et al. Prognostic value of medulloblastoma extent of resection after 
accounting for molecular subgroup: a retrospective integrated clinical and molecular 
analysis. Lancet Oncol. 17, 484–495 (2016).

7.	 Venkatramani, R. et al. Supratentorial ependymoma in children: to observe or to treat 
following gross total resection? Pediatr. Blood Cancer 58, 380–383 (2012).

8.	 Ramaswamy, V. et al. Therapeutic impact of cytoreductive surgery and irradiation of 
posterior fossa ependymoma in the molecular era: a retrospective multicohort analysis. 
J. Clin. Oncol. 34, 2468–2477 (2016).

9.	 Pajtler, K. W. et al. The current consensus on the clinical management of intracranial 
ependymoma and its distinct molecular variants. Acta Neuropathol. 133, 5–12 (2017).

10.	 Egiz, A., Kannas, S. & Asl, S. F. The impact of surgical resection and adjuvant therapy on 
survival in pediatric patients with atypical teratoid/rhabdoid tumor: systematic review 
and pooled survival analysis. World Neurosurg. 164, 216–227 (2022).

11.	 Drexler, R. et al. DNA methylation subclasses predict the benefit from gross total tumor 
resection in IDH-wildtype glioblastoma patients. Neuro-Oncol. 25, 315–325 (2023).

12.	 Wijnenga, M. M. J. et al. The impact of surgery in molecularly defined low-grade glioma: 
an integrated clinical, radiological, and molecular analysis. Neuro-Oncol. 20, 103–112 
(2018).

13.	 Papanicolau-Sengos, A. & Aldape, K. DNA methylation profiling: an emerging paradigm 
for cancer diagnosis. Annu. Rev. Pathol. 17, 295–321 (2022).

14.	 Capper, D. et al. DNA methylation-based classification of central nervous system tumours. 
Nature 555, 469–474 (2018).

15.	 Jaunmuktane, Z. et al. Methylation array profiling of adult brain tumours: diagnostic 
outcomes in a large, single centre. Acta Neuropathol. Commun. 7, 24 (2019).

16.	 Priesterbach-Ackley, L. P. et al. Brain tumour diagnostics using a DNA methylation-based 
classifier as a diagnostic support tool. Neuropathol. Appl. Neurobiol. 46, 478–492 (2020).

17.	 Sandoval, J. et al. Validation of a DNA methylation microarray for 450,000 CpG sites in 
the human genome. Epigenetics 6, 692–702 (2011).

18.	 Moran, S., Arribas, C. & Esteller, M. Validation of a DNA methylation microarray for 
850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics 
8, 389–399 (2016).

19.	 Gorzynski, J. E. et al. Ultrarapid nanopore genome sequencing in a critical care setting.  
N. Engl. J. Med. 386, 700–702 (2022).

20.	 Sagniez, M. et al. Real-time molecular classification of leukemias. Preprint at medRxiv 
https://doi.org/10.1101/2022.06.22.22276550 (2022).

21.	 Xu, L. & Seki, M. Recent advances in the detection of base modifications using the 
Nanopore sequencer. J. Hum. Genet. 65, 25–33 (2020).

22.	 Kuschel, L. P. et al. Robust methylation-based classification of brain tumors using nanopore 
sequencing. Preprint at bioRxiv https://doi.org/10.1101/2021.03.06.21252627 (2021).

23.	 Yuen, Z. W.-S. et al. Systematic benchmarking of tools for CpG methylation detection 
from nanopore sequencing. Nat. Commun. 12, 3438 (2021).

24.	 Guo, C., Pleiss, G., Sun, Y. & Weinberger, K. Q. On calibration of modern neural networks. 
In Proc. 34th International Conference on Machine Learning, Vol. 70 (eds Precup, D. & Teh, 
Y. W.) 1321–1330 (Proceedings of Machine Learning Research, 2017).

25.	 Capper, D. Practical implementation of DNA methylation and copy-number-based CNS 
tumor diagnostics: the Heidelberg experience. Acta Neuropathol. 136, 181–210 (2018).

26.	 Verburg, N. et al. Spatial concordance of DNA methylation classification in diffuse glioma. 
Neuro-Oncol. 23, 2054–2065 (2021).

27.	 Euskirchen, P. et al. Same-day genomic and epigenomic diagnosis of brain tumors using 
real-time nanopore sequencing. Acta Neuropathol. 134, 691–703 (2017).

28.	 Molinaro, A. M. et al. Association of maximal extent of resection of contrast-enhanced 
and non-contrast-enhanced tumor with survival within molecular subgroups of patients 
with newly diagnosed glioblastoma. JAMA Oncol. 6, 495–503 (2020).

29.	 Cahill, D. P. Extent of resection of glioblastoma: a critical evaluation in the molecular era. 
Neurosurg. Clin. N. Am. 32, 23–29 (2021).

30.	 Stummer, W. et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection 
of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 7, 
392–401 (2006).

31.	 Loose, M., Malla, S. & Stout, M. Real-time selective sequencing using nanopore technology. 
Nat. Methods 13, 751–754 (2016).

32.	 WHO Classification of Tumours Editorial Board. Central Nervous System Tumours 
(International Agency for Research on Cancer, 2022).

33.	 Rieke, N. et al. The future of digital health with federated learning. npj Digit. Med. 3, 119 
(2020).

34.	 Bregy, A. et al. The role of Gliadel wafers in the treatment of high-grade gliomas. Expert 
Rev. Anticancer Ther. 13, 1453–1461 (2013).

35.	 Mathew, E. N., Berry, B. C., Yang, H. W., Carroll, R. S. & Johnson, M. D. Delivering therapeutics 
to glioblastoma: overcoming biological constraints. Int. J. Mol. Sci. 23, 1711 (2022).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 
4.0 International License, which permits use, sharing, adaptation, distribution 
and reproduction in any medium or format, as long as you give appropriate 

credit to the original author(s) and the source, provide a link to the Creative Commons licence, 
and indicate if changes were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your 
intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, 
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

https://doi.org/10.1101/2022.06.22.22276550
https://doi.org/10.1101/2021.03.06.21252627
http://creativecommons.org/licenses/by/4.0/


Article
Methods

Data simulation
Short nanopore sequencing runs yield sparse and random coverage of 
the genome. To enable model training, we generate simulated sparse 
nanopore runs based on microarray data. To this end, N simulated 
reads are randomly sampled from the read length distribution (D)  
and assigned a start mapping position in the genome. N and D are 
defined based on an average nanopore whole genome sequencing 
run using a MinION flowcell (Fig. 1a). Forward or reverse direction is 
chosen at random (50% chance each). Reads are clipped at the start/
end of the chromosome. Given this set of reads, the covered CpG sites 
are determined and their binarized methylation status is obtained 
from the microarray sample. Raw EPIC profiles were binarized with 
a cut-off of beta ≥0.6 using scripts kindly provided by the authors of 
nanoDx22. To include measurement noise due to sample heterogeneity, 
and methylation calling error rate, 10% of the covered CpG sites are 
randomly flipped. To reduce overtraining on specific sparsity levels, 
we simulate runs of different sparsity levels in a balanced manner (see 
‘Submodel training’). To ensure reproducibility and avoid simulation 
leakage between samples of the different cross-validation folds, simu-
lations can be completely deterministic (with the exception of noise) 
given a random seed and the simulation time.

Cross-validation
To assess model performance the Capper et al. dataset14 is split in four 
equally sized class-stratified folds. Two folds are used for submodel 
training, one for validation to assess the best model state during train-
ing and to perform score calibration. The final fold is used for testing 
to assess the submodel performance. Folds are rotated so that a total 
of four submodels are obtained. Simulations are tightly controlled 
through the seeds of the pseudo-random number generator—that is, 
training, validation and test seeds are mutually exclusive—to avoid 
cross-validation leakage. We used seed values between 0 and 499 for 
the test fold, between 500 and 999 for the validation fold and between 
1,000 and 1,001,000 for the training fold.

Neural network architecture
Sturgeon (named thus to fit in the traditional fish-based nomenclature 
for nanopore software and because it sounds like ‘surgeon’) is a neural 
network containing three fully connected layers. The first two layers 
have 256 and 128 dimensions respectively, and are followed by a sigmoid 
activation (Extended Data Fig. 1). The first layer has an input size of 
428,643, corresponding to the number of probes on the arrays used in 
training. The last linear layer has a dimensionality equal to the number 
of classes to be predicted (91 dimensions for the general classifier, and 
30 dimensions for the brainstem-specific classifier). The outputs of 
the neural network are calibrated by a learned scalar value (see ‘Score 
calibration’), and then transformed to probabilities via the softmax 
function. Dropout rate between layers was set to 0.5. As classification 
loss cross-entropy with uniform weights was chosen.

Submodel training
We train the neural network as a supervised multi-class classification 
problem. Longer simulations contain more information, as more 
CpG sites are measured, and are therefore easier to classify; shorter 
simulations are more difficult. We therefore use a curriculum learn-
ing approach, where we first start by training the neural network with 
a mix of easy and difficult simulations, and later on move to train on 
only more challenging ones. We therefore first pretrain the neural 
network on the Capper et al. samples14 (91 classes) using simulations 
that range between 0.6% and 14% sparsity (this range contains both 
easy and difficult to classify simulations). We then fine-tune this neural 
network for the final classifier by training using simulations that range 
between 0.6% and 6.3% sparsity (this range contains more difficult 

to classify simulations). For the brainstem classifier, the last layer is 
substituted by an untrained layer with the correct dimensionality  
(30 classes).

We pretrain the neural network for a total of 3,000 epochs with 
a batch size of 256. For this purpose the AdamW36 optimizer is used 
with a starting learning rate of 10−5 that increases linearly for the first 
1,000 training batches until 10−3; afterwards, it is decreased using a 
cosine function until it reached 10−4 on the 1,000th epoch; we then 
keep training at a constant learning rate of 10−4 for 2,000 epochs. 
Other parameters of the optimizer are: β1 = 0.9, β2 = 0.999, ε = 10−8 and 
λ = 0.0005. During training, we apply a dropout rate of 0.5 between 
all layers. We define one epoch as the number of reference samples in 
the most abundant class multiplied by the number of output classes. 
For every 2,000 training batches the current weights of the model are 
saved; and the model is evaluated on 50 validation batches (12,800 
samples) by calculating their average loss and sensitivity. Validation 
batches are sampled in the same manner as the training batches, with 
the exception that simulation seeds are independent. We fine-tune 
the neural network using the exact same parameters as described for 
the pretraining, with the exception that we fine-tune for 3,000 epochs 
with a constant learning rate of 10−4.

During inference, we classify samples using the four trained sub-
models and use as final classification the scores from the model with 
the highest confidence. For the general, classifier we sum up the scores 
of two highly similar pilocytic astrocytoma classes (posterior fossa 
pilocytic astrocytoma and midline pilocytic astrocytoma into a single 
class low grade glioma pilocytic astrocytoma) and two highly similar 
medulloblastomas (SHH medulloblastoma child/adult and SHH medul-
loblastoma infant into SHH medulloblastoma).

Adaptive sample balancing
Because of class imbalance in the training dataset, all classes are upsam-
pled such that they are equally represented by simulating additional 
samples for classes smaller than the largest class. Similarly, we bal-
ance the sequencing sparsity levels such that the training data for each 
class consists of samples that have a uniform distribution of simulated 
sequencing times. At the end of each epoch, we recalculate the class 
balance by increasing the upsampling of classes and/or simulation 
times for which the model performs worse. Conversely, classes and/
or simulation times for which the model performs well are upsampled 
relatively less. The number of samples for each class (c) and sparsity 
level (t) for epoch i + 1 is provided by:

i
i

i
NumSamples ( + 1) = TotalNumSamplesEpoch ×

Error ( ) + 0.3
∑ ∑ Error ( ) + 0.3t c

t c

t c t c
,

,

,

We add a correction constant (0.3) to avoid completely removing 
classes or timepoints from the epoch. The total number of samples 
per epoch is kept constant (13,013 samples), based on the first epoch.

Score calibration
To calibrate the classifier scores, enabling interpretation of these scores 
as confidence scores, we use temperature scaling24. To this end, we use 
each validation fold sample to create 500 simulated sparse samples 
(using all validation fold seeds) for all sparsity levels (between 0.6% 
and 14% sparsity). Given the whole reference dataset (2,801 samples), 
this results in 16,806,000 total simulations. Based on these simulated 
samples, we optimize the scalar temperature parameter, used for cali-
bration, by minimizing the class-weighted cross-entropy between the 
temperature divided non-scaled logits and the correct class label. For 
this purpose we use the L-BFGS algorithm implemented in PyTorch with 
learning rate 0.01 and a maximum of 500 iterations. We evaluate the 
calibration of the model using ECE, a statistical measure that summa-
rizes the difference between classifier accuracy (acc) and confidence 
(con). The ECE is defined as the bin-weighted average of the absolute 



difference between accuracy and confidence on equally sized bins B 
(here we use 10 bins).
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Model evaluation
We assessed the final performance of the model on the left-out test 
fold samples. For this purpose, each sample was used to simulate 
500 sparse nanopore runs across all 12 sparsity levels. In this way, 
each sample contributes 6,000 simulated samples to the test set. We 
report top1 and top3 F1 scores for each class individually across all 
sparsity levels, as well as average metrics across classes. F1 score, as 
an evaluation metric, is chosen since it considers both types of errors 
(false positives (FP) and false negatives (FN)), but it does only include 
true positives (TP), and not true negatives (since these would inflate  
the metric massively due to the multi-class setting). We also report the TPR  
for each class.

F1 score =
2 × TP

2 × TP + FP + FN

TPR =
TP

TP + FN

Pseudotime
To reduce costs, some samples used for validation were sequenced on 
washed flowcells, or multiple samples were multiplexed on a single 
MinION or PromethION flowcell. Re-used flowcell and multiplexed 
sequencing times are not directly comparable to sequencing runs of 
a single sample on a new flowcell. Similarly, samples sequenced on 
PromethION flowcells are not directly comparable to MinION flowcells 
due to their larger throughput. In order to make these runs compara-
ble to a real intraoperative scenario (one sample sequenced on a new  
MinION flowcell), we use the number of CpG calls as a proxy for 
sequencing time. For this purpose, we first estimate the expected 
sequencing throughput in terms of the median number of CpG sites 
covered per 5 min time interval from a collection of 6 representative 
MinION runs that used fresh flowcells (Supplementary Fig. 12). The 
number of CpG sites (non-cumulative) covered in the first 12 inter-
vals of 5 min are: 51,924; 104,073; 124,078; 149,111; 173,504; 194,399; 
207,456; 217,193; 232,101; 241,278; 247,600; and 258,197. Thus, for a 
multiplexed (MinION or PromethION) or washed flowcell sequenc-
ing run, we assume a fresh flowcell equivalent: 5 min of sequencing 
is achieved when 51,924 CpG sites are covered. By using throughput, 
instead of number of reads, this allows us to properly simulate the ramp 
up in sequencing throughput that happens during the first minutes of  
sequencing.

Robustness to random sampling
To further analyse the robustness of Sturgeon, we create additional 
realistic nanopore sequencing data by randomizing the order of the 
sequenced reads. We randomize the sequenced read order of each sam-
ple 100 times and evaluate at which pseudotime the desired threshold 
would have been reached and whether the classification was correct 
or not.

Robustness to sample purity
To analyse the robustness of Sturgeon to impure samples, we simulated 
nanopore runs with a mix of reads from tumour and control reference 
samples at different impurity levels. To achieve this, we simulated nano-
pore runs that contain between 5% and 95% control tissue reads in 5% 
increments. For each sample 100 independent nanopore runs were 

simulated, containing reads counts equivalent to between 10 to 40 min 
of sequencing. This produced a total of ~20 million simulated sequenc-
ing runs. We note that the tumour reference samples are not 100% pure, 
and contain some levels of non-tumour tissue. We therefore report the 
in silico purity by multiplying the original tumour fraction with the frac-
tion of reads that are simulated from the tumour sample. We evaluate 
Sturgeon performance by cross-validation (see ‘Cross-validation’), 
that is, each Sturgeon submodel was evaluated on simulations from 
samples and simulation seeds in the test fold.

Paediatric methylation profile validation
At the PMC centre for paediatric oncology, EPIC arrays are routinely 
performed on paediatric CNS cancer samples. We gathered 94 such 
profiles that were generated in the routine diagnostic process. Raw 
EPIC profiles were binarized with a cut-off of beta ≥0.6 using scripts 
kindly provided by the authors of nanoDx22. EPIC probes not present 
on the 450K array used in the reference cohort were filtered out. We 
then simulate 500 nanopore runs at 12 sparsity levels as described 
above. The EPIC profiles were all submitted to the Heidelberg v11b clas-
sifier (with the exception of PMC_20 which was classified with classifier 
v12.5), results (Sturgeon classification result and confidence score) 
are listed in Supplementary Table 3. Samples were also labelled with 
a ‘final diagnosis’, the result of a combination of histological assess-
ment, imaging, CNV profiling and molecular characterization which 
we consider the ground truth.

Classification of publicly available nanopore sequencing data
We downloaded nanopore sequencing data from GSE209865 (ref. 22). 
Of note, this dataset consists of processed sequencing data, which uses 
a different processing method consisting of Guppy (v3.1.5) base calling, 
Nanopolish methylation calling, and mapping to hg19. This dataset 
consists of binary methylation calls for 450K methylation sites and 
can thus directly be used for Sturgeon classification.

DNA extraction
DNA is extracted from (fresh/unfixed) tumour samples using an 
adapted QiaAmp mini (Qiagen) protocol. Ideally, a tumour sample 
of roughly 5 × 5 × 5 mm is used as input material. ATL buffer (180 μl) is 
added to the sample and the sample is briefly ground using a pestle, 
then 200 μl buffer AL and 20 μl proteinase K are added and the sample 
is moved to a 70 °C hea block. Once heated the sample is ground with 
a pestle every minute to improve proteinase K accessibility. When the 
sample contains no more solid tissue, or after 5 min of incubation and 
grinding, the sample is added to a Qiashredder column (Qiagen ID: 
79656), not including any solid matter if still present. The column is 
centrifuged at 20,000g for 1 min. 200 μl of 96% ethanol is added to the 
eluate and the eluate is moved to a qiaAmp column and centrifuged for 
1 min at 6,000g. The column is washed with 500 μl AW1, centrifuged 
at 6,000g for 1 min, then with 500 μl AW2 at 12,000g for 1 min. The 
remaining ethanol is removed in a fresh elution column, centrifuged 
at 12,000g for 10 s. Sample is eluted with 25 μl of MilliQ water. Samples 
are quantified using a Nanodrop spectrophotometer (Thermo Fisher). 
For the first few intraoperative cases, we encountered samples where 
the tumour cell purity was low, resulting in low confidence scores, or 
high confidence scores for control tissues. As there is very limited time 
between sampling and processing, the tumour cell content cannot be 
rigorously assessed prior to DNA isolation. Instead, after the fourth 
case, where possible, we implemented an approach where DNA from up 
to three distinct sections of the sample was isolated. Simultaneously, 
the pathologist assesses tumour content from these same sections 
and calls the DNA isolation laboratory to report with which sample 
to continue. This procedure only slightly delays the process (three 
samples are processed instead of one during the DNA isolation), and 
the pathologist is usually able to relay this information before DNA 
isolation is completed.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL24106


Article

Flowcell chemistry versions
During the collection of samples, we migrated from R9 MinION flowcells 
(which are being discontinued) to R10.4.1 MinION flowcells. Since Stur-
geon uses a list of CpG sites and their binary methylation state as input, 
we do not expect nor observe an effect on classifier performance. This 
was also confirmed by re-sequencing and processing five samples on 
an R10.4.1 MinION flowcell that were previously sequenced using an R9 
PromethION flowcell. Importantly, we observe increased throughput 
on R10.4.1 flowcells, in the range of 1,000–1,200 reads per minute and 
slightly higher concordance between methylation array methylation 
calls and nanopore sequencing methylation calls (Supplementary 
Table 1 and Supplementary Fig. 12).

Library prep
Samples are library prepped depending on whether an R9 or R10 flow-
cell is to be used. For R9 flowcells, the Oxford Nanopore RBK004 kit 
was used, using 600 ng input material and following manufacturer’s 
instructions for other steps. For R10 flowcells, we used the Oxford 
Nanopore technologies RBK114-24 kit, but with an adjusted protocol: 
for optimal results (size distribution centred around 5 kb) 3,500 ng 
of input material in 50 μl is first sheared using a G-Tube (Covaris SKU: 
520079), centrifuging at 7,200 RPM (6,000g) in a fixed rotor tabletop 
centrifuge. Subsequently 7.5 μl of the sheared input material is used for 
tagmentation with 2.5 μl indexing mix. Alternatively, we obtain similar 
results (but with wider size distributions) using 200 ng input material 
for the tagmentation without an added fragmentation step. For both 
protocols, we omit the AMPure purification, and after tagmentation 
directly proceed with adapter ligation.

Flowcell loading
ONT MinION sequencing initializes with a pore scan, which takes 
around 5 min and produces no reads. Therefore, with R9 flowcells, we 
start the sequencing as soon as the sample arrives in the laboratory, 
so that sequencing commences as soon as the library is loaded onto 
the flowcell. Flowcells are primed using 800 μl Flush Buffer (from the 
ONT flowcell priming kit) at the start of the DNA isolation, after five 
minutes the flowcell is flushed with 200 μl Flush Buffer and sequencing 
is started, at which point the software will first perform a pore scan. 
The DNA library is loaded as soon as it is ready. By then the pore scan 
has typically finished and sequencing commences. We noted that this 
procedure has an adverse effect for R10 flowcells, and for these we only 
start sequencing after loading the library on the flowcell.

The sequencing itself is slowed down by the startup phase (Sup-
plementary Fig. 12), where many unligated sequencing adapters 
are sequenced, and then ramps up towards higher pore activity and 
more informative reads per minute (usually stabilizing in the range 
of 800–1,200 reads per minute). We typically obtain 10,000–20,000 
reads within 1 h after the sample arrives in the isolation laboratory. In 
some, but not all, cases this is enough for a reliable diagnosis. After an 
90 min we typically reach 40,000–60,000 reads. After sequencing 
flowcells were routinely washed using the EXP-WSH004 flowell wash 
kit (Oxford Nanopore Technologies) according to the manufacturer’s 
instructions and stored for later use.

Methylation calling
To call methylation from R9 chemistry nanopore data we used Mega-
lodon V2.5.0, which runs with Guppy V5 to perform base calling and 
mapping to the CHM13V2 reference genome. To call per-read-per-site 
methylation we use the Rerio CpG methylation model as described23 
We convert the methylation log likelihood ratio to a probability and 
use a cut-off of <0.3 for unmethylated and >0.7 for methylated. For 
R10 chemistry, we use Guppy V6.4 and the high-accuracy CpG methyla-
tion calling model to call methylation and again use the <0.3 and >0.7 
cut-offs to call methylation.

Methylation calls are assigned to one of the 450K CpG sites present on 
the Infinium methylation array using windows centred on the CpG site 
targeted by each probe. We benchmarked different window sizes and 
observed that for R9 chemistry (and associated methylation calling pro-
cedure), 100-bp windows provide optimal results. With R10 chemistry, 
smaller windows do not reduce the methylation calling accuracy much, 
but for simplicity we also opted to use a 100-bp window (Supplementary 
Table 1). If multiple CpG sites are present within the window, majority 
voting is used to convert the calls to a single call per site. When multiple 
reads cover the same Infinium probe site, majority voting is also used 
to create one methylation call. When voting results in a tie, we discard 
that particular site. The methylation calling error rate was evaluated by 
comparing the methylation calls between nanopore sequencing and 
the microarray data for the same samples where both methods were 
available. This indicated a concordance of 85–90% between binarized 
array data (beta cut-off at ≥0.6) and nanopore methylation calls (Sup-
plementary Table 1). The error rate is evenly distributed between false 
positives (calling unmethylated sites as methylated) and false negatives 
(calling methylated sites unmethylated).

CNV calling
The CNV calling approach was adapted from Kuschel et al.22 Even with 
several hours of sequencing, coverage is still sparse (50,000 reads 
equates to 1 read per 64 kb of genomic sequence). Therefore, we 
restricted the analysis to genomic bins spanning 2 Megabases using 
the QDNAseq package37. We normalized the coverage using a pub-
licly available deeply sequenced Genome In a Bottle reference sample 
(NA12878 release 7; https://github.com/nanopore-wgs-consortium/
NA12878/blob/master/Genome.md), to correct for nanopore sequenc-
ing specific mapping biases against the CHM13V2 reference genome. 
To obtain a log ratio, we first calculate the relative coverage (sample 
coverage/reference coverage) per bin, after which the log2 of the rela-
tive coverage over the mean relative coverage is taken. We apply the 
DNAcopy38 R package to segment the genome into over or underrep-
resented regions, indicating potential CNVs.

Live analysis
We developed a custom R script (available on the Sturgeon github) to 
run parallel to the sequencing software. We run MinKNOW (v22.12.7) 
with disabled base calling. MinKNOW outputs fast5 files, each con-
taining 4,000 reads. The R script checks the MinKNOW output folder 
for a new fast5 file, and triggers if it contains 4,000 reads. Complete 
fast5 files are copied to a separate working directory where they are 
processed using either Megalodon or Guppy depending on the chem-
istry version. For R9 chemistry, qCat V1.1.0 (https://github.com/nano-
poretech/qcat) is used to identify barcodes and for R10 chemistry the 
Guppy built-in barcoding detection algorithm is used. Depending on 
user settings, either the most frequent or a user-specified barcode is 
selected. Per-read-per-site methylation calls (Guppy v5.0.1 and Megalo-
don v2.5.0) or.bam files (Guppy v6.5.2) originating from reads with the 
selected barcode are saved and Sturgeon is used to map the methylation 
calls to the 450K CpG sites and classify the sample. Sequencing and 
analysis are performed on an ASUS TUF A15 FA507RR-HN003W laptop 
with 64 Gb RAM. For R10 sequencing experiments we use Guppy v6.4.6 
with the dna_r10.4.1_e8.2_400bps_modbases_5mc_cg_hac.cfg configu-
ration file, with disabled Q-score filtering and minimum barcode quality 
set at 6. As we are using single samples, demultiplexing is not strictly 
necessary and we process reads with and without classified barcodes.

Adaptive sampling
Adaptive sampling can be performed in exclusion or enrichment mode, 
and can be configured either through specifying a reference genome 
and a.bed file or a.fasta sequence file. Additionally, buffer regions can  
be specified, which, in our case, determines how much flanking 
sequence is accepted around the CpG sites of interest. We performed 

https://github.com/nanopore-wgs-consortium/NA12878/blob/master/Genome.md
https://github.com/nanopore-wgs-consortium/NA12878/blob/master/Genome.md
https://github.com/nanoporetech/qcat
https://github.com/nanoporetech/qcat


simulations of different buffer regions assuming the read length dis-
tribution of earlier sequence experiments. This indicated that 5-kb 
buffer regions are optimal (data not shown). Together, these windows 
span 1.3 billion basepairs (approximately 40% of the genome). We then 
designed both.bed file and.fasta files for 5-kb flanking regions, merg-
ing any regions that are within 25 kb using Bedtools merge (Bedtools 
V2.30)39. When choosing between adaptive enrichment and adaptive 
exclusion, we opted for adaptive enrichment, as adaptive exclusion 
will read up to 4,000 bp before deciding to exclude a read, whereas 
adaptive enrichment decides after a maximum of 400 bp. Finally, 
initial experiments showed higher efficiency when using a reference 
genome and a.bed file with regions of interest compared to using 
a.fasta file with target sequences. We assessed the added value of 
adaptive sampling by running 5 samples on MinION R10.4.1 flowcells  
where adaptive sampling was enabled for half of the available  
channels. This allowed us to make a fair comparison between adaptive 
and non-adaptive sequencing on the same flowcell and library. All 
adaptive sampling experiments were performed on an Oxford Nano-
pore GridION device running MinKNOW 22.12.5 using high-accuracy  
base calling.

Consent for publication
The research was approved by the Biobank and Data access commit-
tee (BDAC) of the Princess Máxima Center for paediatric oncology.  
All included patients provided written informed consent for partici-
pation in the biobank (International Clinical Trials Registry Platform: 
NL7744; https://onderzoekmetmensen.nl/en/trial/21619). Inclusion of 
intraoperative samples was ethically approved via the same decision; 
the results were not shared with caregivers and therefore not used 
to alter patient treatment nor diagnosis in all but two cases. In these 
two patients with paediatric CNS tumours (included in the very last 
phase of this study) the result of intraoperative nanopore sequenc-
ing analysis was shared with the neurosurgeons during operation; in 
these cases the result were ependymoma (subtype RELA fusion, and 
type A), corroborating and fine-tuning the provisional intraoperative 
frozen-section diagnosis ‘ependymoma’ that was already communi-
cated with the neurosurgeon at an earlier phase of the operation. For 
patients at the Amsterdam University Medical center with glioma,  
a broad consent was signed for use of material to improve clinical  
methods. For patients at the AUMC we publicly share methylation 
calls but not raw DNA sequence data as there is no explicit consent for 
sharing genetic information.

Patient identity
To protect patient privacy, patient IDs were generated and assigned 
exclusively for this publication for patients included from the 
Princess Máxima Center and the Amsterdam University Medical 
Center. The translation between patient IDs and patient identity is 
not known outside this research group. For publicly available data, 
the identifiers were maintained from the metadata provided by the  
repository.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Paediatric patient data are available through the European Genome- 
Phenome Archive EGAS00001007475, data from patients at AUMC 
are accessible through NCBI Gene Expression Omnibus (GEO) with 
accession code GSE237874. Data used for training are available at GEO 
under accession number GSE109381.

Code availability
Code used to train and validate the model can be found at: https://
github.com/marcpaga/sturgeon_dev40. Source code of the Sturgeon 
prediction tool as a Python package can be found at https://github.com/
marcpaga/sturgeon, together with links to download the two (general 
and brainstem) trained models used in this work41. The following Python 
v3.7 packages were used during the development of Sturgeon: torch 
v1.10.2, numba v0.56.2, onnxruntime v1.12.1, scipy v1.7.3, scikit-learn 
v1.0.2, pandas v1.3.5, numpy v1.21.5, matplotlib v3.5.1, pysam v0.19.0, 
modbampy v0.6.3. The following R v4.1.2 packages were used: QDNAseq 
v1.30.0, DNAcopy v1.68.0, rhdf5 v2.38.1. We also used Samtools v1.13 
and bedtools v2.30.
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Extended Data Fig. 1 | Neural network architecture and optimization 
scheme. This schematic representation shows the architecture of Sturgeon 
neural networks. Each network consists of one input layer and three fully 
connected layers. The input layer represents the 428,643 CpG sites as 

individual nodes. The two hidden layers consist of 256 and 128 nodes and in the 
final layer each tumor class is represented as an output node. Validation folds 
are used for temperature scaling and a final softmax scaling is applied to scale 
the sum of all output nodes to 1.



Extended Data Fig. 2 | Sturgeon performance at 40 min of simulated 
sequencing. a, Confusion matrix showing the highest scoring class for each 
reference label at 40 min of simulated sequencing (∼97% missing values from 
microarray data) b, Confusion matrix and F1 scores at 40 min of simulated 
sequencing when scores are aggregated on the family level. c, F1 scores at 
different sequencing depths (represented by the average number of covered 
450 K array methylation sites) when classifying by subclass, by the correct 

subclass being in the top 3 of highest scoring classes and at the family level. Box 
plot minimum and maximum bounds represent the 25th and 75th percentiles, 
respectively, and the center bound represents the median. Whiskers extend  
to 1.5 times the interquartile range d, True positive rate for each subclass at 
40 min of sequencing at the 0.95 confidence threshold. Asterisks indicate 
subclasses that do not reach the 0.95 true positive rate.
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Extended Data Fig. 3 | Classification performance over time on nanopore 
runs simulated from pediatric CNS tumor methylation arrays. For each of 
96 methylation profiles, a series of nanopore sequencing experiments were 
simulated. At each timepoint 500 experiments were simulated corresponding 
to approximately 5 min of sequencing per timepoint. Each bar indicates a 
consecutive timepoint and simulated sequencing data is accumulated over 
time. A stacked bar graph is plotted based on the number of correct, unclear or 
wrong classifications. Correct classifications are those with a confidence score 

>0.95 (left) and >0.8 (right) and with a class corresponding to the true diagnosis 
(bars are colored according to the class label). Unclear classifications are those 
with confidence-scores <0.95 or <0.8 colored in gray). Wrong classifications 
are misdiagnoses where a confidence-score >0.95 or >0.8 is obtained for the 
incorrect class (colored in yellow). a Clear diagnosis group (Heidelberg 
classifier score >0.84). b Difficult diagnosis group (Heidelberg classifier score 
<0.84). c Distribution of the number of CpG sites covered at each simulated 
timepoint.



Extended Data Fig. 4 | Sample purity simulation results. a, Histogram 
showing the reported sample purity in the Capper et al. training dataset. b, Due 
to the inherent sample purity, the number of samples where high purity can be 
simulated is limited. This histogram shows the number of used simulations at 
each purity level. c and d barplots showing the simulation results at a 0.95 (c)  
or 0.8 (d) cutoff at different sequencing depths (represented by the average 

number of 450 K CpG sites covered.). Bars are colored by correct and confident 
(score above cutoff) outcomes, correct but low confidence outcomes (highest 
scoring class is correct, but the score is below the confidence threshold), high 
and low confidence control outcomes (the highest scoring class is one of the 
control classes), and wrong outcomes where an incorrect class scores highest 
below or above the confidence threshold.
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Extended Data Fig. 5 | Retrospective nanopore sequencing results. 
Sturgeon confidence scores for 27 pediatric CNS tumor samples (duplicates 
indicated by appended “_1” to the sample name at increasing sequencing time 
(5 min pseudo time intervals). Top bar indicates the sample name. Circles 
indicate the predicted score of the correct class; diamonds indicate the 

predicted score of incorrect classes (classes with overtime averaged scores 
lower than 0.1 are omitted). Asterisks indicate the first time point where the 
score of the correct class was higher than 0.95. Horizontal line indicates the 
0.95 threshold.



Extended Data Fig. 6 | Robustness analysis results. For each sample sequence 
reads were randomly sampled to reflect a nanopore run at a specific duration. 
100 simulations were generated for each timepoint. Colored bars indicate 

correct outcomes above the confidence threshold (0.95), dashed colored bars 
indicate correct outcomes below the threshold, gray dashed bars indicate 
unclear outcomes and black bars indicate wrong outcomes above the treshold.
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Extended Data Fig. 7 | Copy Number Variations. As a proof of principle we 
sequenced a retrospective Oligodendroglioma sample with a known 1p/19q 
codeletion. This sample was difficult to specify as an Astrocytoma or 
Oligodendroglioma based on methylation profile and histology (Supplementary 
Fig. 13). In such cases the 1p/19q codeletion offers strong supporting evidence 
for the Oligodendroglioma diagnosis. a, We sequenced this sample to 1.2 million 
reads, dots represent the normalized coverage (Methods) for 2 Mb bins, red 
lines indicate the DNAcopy segmentation result which clearly shows the 1p/19q 

codeletion. Bins that fall within segments with a log2 value < −0.5 are colored 
blue and bins that fall in segments > 0.5 are colored green. b and c, We then 
subsampled to 50,000 and 20.000 random reads and repeated the analysis; in 
both sequence depths the 1p deletion is clearly visible, and the 19q deletion is 
visible but less clearly defined. d and e, the segmentation results from 10 
random downsamplings at a sequence depth of 20.000 and 50.000 sequence 
reads respectively. Red lines indicate the segmentation of the full dataset and 
blue dashed lines show the result of individual subsamplings.



Extended Data Fig. 8 | Intraoperative sequencing results. Sturgeon 
confidence scores over time for the 25 intraoperative sequencing experiments. 
Class corresponding to the integrated histomolecular diagnosis are shown in 
circles (with the exception of INTRA_24, where the highest scoring Heidelberg 

V11b4 class is indicated as a circle) and other classes are shown as diamonds. 
Headers are colored following the same style as described in the circles, with 
the exception of INTRA_11 (Germinoma, class not in the classifier) and 
INTRA_13 (exotic case) which are colored white.
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Extended Data Table 1 | Overview of the intraoperative sequencing cases

Sturgeon, indicates the class reached the 0.95 confidence score, asterisk indicates classes that did not reach the 0.95 confidence scores (see Extended Data Fig. 8 and Supplementary Table 8). 
CV, Pore chemistry version. ST, Sequencing time until the 0.95 confidence threshold was reached. Heidelberg, the diagnosis using the Heidelberg v11b4 classifier and score between paren-
thesis. Diagnosis, lists the integrated histomolecular diagnosis in the 2021 WHO CNS tumor classification system. Notes, indicates specific circumstances where applicable. ∗: confidence 
score >0.95 not reached. ∗∗: RELA fusion positive Ependymoma is renamed to ZFTA fusion positive Ependymoma in 2021 WHO CNS tumor classification system.
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Trials Registry Platform: NL7744, https://onderzoekmetmensen.nl/en/trial/21619)). Inclusion of intraoperative samples was 
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study. Sample sizes were determined based on availability, the 94 methylation array profiles form a representative cross section of patients, 
and by simulation of shallow sequence runs this number is upsampled 
to allow extensive model validation. 
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