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Abstract: This paper proposes a new cover selection method for steganography. We focus on the
scenario that the available images for selection contain diversified sources, i.e., nature images and
metaverse images. For the scenario, we design a targeted strategy to evaluate the suitability for
steganography of a candidate image, which selects images according to the undetectability against
steganalytic tools symmetrically. Firstly, steganalytic features of the candidate images are extracted.
Then, the features are fed on a steganalytic classifier, and the possibility of carrying secret data
is calculated for cover selection. As a result, the selected images are the best candidates to resist
steganalysis. Experimental results show that our method performs better than existing cover selection
schemes when checked by steganalytic tools.
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1. Introduction

The field of steganography aims to discreetly embed confidential information within
regular media, enabling its transmission without arousing suspicion [1]. To achieve this
objective, modifications must be made to the content of cover images, which serve as
carriers for the concealed data. Steganalysis, as an adversarial approach to steganography,
focuses on discerning the presence of hidden data by scrutinizing the statistical attributes of
stego images—images that bear concealed information [2]. Both techniques have witnessed
substantial advancements over the past two decades [3]. Currently, cutting-edge stegano-
graphic techniques focus on minimizing the alterations’ impact to enhance their conceal-
ment against steganalysis. This objective is accomplished by employing advanced methods
like STC (syndrome trellis coding) [4] or SPC (steganographic polar codes) [5], which utilize
predefined distortion functions. For spatial images, several distortion functions have been
proposed, including WOW (wavelet obtained weights) [6], SUNIWARD (spatial universal
wavelet relative distortion) [7], HILL (high-pass, low-pass, and low-pass) [8], and MiPOD
(minimizing the power of optimal detector) [9]. Regarding JPEG images, researchers have
developed UED (uniform embedding distortion) [10], UERD (uniform embedding revisited
distortion) [11], and GUED (generalized UED) [12].

In certain steganographic scenarios, the sender is presented with multiple options in
the form of candidate images (cover images) for embedding secret data, subsequently trans-
mitting the resulting stego images. The sender’s objective in such cases is to strategically
choose the most appropriate images for steganography, thereby minimizing the risk of
exposure. As depicted in Figure 1, the available image pool comprises content sourced from
social networks, the Internet, and captured using a camera. All these images are potential
candidates for steganographic purposes. Given the communication channel’s limited ca-
pacity, it is essential for the sender to carefully choose a subset of images suitable for data
embedding. Consequently, the process of cover selection becomes crucial in determining
the optimal images that guarantee undetectability when subjected to steganalysis.
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Figure 1. Applications of cover selection.

In current daily life, digital images can be obtained from diversified sources such as
nature images and metaverse images. As shown in Figure 2, the statistical properties of
these two kinds of images are quite different. Nature images are the objective description
of the real world, while metaverse images are the self-definition of virtual space. Existing
cover selection schemes are not appropriate for nature images and metaverse images
simultaneously. In view of this, we focus on the scenario that the available images for
selection contain not only nature images but also metaverse images. We propose a new
cover selection method that is designed for the image set that contains both nature images
and metaverse images. Specifically, according to the undetectability against steganalytic
tools, we designed a strategy to evaluate the suitability for steganography of a candidate
image. Steganalytic features of the candidate image are extracted and fed on a steganalytic
classifier. Then, the possibility of carrying secret data is calculated for cover selection. In
this way, the selected images are the best candidates to resist steganalysis.

(a)

(b)

Figure 2. Nature images and metaverse images: (a) nature images; (b) metaverse images.

Our motivation encompasses two primary aspects. Firstly, instead of developing
a new embedding algorithm, we aim to enhance the undetectability of steganography
by carefully selecting appropriate cover images. This approach holds practical value as
senders typically have access to a diverse range of available images obtained through
methods such as shooting, downloading, and generation. Secondly, our focus lies in
the scenario where the available images encompass both nature-themed and metaverse-
themed content, reflecting the current abundance of digital images from various sources in
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everyday life. Through our proposed method, we significantly elevate the undetectability
of steganography, which stands as a crucial metric within the field. The contributions
offered by this paper are delineated as follows:

(1) New scenario: We examine a practical scenario where the selection pool of available
images comprises both nature-themed and metaverse-themed content. It is a signifi-
cant scenario since digital images can be obtained from diversified sources. However,
existing cover selection schemes are not appropriate for nature images and metaverse
images simultaneously. To this end, we propose to select cover images according to
undetectability against steganalytic tools. In this way, the selected images are the best
candidates to resist steganalysis.

(2) New methodology: Our method is based on the theory of ensemble learning, which
is widely used in steganalysis. The theoretical justification of our method is more
practical since it resists steganalytic tools directly. Based on the ensemble learning
theory, a targeted cover selection method has been devised to identify the most suitable
candidates for resisting steganalysis. Our proposed approach surpasses existing cover
selection schemes in terms of performance.

The following sections of this manuscript follow a specific structure: Section 2 presents
a comprehensive review of the pertinent literature. In Section 3, we outline our proposed
method for cover selection. To validate the effectiveness of our approach, we conduct a
series of experiments in Section 4. Lastly, Section 5 provides a concise summary of the
comprehensive conclusions derived from this study.

2. Related Work

This section presents a comprehensive overview of relevant literature, encompassing
established methodologies for cover selection in steganography as well as contemporary
steganalytic tools.

2.1. Cover Selection Schemes

Since we aim to select suitable cover images for steganography, the most related work
of our method are other cover selection schemes designed for steganography. Currently,
there exist a variety of cover selection techniques utilized in the field of steganography.
These techniques encompass different methodologies, such as empirical selection based on
changeable DCT (discrete cosine transform) coefficients [13], visual quality assessment [14],
ratio of similar blocks [15], content complexity, and texture regions [16,17]. However, it is
important to acknowledge that these empirical approaches do not demonstrate optimal
undetectability when subjected to steganalysis. Wu et al. [18] conducted work involving
the modeling of digital images using the Gaussian mixture model, utilizing the real value
derived from the Fisher information matrix as a measure of image suitability. Alternatively,
Wang et al. [19] presented a scheme specifically designed to counter pooled steganalysis.
This approach focuses on maintaining the MMD (maximum mean discrepancy) distance
between arbitrary and stego image sets below a predetermined threshold during the cover
selection process. In a similar vein, the authors in [20] proposed an innovative strategy
to circumvent the use of processed images as covers. They introduced a scheme that
effectively identifies and eliminates processed images from the pool of candidates. In [21],
the embedding distortion of individual candidate images was directly computed using a
distortion function. Consequently, the selection process favored cover images with lower
embedding distortions. Additionally, in the work presented by Wang et al. [22], an alter-
native approach was proposed to avoid the selection of similar images for steganography
purposes. This led to a reduction in the provision of less relevant samples for steganalysis.
Building upon this premise, image similarity and embedding distortion were combined as
joint metrics to evaluate the suitability of each available image.

Most existing cover selection schemes are based on the theory of embedding distortion
minimization, which selects suitable covers according to the theoretical distortion. Different
from existing cover selection schemes, our method is based on the theory of ensemble
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learning, which is widely used in steganalysis. The theoretical justification of our method
is more practical since it resists steganalytic tools directly. In addition, the application
scenario of our method is also different from existing cover selection schemes. We focus
on the scenario that the available images for selection contain not only nature images
but also metaverse images. Since the candidate images contain diversified sources, we
design a targeted strategy to evaluate the suitability for steganography, which select images
according to their undetectability against steganalytic tools. In this way, the selected images
are the best candidates to resist steganalysis.

2.2. Digital Steganalysis

Steganalysis endeavors to detect the presence of steganography by scrutinizing the
statistical characteristics exhibited by stego images. The underlying assumption is that
stego images exhibit substantial disparities compared to unaltered ones, attributable to
the alterations incurred during data embedding [23]. Contemporary steganalysis method-
ologies leverage supervised machine learning techniques to discriminate between clear
image models and stego image models. A variety of feature extraction methodologies have
been employed in the existing literature for training a comprehensive steganalytic classifier,
which subsequently enables the discrimination between clear images and stego images [24].
Noteworthy examples include SPAM (subtractive pixel adjacency matrix) [25], SRMQ1
(SRM with single quantization step) [26], maxSRMd2 (selection-channel-aware variant of
SRM) [27], and TLBP (threshold local binary pattern) [28].

The ensemble classifier, a prevalent choice for steganalytic classification, is utilized to
assess the characteristics of extracted feature sets [29]. This ensemble classifier comprises
numerous base learners generated via FLD (Fisher linear discriminant) learners. Each FLD
learner undergoes training on an independently selected subspace within the comprehen-
sive feature space, subsequently producing a binary decision, namely “clear” or “stego”, for
each input image. The final decision of the ensemble classifier is determined by aggregating
the votes cast by all FLD learners. The performance evaluation metric for the ensemble
classifier is denoted as the minimal total error, represented as PE, achieved on the testing
sets with equal prior probabilities. This minimal total error is defined mathematically in
Equation (1).

PE = min
PFA

(
PFA + PMD

2
). (1)

In this context, the parameters PFA and PMD represent the false alarm rate and missed
detection rate, respectively. A higher value of PE indicates diminished accuracy in steganal-
ysis, resulting in a heightened level of undetectability within steganography.

Recently, researchers developed a number of deep learning-based steganalytic net-
works, in which the operations of feature extraction and classifier training are joined
together. The detection accuracy of deep learning-based steganalysis clearly exceeds that
of handcrafted feature-based steganalysis in [30] by the utilization of high-pass filters.
Further, the authors in [31] employed the residual network to capture the modification
details of steganography. In [2], the authors aimed to detect adversarial steganography
using a two-stream CNN steganalyzer that leverages confidence artifacts and pixel artifacts.
In [32], spatial attention was used to exploit the texture information of the image itself.
Currently, the interpretability of deep learning-based steganalysis has not matured yet.

In the experimental phase, a subset of the aforementioned steganalytic tools will be
utilized to evaluate the level of undetectability exhibited by our proposed method, along
with other cover selection schemes.

3. Proposed Method

This study presents a novel approach for cover image selection in a scenario where
the available image pool includes both nature and metaverse images. In this context,
we propose a method that prioritizes the undetectability of cover images through direct
steganalysis.
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3.1. Framework

As discussed in Section 1, when employing steganography, the sender typically pos-
sesses multiple candidate images. However, due to limitations in channel capacity, only
a subset of these images can be selected for data embedding. This paper specifically ad-
dresses a scenario where the available image pool consists of both nature and metaverse
images. Existing cover selection approaches do not adequately cater to both image types
simultaneously. The primary objective of cover selection is to ensure the undetectability
of steganographic content through steganalysis. To achieve this goal, we propose a direct
approach for selecting cover images based on their undetectability against steganalysis.
By adopting this method, we can develop a cover selection technique that accommodates
diverse image sources.

Figure 3 depicts the architectural framework employed in our proposed approach for
cover selection. We begin with a collection of n candidate images, represented as {X1, X2,
. . ., Xn}. The assessment of each image’s suitability for steganography is based on its ability
to remain undetected by steganalysis techniques. Consequently, the resulting suitability
values are denoted as {D1, D2, . . ., Dn} and arranged in descending order as {D f (1), D f (2),
. . ., D f (n)}. Subsequently, we select a subset of k images, specifically {X f (1), X f (1), . . ., X f (k)},
which correspond to the highest suitability values {D f (1), D f (2), . . ., D f (k)}, where k ∈ {1,
2, . . ., n}. These selected images serve as covers for steganography. Further elucidation
regarding this process is provided below.

Figure 3. Architecture of proposed method.

3.2. Suitability Calculation

To assess the appropriateness of an image candidate, steganalytic features are first
extracted and subsequently inputted into a steganalytic classifier. Following this, the
feasibility of embedding concealed information is evaluated through hyperspace projection,
serving as a measure of suitability.

Given n candidate images {X1, X2, . . . , Xn}, the corresponding feature vectors {fc
1, fc

2,
. . . , fc

n} are, respectively, extracted using a steganalytic feature extraction algorithm, e.g.,
SPAM, SRMQ1, maxSRMd2, or TLBP. Meanwhile, secret data are respectively embedded
into the original images {X1, X2, . . . , Xn}with a given payload to obtain the corresponding n
stego images using an embedding algorithm, e.g., HILL or MiPOD. Subsequently, the same
feature extraction algorithm is applied to these stego images, allowing the extraction of their
corresponding feature vectors {fs

1, fs
2, . . . , fs

n}. Both HILL and MiPOD are the embedding
algorithms based on the embedding distortion minimization framework achieved by STC
or SPC. The differences between them are the steps to calculate the embedding cost of each
pixel. The four feature extraction schemes SPAM, SRMQ1, maxSRMd2, and TLBP are used
to capture the discrepancy of clear and stego images. The differences between them are
the strategies to find the modification trace. For example, SPAM employs the transition
probability of pixel residuals, SRMQ1 designs a number of high-pass filters, maxSRMd2
proposes to use selection channels of steganography, and the local binary pattern is used in
TLBP.
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After that, the obtained feature vectors {fc
1, fc

2, . . . , fc
n} and {fs

1, fs
2, . . . , fs

n} are used to
train a steganalytic classifier. In this paper, the ensemble classifier is employed since it is
widely used in steganalysis. As mentioned in Section 2.2, the ensemble classifier is the
combination of a lot of FLD learners. Each FLD learner is subjected to training within
a subspace, which is randomly selected from the entirety of the feature space. For each
feature vector fc

i or fs
i , following hyperspace projection, each FLD learner provides a binary

decision of either “clear” or “stego”, where i ∈ {1, 2, . . ., n}. The generalized eigenvector
fully characterizes each FLD learner during the hyperspace projection process.

v = (SW + λI)−1(µc − µs). (2)

where I is a unity matrix, and µc and µs are the means of class “clear” and “stego”,
respectively,

µc =
1
n

n

∑
i=1

fc
i , µs =

1
n

n

∑
i=1

fs
i . (3)

SW =
n

∑
i=1

(fc
i − µc)(f

c
i − µc)

T + (fs
i − µs)(f

s
i − µs)

T (4)

is denoted as the within-class scatter matrix. The small positive value of λ = 10−10 is
used for augmentation. This augmentation ensures the positivity of the resulting matrix
SW + λI, effectively addressing potential numerical instability issues that may arise in
practical scenarios where SW is singular or ill-conditioned. In the context of feature vector y
classification, an FLD learner employs the computed projection vTy and compares it against
a predetermined threshold, previously established to achieve the desired performance, in
order to reach a decision.

Denote the number of FLD learners of ensemble classifier as L, and there are lc
i

and ls
i FLD learners give a “stego” decision for fc

i and fs
i , respectively, lc

i ∈ {0, 1, . . . , L},
ls
i ∈ {0, 1, . . . , L}. Thus, the suitability Di of Xi can be calculated as,

Di = L− |lc
i − ls

i |. (5)

A higher value of Di stands for higher suitability of Xi. Intuitively, it seems that a
stego image is undetectable if few FLD learners make the “stego” decision. In other words,
it seems that an image with a small value of ls

i is suitable for steganography. However,
a stego image is produced from its clear version, and thus an undetectable stego image
should be as similar as possible to the clear version. Therefore, the logic behind Equation (5)
is that an image is suitable for steganography if its stego version is indistinguishable from
itself [33]. For this reason, we propose to select the images that show the number of FLD
learners who make the “stego” decision on the stego version is close to that on the clear
version.

3.3. Cover Selection Strategy

Considering the suitability values {D1, D2, . . . , Dn} obtained by evaluating unde-
tectability against steganalysis using Equation (5), we can identify the most appropriate
cover images for steganography. By arranging the suitability values in descending order
as {D f (1), D f (2), . . . , D f (n)}, the cover image X f (1) corresponding to the highest suitability
value D f (1) is chosen. If the need arises to select multiple images (denoted by k), then
the k images {X f (1), X f (1), . . . , X f (k)} are selected as covers, each corresponding to their
respective suitability values {D f (1), D f (2), . . . , D f (k)}. Our proposal advocates selecting
images with the highest suitability values from the available options, as greater suitability
indicates stronger undetectability.

The procedure of cover selection is summarized as Algorithm 1. Firstly, the feature vec-
tors {fc

1, fc
2, . . . , fc

n} of {X1, X2, . . . , Xn} are extracted using an existing steganalytic feature
extraction schemes such as SPAM, SRMQ1, maxSRMd2, and TLBP (Step 1). Meanwhile, se-
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cret data are embedded into {X1, X2, . . . , Xn} with a fixed payload such as 0.5 bpp using an
existing embedding algorithms such as HILL and MiPOD (Step 2). Then, the feature vectors
{fs

1, fs
2, . . . , fs

n} of the n obtained stego images are extracted using the same feature extrac-
tion scheme extracting {fc

1, fc
2, . . . , fc

n} (Step 3). With {fc
1, fc

2, . . . , fc
n} and {fs

1, fs
2, . . . , fs

n}, the
steganalytic classifier can be trained. In our method, an ensemble classifier is employed
(Step 4). With the trained ensemble classifier, all values of {lc

i } and {ls
i } are calculated

by counting the numbers of FLD learners that give a “stego” decision for {fc
i } and {fs

i }
(Step 5). Subsequently, the suitability scores {D1, D2, . . ., Dn} for each image {X1, X2, . . ., Xn}
are computed using Equation (5) (Step 6). As higher values of Di indicate greater suitability
of Xi, the images with the highest suitability scores are chosen as covers. To accomplish this,
the suitability scores {D1, D2, . . ., Dn} are arranged in descending order as {D f (1), D f (2), . . .,
D f (n)} (Step 7). Ultimately, the images {X f (1), X f (2), . . ., X f (k)} with the topmost suitability
scores {D f (1), D f (2), . . ., D f (k)} are selected as covers.

It can be known that the computational cost of above steps mainly contains data
embedding, feature extraction, and classifier training. Therefore, the computational cost of
our method is determined by those of existing embedding algorithms, steganalytic feature
extraction schemes, and ensemble classifiers.

Algorithm 1 Cover selection strategy
Input: Available images {X1, X2, . . . , Xn}; Number of needed cover images: k
Output: Selected k images {X f (1), X f (2), . . . , X f (k)}

(1) Extract the feature vectors {fc
1, fc

2, . . . , fc
n} of {X1, X2, . . . , Xn} using an existing

steganalytic feature extraction scheme;
(2) Embed secret data into {X1, X2, . . . , Xn} with a fixed payload;
(3) Extract the feature vectors {fs

1, fs
2, . . . , fs

n} of the n stego images obtained by Step (2)
using the same feature extraction scheme;

(4) Train an ensemble classifier using the obtained feature vectors {fc
1, fc

2, . . . , fc
n} and

{fs
1, fs

2, . . . , fs
n};

(5) Calculate all values of {lc
i } and {ls

i } with the trained classifier;
(6) Calculate suitabilities {D1, D2, . . . , Dn} for all images {X1, X2, . . . , Xn} using

Equation (5);
(7) Sort {D1, D2, . . . , Dn} in descending order into {D f (1), D f (2), . . . , D f (n)};
(8) Select {X f (1), X f (2), . . . , X f (k)} as cover images for steganography.

4. Experimental Results

To validate the efficacy of our approach, a series of experiments were carried out within
this section. Initially, we established the experimental settings and subsequently presented
the outcomes pertaining to the unnoticeability aspect, as assessed through contemporary
steganalytic techniques.

4.1. Experiment Setup

In our experimental investigations, the UCID image dataset [34] was utilized, encom-
passing a collection of 1338 nature images with dimensions of 512 × 384. Additionally,
we incorporated 1000 metaverse images sourced from the Bigverse website [35], which
exhibited diverse sizes. To ensure uniformity, all images were resized to dimensions of
512 × 512 and employed as the pool of available images (n = 2338) for cover selection.

Utilizing our proposed methodology, a selection of cover images suitable for stegano-
graphic purposes can be made. In the subsequent experimental phase, varying quantities
of cover images were chosen from the pool of 2338 available images using our approach,
specifically 200, 400, 600, 800, and 1000 images (k = 200, 400, 600, 800, and 1000). For
the purpose of comparison, we also employed four cover selection schemes introduced
in [19–22], selecting an equal number of images from the same pool of available images.
Subsequently, the HILL and MiPOD embedding schemes, both widely acknowledged, were
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employed to embed data at a payload of 0.5 bits per pixel (bpp), thereby producing the
corresponding stego images.

To assess the undetectability of steganography in the obtained stego images, stegan-
alytic tools described in Section 2.2 were employed. Four widely used feature extraction
algorithms, namely SPAM, SRMQ1, maxSRMd2, and TLBP, were utilized to extract the
feature sets from both cover and stego images. Afterwards, an ensemble classifier was
employed to evaluate the performance of these feature sets. The training phase involved
utilizing half of the cover and stego feature sets, while the remaining sets were used for
testing. The undetectability of steganography was determined by measuring the minimal
total error PE achieved on the testing sets, assuming identical priors.

4.2. Undetectability

For steganography, the most important indicator is the undetectability measured by
PE. Other indicators for digital images such as PSNR aSSIM can be always satisfactory since
the modification amplitude of steganography is +1 or−1 usually. Figures 4–7 presented the
comparisons of PE (minimal total error) achieved by our method and the cover selection
schemes proposed in previous works [19–22]. In these graphs, a varying number of images
(200, 400, 600, 800, and 1000) were selected from a pool of 2338 available images using
either our method or the schemes described in [19–22]. The legends “HILL-Proposed”
and “MiPOD-Proposed” refer to cover images selected by our method and subsequently
embedded using HILL or MiPOD techniques. The legends “HILL-1” [19], “HILL-2” [20],
“HILL-3” [21], “HILL-4” [22], “MiPOD-1” [19], “MiPOD-2” [20], “MiPOD-3” [21], and
“MiPOD-4” [22] represent cover images selected by the schemes outlined in [19–22], fol-
lowed by embedding using HILL or MiPOD methods.

The employed steganalytic feature extraction algorithm in Figures 4–7 varied across
different settings. In Figure 4, we utilized SPAM to extract features from the selected images,
including those chosen by our method and the scheme presented in [19–22]. Additionally,
SPAM was applied to extract features from the stego images generated from the selected
cover images. For Figure 5, the feature extraction involved using SRMQ1 on both cover
and stego images. Finally, maxSRMd2 and TLBP were employed for feature extraction in
Figures 6 and 7, respectively.

Figure 4. Undetectability comparisons of cover selection methods against steganalytic tool SPAM
with embedding schemes (a) HILL and (b) MiPOD.
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Figure 5. Undetectability comparisons of cover selection methods against steganalytic tool SRMQ1
with embedding schemes (a) HILL and (b) MiPOD.

Figure 6. Undetectability comparisons of cover selection methods against steganalytic tool maxS-
RMd2 with embedding schemes (a) HILL and (b) MiPOD.

Figure 7. Undetectability comparisons of cover selection methods against steganalytic tool TLBP
with embedding schemes (a) HILL and (b) MiPOD.

In most cases, our method exhibits a higher level of undetectability compared to other
cover selection schemes. Compared with the scheme in [22], our method shows average
improvements of 2.37% and 2.77% on PE against SPAM and SRMQ1, respectively. Against
maxSRMd2 and TLBP, the improvements are 4.21% and 3.94%. Similarly, when compared
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to the scheme introduced in [21], our method demonstrates average improvements of 2.17%,
2.79%, 4.00%, and 4.20% on PE against SPAM, SRMQ1, maxSRMd2, and TLBP, respectively.
Furthermore, Compared with schemes in [19,20], our method achieves corresponding
average improvements of 17.75%, 9.68%, 8.73%, 8.93%, 19.35%, 11.67%, 9.79%, and 10.74%
against SPAM, SRMQ1, maxSRMd2, and TLBP, respectively. The observed improvements in
our method are justified as it is specifically tailored for an image set comprising both nature
images and metaverse images, distinguishing it from other methods. Furthermore, it is
evident that our method, along with the schemes proposed in [21,22], exhibits significantly
higher undetectability compared to the remaining two schemes. This distinction can be
attributed to the fact that the schemes presented in [19,20] are primarily designed for
specific scenarios.

Our method adopts a distortion minimization framework that employs pre-defined
distortion functions, such as MiPOD, HILL, SUNIWARD, and WOW, which are widely
recognized steganographic paradigms. These distortion functions represent the most
popular approaches in the field. Furthermore, our approach exhibits substantial efficacy
when employed in diverse steganographic frameworks that employ a consistent distortion
function, thereby ensuring its adaptability across a wide range of scenarios.

5. Conclusions

This paper presents a novel approach to cover selection for steganography, targeting a
practical scenario whereby available images consist of both nature and metaverse images.
The proposed method focuses on assessing the suitability of a candidate image for steganog-
raphy based on its undetectability against steganalysis. Experimental results demonstrate
the effectiveness of this approach, as it surpasses existing cover selection schemes in terms
of undetectability when evaluated using modern steganalytic tools. Future research endeav-
ors could explore the development of more comprehensive cover selection frameworks
that cater to different image types, such as spatial images and JPEG images, which vary in
their data processing characteristics and require specialized approaches.
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