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Abstract

This paper investigates the densification of witnesses for randomized algorithm design and its application in
factoring integers. By defining a set operation named with Cartesian subtraction on two countable sets and
proving several properties of the operation, it is shown that the Cartesian subtraction can densify certain
elements in a countable set so as to promote the abundance of witnesses for the randomized algorithm
design. It is also proven that the Cartesian subtraction of two sets containing consecutive integers can
form a triangular lattice zone that has a higher density of witnesses. Through designing an algorithm of
a two-dimensional simple random walk on the triangular lattice zone, it is demonstrated that composite
integers can be factored by means of the random walk. The study of the paper explores a pathway feasible
and workable to densify the small witnesses in a countable set for randomized algorithm designs.

Keywords: Set operation; randomized algorithm; random walk; integer factorization.

2010 Mathematics Subject Classification: 03E99,68Q87, 68W20, 60G50.

*Corresponding author: E-mail: 153668@qq.com, xbwang@fosu.edu.cn;

J. Adv. Math. Com. Sci., vol. 38, no. 10, pp. 44-69, 2023

https://www.sdiarticle5.com/review-history/106765


Wang; J. Adv. Math. Com. Sci., vol. 38, no. 10, pp. 44-69, 2023; Article no.JAMCS.106765

1 Introduction

Finding out a hidden (or unknown) objective element in a set is a necessary task in many scientific research
activities, e.g., solving an equation. When we want to find an unknown object related to an element in a discrete
set, e.g., find a divisor of a composite integer N , randomized algorithms are frequently applied, as claimed in [1]
and summarized in [2]. When applying the random algorithm, the abundance of witnesses is a critical issue to
affect the searching cost, as Richard M Karp pointed out [3]. Promoting the efficiency to find a witness is sure to
reduce the searching cost. Accordingly, scholars made certain researches on the topic. Some researched witness
generators [4][5][6], and some researched efficient searching techniques for small witnesses[7][8][9]. However, seen
in the literatures, few have been found to concentrate the witnesses or make the witnesses denser. Densification
of the witnesses is sure to increase the probability of successful searches and reduce the searching cost.

This paper aims at the densification of the witnesses and its application in integer factorization. By defining a
Cartesian subtraction on countable finite sets, it is discovered that certain single element in a countable finite set
can be made repeated finite many times and distributed sparsely in the set formed by the Cartesian subtraction.
By such means, the abundance of the witnesses is naturally promoted for designing the randomized algorithms.
The paper proves the related results and tests the results by applying a two-dimensional simple random walk to
factoring integers.

The paper consists of five sections. Section 2 gives the definition of the Cartesian subtraction; section 3 proves
7 lemmas, 3 theorems, and 7 corollaries; section 4, explores the application of the proven results to integer
factorization; section 5 presents the future work and hopes.

2 Preliminaries

This section presents necessary symbols, notations, definitions, and fundamental knowledge for later investigation.

2.1 Classical terminologies and symbols

In this whole paper, a set is assumed to be finite, countable, unordered, and to have subtractive operation
related with its elements. Symbols ∅,∪,− , and ∈, which are used to operate on sets, are used as their usual
meanings introduced in the textbooks. Particularly, A − B means removing from A all the elements that are
also in B. Symbol A ⇒ B means conclusion B can be derived from condition A, or we can reason from A to
B. Symbols bxc and dxe are respectively the floor and ceil functions such that x − 1 < bxc 6 x 6 dxe < x + 1
or x = bxc + {x} = dxe − 1 + {x}, where {x} is the fractional part of x. Symbol x = a mod b means x is the
remainder of a dividing by b, namely, a = kb+ x, where a, b, k, and x are all integers.

2.2 New notations

Let S be a finite set and e ∈ S; the number of e is called the multiplicity of e and denoted with me. For example,
S = {1, 2, 2, 3} ⇒ m1 = 1,m2 = 2, and m3 = 1. Symbol e∨m means e is repeated by m times and placed together
without considering their orders, namely, e∨m = e, e, ..., e︸ ︷︷ ︸

m times

. By this means, S = {1, 2, 3, 2} = {1∨1, 2∨2, 3∨1}.

Let X = {x1, x2, ..., xn} be a finite set containing n > 0 elements; symbol Xk with integer k > 0 means the set

{x1, x1, ..., x1︸ ︷︷ ︸
k times

, x2, x2, ..., x2︸ ︷︷ ︸
k times

, ..., xn, xn, ..., xn︸ ︷︷ ︸
k times

} = {x∨k1 , x∨k2 , ..., x∨kn } = {x∨k1 } ∪ {x∨k2 } ∪ ... ∪ {x∨kn }

Let A = {a1, a2, ..., an} be a finite set of n integers, where n > 0 is an integer; then −A = {−a1,−a2, ...,−an},
and B = A(modX) means B = {a1 mod X, a2 mod X, ..., an mod X}, where X 6= 0 is an integer . If B =
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{b1, b2, ..., bn} is a set of n > 0 integers, B ≡ A(modX) means bi ≡ ai(modX) for i = 1, 2, ..., n.

An integer interval [a, b] means the set of all the integers bounded with a and b with a < b; for example, integer
interval [5, 9] = {5, 6, 7, 8, 9}. An old integer interval [a, b] means the set of all the odd integers bounded with
odd integers a and b with a < b; for example, odd integer interval [5, 9] = {5, 7, 9}. If an integer interval contains
integer x, that integer interval is called a host interval of x. If d is a nontrivial divisor of nonzero integer n, n is
called a host number of d or a number hosting d.

2.3 New definitions

Definition 2.1. Let X = {x1, x2, ..., xn} be a finite set, where n > 0 is an integer; X is called a zero set if each
of its elements is zero, namely, X = {0, 0, ..., 0︸ ︷︷ ︸

n ones

}. Use X = 0 to indicate X is a zero set.

Definition 2.2. Let A = {a1, a2, ..., as} and B = {b1, b2, ..., bt}, where s and t are positive integers; the Cartesian
subtraction B 	A is defined to be the set

B 	A = {bi − aj |bi ∈ B, aj ∈ A, 1 ≤ i ≤ t, 1 ≤ j ≤ s}

For convenience, it is simply denoted by

B 	A = {bi − aj |bi ∈ B, aj ∈ A}

Obviously, B 	A 6= ∅.

Remark 2.1. ’Cartesian subtraction’ is named by referring to the terminology ’Cartesian product’ , which can
be found in many literatures, e.g., Eric’s book [10]. Seen at page 2670 of [10], the Cartesian product of two sets
A and B is defined to be the set of all points (a, b) where a ∈ A and b ∈ B. Definition 2.2 is derived according
to this concept. Likewise, the Cartesian sum of two sets can also be defined by

A⊕B = {aj + bi|aj ∈ A, bi ∈ B}

However, this paper merely concerns the Cartesian subtraction.

Definition 2.3. Let A = {a1, a2, ..., an} be a finite set, where n is a positive integer. The set Ã formed by all
the distinct terms in A is called the core of A. For example, A = {1, 2, 2, 3} ⇒ Ã = {1, 2, 3}.

3 Main Results

Several lemmas are obtained to describe the properties of B 	 A in the general case; several theorems and
corollaries are also obtained with respect to the sets of integers.

3.1 General properties

Lemma 3.1. Assume A = {a}, B = {b}, and C = {c1, c2, ..., cn}, where n > 0 is an integer; let CA = C 	 A
and CB = C 	B; then

CA ∪ CB = {ci − xj |, ci ∈ C, xj ∈ A ∪B}

or

(C 	A) ∪ (C 	B) = C 	 (A ∪B)
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Proof. Direct calculations show{
CA = {c1 − a, c2 − a, ..., cn − a}
CB = {c1 − b, c2 − b, ..., cn − b}

⇒ CA ∪ CB

= {c1 − a, c2 − a, ..., cn − a, c1 − b, c2 − b, ..., cn − b}
Let X = {ci − xj |, ci ∈ C, xj ∈ A ∪B}; then

X = {c1 − a, c2 − a, ..., cn − a, c1 − b, c2 − b, ..., cn − b}

As a result,
CA ∪ CB = X

establishing the lemma.

Lemma 3.2. Assume A1 = {a1},A2 = {a2}, A = {a1, a2} = A1 ∪ A2, and B = {b1, b2, ..., bn}, where n > 0 is
an integer; let

C1 = B 	A1 = {bi − a1|, bi ∈ B, a1 ∈ A}, C2 = B 	A2 = {bi − a2|, bi ∈ B, a2 ∈ A}

and
C = B 	A = {bi − aj |, bi ∈ B, aj ∈ A}

then
C = C1 ∪ C2

or
B 	A = (B 	A1) ∪ (B 	A2)

Proof. This lemma is an alternative statement of Lemma 3.1. Thus the proof is the same as that to prove
Lemma 3.1.

Lemma 3.3. Assume A = A1 ∪A2 and B = B1 ∪B2, where A1, A2, B1, and B2 are nonempty sets; then

B 	A = ∪
i,j=1,2

(Bi 	Aj)

More generally, A = A1 ∪A2 ∪ ... ∪Ak and B = B1 ∪B2 ∪ ... ∪Bl yield

B 	A = ∪(Bi 	Aj)

where k and l are positive integers, Ai 6= ∅, and Bj 6= ∅ for 1 ≤ i ≤ l and 1 ≤ j ≤ k.

Proof. Without loss of generality, assume A1 = {a11, a12, ..., a1s}, A2 = {a21, a22, ..., a2t}, B1 = {b11, b12, ..., b1u},
and B2 = {b21, b22, ..., b2v}, where s, t, u, and v are positive integers; let C = B 	A; then by definition

B 	A = {b1i − a1x, b1i − a2y, b2j − a1x, b2j − a2y|b1i, b2j ∈ B, a1x, a2y ∈ A,
1 ≤ i ≤ u, 1 ≤ j ≤ v, 1 ≤ x ≤ s, 1 ≤ y ≤ t}

Since
B1 	A1 = {b1i − a1x|b1i ∈ B, a1x ∈ A, 1 ≤ i ≤ u, 1 ≤ x ≤ s}
B1 	A2 = {b1i − a2y|b1i ∈ B, a2y ∈ A, 1 ≤ i ≤ u, 1 ≤ y ≤ t}
B2 	A1 = {b2j − a1x|b2j ∈ B, a1x ∈ A, 1 ≤ j ≤ v, 1 ≤ x ≤ s}

and
B2 	A2 = {b2j − a2y|, b2j ∈ B, a2y ∈ A, 1 ≤ j ≤ v, 1 ≤ y ≤ t}

it is sure B 	A = ∪
i,j=1,2

(Bi 	Aj).
The general case is proven in the same way.
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Lemma 3.4. Assume A = {a}, B = {a, a} and C = {c1, c2, ..., cn}, where n > 0 is an integer. Let

CA = C 	A = {ci − a|, ci ∈ C, a ∈ A}

and

CB = C 	B = {ci − xj |, ci ∈ C, xj ∈ B}

then

CB = C2
A

or

C 	B = C 	A2 = (C 	A)2

More generally, A = {a} and X = {a, a, ..., a︸ ︷︷ ︸
k ones

} yield C 	X = CkA or

C 	X = C 	Ak = (C 	A)k

Proof. Direct calculations show{
CA = {c1 − a, c2 − a, ..., cn − a}
CB = {c1 − a, c1 − a, c2 − a, c2 − a..., cn − a, cn − a}

⇒ CB = C2
A

Since B = A2, it follows

C 	B = C 	A2 = (C 	A)2

Since X = Ak, it holds

C 	X = C 	Ak = {(c1 − a)∨k, (c2 − a)∨k, ..., (cn − a)∨k} = CkA = (C 	A)k

Lemma 3.4*. Assume A = {a},B = {a, a} and C = {c1, c2, ..., cn}, where n > 0 is an integer. Let

CA = A	 C = {a− ci|, ci ∈ C, a ∈ A}

and

CB = B 	 C = {xj − ci|, ci ∈ C, xj ∈ B}

then

CB = C2
A

or

B 	 C = A2 	 C = (A	 C)2

More generally, A = {a} and X = {a, a, ..., a︸ ︷︷ ︸
k ones

} yield X 	 C = CkA or

X 	 C = Ak 	 C = (A	 C)k
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Proof. Direct calculations show{
CA = {a− c1, a− c2, ..., a− cn}
CB = {a− c1, a− c1, a− c2, a− c2..., a− cn, a− cn}

⇒ CB = C2
A

Hence it follows
C 	B = C 	A2 = (C 	A)2

Since X = Ak, it holds

X 	 C = Ak 	 C = {(a− c1)∨k, (a− c2)∨k, ..., (a− cn)∨k} = CkA = (A	 C)k

Lemma 3.5. Assume A = {a} and B = {b1, b2, ..., bn}, where n > 0 is an integer; then

(A	B)k = −(B 	A)k

where k >0 is an integer.

Proof. Comparison to the proofs of Lemma 3.4 and Lemma 3.4* immediately results in this lemma.

Lemma 3.6. Assume A = {a}, B = {b} and C = {c}; then

(C 	Ag) ∪ (C 	Bg) = ((C 	A) ∪ C 	B))g

where g is a positive integer.

Proof. Since Ag = {a, a, ..., a︸ ︷︷ ︸
g times

} and Bg = {b, b, ..., b︸ ︷︷ ︸
g times

}, direct calculations show



C 	Ag = {c− a, c− a, ..., c− a︸ ︷︷ ︸
g times

} = {(c− a)∨g}

C 	Bg = {c− b, c− b, ..., c− b︸ ︷︷ ︸
g times

} == {(c− b)∨g}

⇒ (C 	Ag) ∪ (C 	Ag) = {(c− a)∨g, (c− b)∨g} = ((C 	A) ∪ (C 	B))g

Lemma 3.7. Assume A = {a, a, ..., a︸ ︷︷ ︸
p ones

} and B = {b, b, ..., b︸ ︷︷ ︸
q ones

}, where p and q are positive integers. Let

C = B 	A = {bi − aj |, bi ∈ B, aj ∈ A}

then
C = {(b− a)∨pq}

Proof. . Direct calculations show

C = {(b− a)∨p, (b− a)∨p, ..., (b− a)∨p︸ ︷︷ ︸
q ones

} = {(b− a)∨pq}
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3.2 Properties related to integer sets

Theorem 3.8. Let k and l be two positive integers, α = min(k, l), and β = max(k, l); assume A = {a1, a2, ..., ak}
and B = {b1, b2, ..., bl} are two sets of consecutive integers such that b1 − ak = ω ≥ 0; let C be the Cartesian
subtraction B 	A defined by

C = B 	A = {cij = bi − aj |bi ∈ B, aj ∈ A}
then the following statements hold:

1. The element cij is calculated by

cij = bi − aj = ω + (i− 1) + (k − j), i = 1, 2, ..., l; j = 1, 2, ..., k. (3.1)

Consequently, C contains kl elements among which the smallest one is ω, the biggest one is ω+(l-1)+(k-1).

2. There are in C totally k+ l−1 distinct elements, which are ω, ω+1,. . . , and ω+(l-1)+(k-1). Accordingly,
there are certain duplicative elements in C and the multiplicity of each element is given by

mω = 1,mω+1 = 2, ...,mω+α−2 = α− 1,
mω+α−1 = ... = mω+β−1 = α,
mω+β = α− 1,mω+β+1 = α− 2, ...,mω+β+α−3 = 2,mω+β+α−2 = 1.

(3.2)

That is to say, among the k + l-1 distinct elements in C, there are β − α + 1 ones with multiplicity α, 2 ones
with multiplicity α-1, 2 ones with multiplicity α-2, and so forth, 2 ones with multiplicity 1.

Proof. Since A and B are sets of consecutive positive integers, it knows bi = b1 + i − 1 and aj = a1 + j − 1 =
ak − k + j. Consequently, it holds

bi − aj = b1 + i− 1− (ak − k + j) = b1 − ak + (i− 1) + k − j = ω + (i− 1) + (k − j)

which is just the formula (3.1).

Now writing C in the following form of rows and columns

C =


b1 − a1, b1 − a2, b1 − a3, ... b1 − ak,
b2 − a1, b2 − a2, b2 − a3, ... b2 − ak,
... ... ... ... ...
bl − a1, bl − a2, bl − a3, ... bl − ak


If k = l, it yields

C =


ω + k − 1, ω + k − 2, ω + k − 3, ... ω,
ω + k ω + k − 1, ω + k − 2, ... ω + 1,
... ... ... ... ...
ω + 2k − 2, ω + 2k − 3, ω + 2k − 4, ... ckk = ω + k − 1

 (3.3)

If k < l, it follows

C =



ω + k − 1, ω + k − 2, ω + k − 3, ... ω,
ω + k ω + k − 1, ω + k − 2, ... ω + 1,
... ... ... ... ...
ω + 2k − 2, ω + 2k − 3, ω + 2k − 4, ... ckk = ω + k − 1,

ω + 2k − 1, ω + 2k − 2, ω + 2k − 3, ... ω + k,
... ... ... ... ...
ω + l− 1 + k − 1, ω + l− 1 + k − 2, ω + l− 1 + k − 3, ... clk = ω + l− 1


(3.4)

If k > l, it follows

C =


ω + k − 1 ω + k − 2 ... ω + k − l ω + k − l− 1 ... ω
ω + k ω + k − 1 ... ω + k − l + 1 ω + k − l ... ω + 1
... ... ... ... ... ... ...
ω + k + l− 2 ω + k + l− 3 .. cll = ω + k − 1 ω + k − 2 ... clk = ω + l− 1

 (3.5)

The formulas (3.3), (3.4) ,and (3.5) obviously show that C contains kl elements among which
ω is the smallest one and ω + (l-1)+(k-1) is the biggest one. The formulas (3.3), (3.4) ,and
(3.5) also prove the law revealed in (3.2).
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Remark 3.1. In (3.3),(3.4), and (3.5), C is orderly expressed in terms of its elements. Without considering the
order of the elements, for the case k 6= l, C is expressed by

C = {ω∨1, (ω + 1)∨2, ..., (ω + α− 2)∨(α−1), (ω + α− 1)∨α, (ω + α)∨α, ..., (ω + β − 1)∨α, (ω + β)∨(α−1),
..., (ω + β + α− 3)∨2, (ω + β + α− 2)∨1}

For the case k = l, it yields

C = {ω∨1, (ω + 1)∨2, ..., (ω + α− 2)∨(α−1), (ω + α− 1)∨α, (ω + α)∨(α−1), ..., (ω + 2α− 3)∨2, (ω + 2α− 2)∨1}

Let mx, where x ∈ C, be the multiplicity function on C; then its graph is depicted as Fig 1.

Fig. 1. Graph of mx with l ≥ k > 0

Example 3.9. Let A = {1, 2, 3, 4} and B = {5, 6, 7, 8}; then k = 4, l = 4, ω = 1, and

C = {4, 3, 2, 1, 5, 4, 3, 2, 6, 5, 4, 3, 7, 6, 5, 4} = {1∨1, 2∨2, 3∨3, 4∨4, 5∨3, 6∨2, 7∨1}

It can be seen that, the number 4 appears 4 times, the number 3 appears 3 times and the number 2 appears 2
times. That is m1 = 1, m2 = 2, m3 = 3, m4 = 4, m5 = 3, m6 = 2, and m1 = 7.

Example 3.10. Let A = {1, 2, 3, 4} and B = {4, 5, 6, 7}; then k = 4, l = 4, ω = 0, and

C = {3, 2, 1, 0, 4, 3, 2, 1, 5, 4, 3, 2, 6, 5, 4, 3} = {0∨1, 1∨2, 2∨3, 3∨4, 4∨3, 5∨2, 6∨1}

Hence m0 = 1,m1 = 2,m2 = 3,m3 = 4,m4 = 3,m5 = 2, and m6 = 1.

Example 3.11. Let A = {1, 2, 3} and B = {5, 6, 7, 8}; then k = 3, l = 4, ω = 2, and

C = {4, 5, 6, 7, 3, 4, 5, 6, 2, 3, 4, 5} = {2∨1, 3∨2, 4∨3, 5∨3, 6∨2, 7∨1}

Hence m2 = 1,m3 = 2,m4 = 3,m5 = 3,m6 = 2, and m7 = 1.

Example 3.12. Let A = {−3,−2,−1} and B = {0, 1, 2, 3}; then k = 3, l = 4, ω = 1, and

C = {3, 4, 5, 6, 2, 3, 4, 5, 1, 2, 3, 4} = {1∨1, 2∨2, 3∨3, 4∨3, 5∨2, 6∨1}

Hence m1 = 1,m2 = 2,m3 = 3,m4 = 3,m5 = 2, and m6 = 1.

Example 3.13. Let A = {−4,−3,−2,−1} and B = {1, 2, 3, 4}; then k = 3, l = 4, ω = 2, and

C = {5, 4, 3, 2, 6, 5, 4, 3, 7, 6, 5, 4, 8, 7, 6, 5} = {2∨1, 3∨2, 4∨3, 5∨4, 6∨3, 7∨2, 8∨1}

Hence m2 = 1,m3 = 2,m4 = 3,m5 = 4,m6 = 3,m7 = 2, and m8 = 1.
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Example 3.14. Let A = {−3,−2,−1} and B = {0, 1, 2, 3, 4}; then k = 4, l = 5, ω = 1, and

C = {3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5} = {1∨1, 2∨2, 3∨3, 4∨3, 5∨3, 6∨2, 7∨1}

Hence m1 = 1,m2 = 2,m3 = 3,m4 = 3,m5 = 3,m6 = 2, and m7 = 1.

Example 3.15. Let A = {1, 2, 3, 4, 5, 6} and B = {7, 8, 9, 10}; then k = 6, l = 4, ω = 1,

C = {6, 5, 4, 3, 2, 1, 7, 6, 5, 4, 3, 2, 8, 7, 6, 5, 4, 3, 9, 8, 7, 6, 5, 4}
= {1∨1, 2∨2, 3∨3, 4∨4, 5∨4, 6∨4, 7∨3, 8∨2, 9∨1}

Hence m1 = 1,m2 = 2,m3 = 3,m4 = 4,m5 = 4,m6 = 4,m7 = 3,m8 = 2, and m9 = 1.

Corollary 3.16. Let k, l, A, B and C be defined as those in Theorem 3.8; if A = B, then

1. The elements in C are list in rows and columns by

C =


0, −1, −2, ..., 1− k,
1, 0, −1, ... 2− k,
... ... ... ... ...
k − 1, k − 2, k − 3, ... 0

 (3.6)

or
C = {(1− k)∨1, (2− k)∨2, ...,−1∨(k−1), 0∨k, 1∨(k−1), 2∨(k−2), ..., (k − 2)∨2, (k − 1)∨1} (3.7)

which leads to m1−k = 1,m2−k = 2, ...,m−p = k − p, ...,, m−2 = k − 2, m−1 = k − 1, m0 = k,
m1 = k − 1,m2 = k − 2,...,mp = k − p,...,mk−2 = 2, and mk−1 = 1.

2. There are k elements between two repeated elements that take the same value.

Proof. The condition A = B yields ω = 1− k. This and (3.3) soon result in (3.6) and (3.7). The list (3.6) also
establishes the conclusion 2.

Remark 3.2. Consider Ĉ such that ĉij = |cij |, where ĉij ∈ Ĉ; then

Ĉ = {0∨k, 1∨2(k−1), 2∨2(k−2), ..., p∨2(k−p), ..., (k − 2)∨4, (k − 1)∨2} (3.8)

Corollary 3.17. Let α, β, ω, A, and B be defined as those in Theorem 3.8, and Ĉ be defined with ĉij = |cij |;
then when B = A there are totally k2 elements in Ĉ among which there are 2(k − s) ones take value s, where s
is an integer with 0 < s ≤ k − 1.

Proof. Let C = B 	 A. By Theorem 3.8, C contains k2 elements when B = A. Hence Ĉ contains k2 elements
because it has the same number of elements as C has. The second conclusion is seen in (3.8).

Example 3.18. Let A = {1, 2, 3, 4} and B = {1, 2, 3, 4}; then

C = {0,−1,−2,−3, 1, 0,−1,−2, 2, 1, 0,−1, 3, 2, 1, 0}
= {−3∨1,−2∨2,−1∨3, 0∨4, 1∨3, 2∨2, 3∨1}

⇒ Ĉ = {0∨4, 1∨6, 2∨4, 3∨2}

Corollary 3.19. Let A = [a+ 1, a+ j], B = [a+ j + 1, a+ j + k], C = [a+ j + k + 1, a+ j + k + l] be integer
intervals, and S = A ∪B ∪ C, where a is an integer, j ≥ 1, k ≥ 1, and l ≥ 1 ; then

S 	 S = {(1− j − k − l)∨1, ...,−j∨(k+l)...,−1∨(j+k+l−1), 0∨(j+k+l), 1∨(j+k+l−1), ...,

j∨(k+l), (j + 1)∨(k+l−1), (j + 2)∨(k+l−2), ..., (j + k)∨l, ..., (j + k + l − 1)∨1}

Let Ŝ = {|eij ||eij ∈ S 	 S}; then

Ŝ = {0∨(j+k+l)
, 1
∨2(j+k+l−1)

, ..., j
∨2(k+l)

, (j + 1)
∨2(k+l−1)

, (j + 2)
∨2(k+l−2)

, ..., (j + k)
∨2l

, ..., (j + k + l− 1)
∨2}
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Proof. The conclusions are directly from (3.7) and (3.8).

Remark 3.3. Taking a = 0 in Corollary 3.19 results in A = [1, j], B = [j + 1, j + k], C = [j + k + 1, j + k + l],
and S = [1, j+ k+ l]. It is seen that, the bigger k and l are, the more multiplicity of the elements from [1, j− 1]
and [j, j + k].

Example 3.20. Let A = {1, 2, 3, 4}, B = {5, 6, 7}, C = {8, 9, 10, 11}; then a = 0, j = 4, k = 3, l = 4, and
S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},

S 	 S =



0, −1, −2, −3, −4, −5, −6, −7, −8, −9, −10,
1, 0, −1, −2, −3, −4, −5, −6, −7, −8, −9,
2, 1, 0, −1, −2, −3, −4, −5, −6, −7, −8,
3, 2, 1, 0, −1, −2, −3, −4, −5, −6, −7,
4, 3, 2, 1, 0, −1, −2, −3, −4, −5, −6,
5, 4, 3, 2, 1, 0, −1, −2, −3, −4, −5,
6, 5, 4, 3, 2, 1, 0, −1, −2, −3, −4,
7, 6, 5, 4, 3, 2, 1, 0, −1, −2, −3,
8, 7, 6, 5, 4, 3, 2, 1, 0, −1, −2,
9, 8, 7, 6, 5, 4, 3, 2, 1, 0, −1,
10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0


= {−10∨1,−9∨2,−8∨3,−7∨4,−6∨5,−5∨6,−4∨7,−3∨8,−2∨9,−1∨10,

0∨11, 1∨10, 2∨9, 3∨8, 4∨7, 5∨6, 6∨5, 7∨4, 8∨3, 9∨2, 10∨1}

and
Ŝ = {0∨11, 1∨20, 2∨18, 3∨16, 4∨14, 5∨12, 6∨10, 7∨8, 8∨6, 9∨4, 10∨2}

Corollary 3.21. Let a be an integer; taking A = {a}, B = {a+1, ..., a+k}, C = {a+k+1, a+k+2, ..., a+k+l},
and S = A ∪B ∪ C, where k ≥ 1 and l ≥ 1 are integers; then

S 	 S = {−(k + l)∨1,−k∨(l+1), ...,−2∨(k+l−1),−1∨(k+l), 0∨(k+l+1), 1∨(k+l), 2∨(k+l−1), ..., k∨(l+1), ..., (k + l)∨1}

Let Ŝ = {|eij ||eij ∈ S 	 S}; then

Ŝ = {0∨(k+l+1), 1∨2(k+l), 2∨2(k+l−1), ..., k∨2(l+1), ..., (k + l)∨2}

Proof. (Omitted).

Theorem 3.22. Let A and B be defined as those in Theorem 3.8; then for positive integer g, it holds

B 	Ag = (B 	A)g

and
Ag 	B = (A	B)g

Proof. Let Ai = {ai} with i = 1, 2, ..., k and Bj = {bj} with j = 1, 2, ..., l; then A = ∪
1≤i≤k

Ai, B = ∪
1≤j≤l

Bi,

Agi = {ai, ai, ..., ai︸ ︷︷ ︸
g times

}, and Ag = ∪
1≤i≤k

Agi .

Since
B 	Ag = B 	 ( ∪

1≤i≤k
Agi ) = ( ∪

1≤j≤k
Bj)	 ( ∪

1≤i≤k
Agi )

By Lemmas 3.2, 3.3, 3.4 and 3.6, it holds

B 	Ag = ∪
1≤j≤k

(Bj 	 ( ∪
1≤i≤k

Agi )) = ∪
1≤j≤k

(Bj 	 ( ∪
1≤i≤k

Ai))
g = ∪

1≤j≤k
(Bj 	A)g = (B 	A)g

Similarly, it holds
Ag 	B = (A	B)g
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Example 3.23. Let A = {1, 2, 3, 4}, Â = A2 = {1, 1, 2, 2, 3, 3, 4, 4} and B̂ = {5, 6, 7, 8}; then k = 4, l = 4 and
g = 2; direct calculations show

B̂ 	A2 = {4, 4, 3, 3, 2, 2, 1, 1, 5, 5, 4, 4, 3, 3, 2, 2, 6, 6, 5, 5, 4, 4, 3, 3, 7, 7, 6, 6, 5, 5, 4, 4}
= {1∨2, 2∨4, 3∨6, 4∨8, 5∨6, 6∨4, 7∨2}

and
A2 	 B̂ = {−4,−5,−6,−7,−4,−5,−6,−7,−3,−4,−5,−6,−3,−4,−5,−6,

− 2,−3,−4,−5,−2,−3,−4,−5,−1,−2,−3,−4,−1,−2,−3,−4}
= {−1∨2,−2∨4,−3∨6,−4∨8,−5∨6,−6∨4,−7∨2}

Compared to Example 3.9, this example demonstrates what Theorem 3.22 claims.

Corollary 3.24. Let A = {a1, a2, ..., ak} be a set of consecutive integers; then

Ag 	Ag = (A	A)g
2

= {(ai − aj)∨g
2

|ai, aj ∈ A, 1 ≤ i, j ≤ k}

where k and g are positive integers.

Proof. Let Â = B̂ = Ag and

Ĉ = B̂ 	 Â = {cij |cij = bi − aj , bi ∈ B̂, aj ∈ Â}

then Â and B̂ are given by

Â = {a1, a1, ..., a1︸ ︷︷ ︸
g times

, a2, a2, ..., a2︸ ︷︷ ︸
g times

, ..., ak, ak, ..., ak︸ ︷︷ ︸
g times

}

and

B̂ = {a1, a1, ..., a1︸ ︷︷ ︸
g times

, a2, a2, ..., a2︸ ︷︷ ︸
g times

, ..., ak, ak, ..., ak︸ ︷︷ ︸
g times

}

Let

A1 = {a1, a1, ..., a1︸ ︷︷ ︸
g times

}, A2 = {a2, a2, ..., a2︸ ︷︷ ︸
g times

}, ..., Ak = {ak, ak, ..., ak︸ ︷︷ ︸
g times

}

and

B1 = {a1, a1, ..., a1︸ ︷︷ ︸
g times

}, B2 = {a2, a2, ..., a2︸ ︷︷ ︸
g times

}, ..., Bk = {ak, ak, ..., ak︸ ︷︷ ︸
g times

}

then Â = A1 ∪A2 ∪ ... ∪Ak and B̂ = B1 ∪B2 ∪ ... ∪Bk. By Lemma 3.3,

Ĉ = ∪
1≤i,j≤k

(Bi 	Aj)

By Lemma 3.7, Bi −Aj = {(ai − aj)∨g
2

}, 1 ≤ i, j ≤ k; as a result,

Ĉ = {(ai − aj)∨g
2

|ai, aj ∈ A, 1 ≤ i, j ≤ k}

Meanwhile, A	A = {ai − aj |ai, aj ∈ A, 1 ≤ i, j ≤ k}; this immediately leads to

Ĉ = (A	A)g
2
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Example 3.25. Let A = {1, 2, 3, 4}; then

A2 	A2 =



0, 0, −1, −1, −2, −2, −3, −3,
0, 0, −1, −1, −2, −2, −3, −3,
1, 1, 0, 0, −1, −1, −2, −3,
1, 1, 0, 0, −1, −1, −2, −3,
2, 2, 1, 1, 0, 0, −1, −1,
2, 2, 1, 1, 0, 0, −1, −1,
3, 3, 2, 2, 1, 1, 0, 0,
3, 3, 2, 2, 1, 1, 0, 0


= {−3∨4,−2∨8,−1∨12, 0∨16, 1∨12, 2∨8, 3∨4}

By (3.7), A	A = {−3∨1,−2∨2,−1∨3, 0∨4, 1∨3, 2∨2, 3∨1}; it is sure B̂ 	 Â = (A	A)g
2

.

Corollary 3.26. Let k and A be defined as those in Theorem 3.8; then

Ag 	Ag = {(1− k)∨g
2

, (2− k)∨2g
2

, ...,−1∨(k−1)g2

, 0∨kg
2

, 1∨(k−1)g2

, 2∨(k−2)g2

, ..., (k − 2)∨2g
2

, (k − 1)∨g
2

} (3.9)

For the set Ĉ such that ĉij = |cij |, where ĉij ∈ Ĉ, it follows

Ĉ = {0∨kg
2

, 1∨2(k−1)g2

, 2∨2(k−2)g2

, ..., s∨2(k−s)g
2

, ..., (k − 2)∨4g
2

, (k − 1)∨2g
2

} (3.10)

where integer s satisfies 1 ≤ s ≤ k − 1.

Proof. By Corollary 3.24, Ag	Ag = Cg
2

. Referring to (3.7) and (3.8) immediately results in (3.9) and (3.10).

Corollary 3.27. Let A be defined as that in Theorem 3.8; then

(A	A)g = {(1− k)∨g, (2− k)∨2g, ...,−1∨(k−1)g, 0∨kg, 1∨(k−1)g, 2∨(k−2)g, ..., (k − 2)∨2g, (k − 1)∨g}

Proof. Referring to the new notations in section 2.2 and Corollary 3.16.

Remark 3.4. Arranged in rows and columns, (A	A)g is of the form

(A	A)g =



0, · · · , 0,︸ ︷︷ ︸
g times

−1, · · · , −1,︸ ︷︷ ︸
g times

· · · · · · 1− k, · · · , 1− k,︸ ︷︷ ︸
g times

1, · · · , 1,︸ ︷︷ ︸
g times

0, · · · , 0,︸ ︷︷ ︸
g times

· · · · · · 2− k, · · · , 2− k,︸ ︷︷ ︸
g times

· · · · · · · · · · · · · · ·
k − 1, · · · , k − 1,︸ ︷︷ ︸

g times

k − 2, · · · , k − 2,︸ ︷︷ ︸
g times

· · · · · · 0, · · · , 0,︸ ︷︷ ︸
g times


Theorem 3.28. Given integers a , g>0 and N >0, assume A = {a+ 1, a+ 2, ..., a+N} and B = {a+ 1, a+
2, ..., a+ gN}; then without considering the order of the elements, it holds

(A	A)g mod N = (B 	B) mod N

Proof. By Corollary 3.27,

(A	A)g = {(1−N)∨g, (2−N)∨2g, ...,−1∨(N−1)g, 0∨Ng, 1∨(N−1)g, 2∨(N−2)g, ..., (N − 2)∨2g, (N − 1)∨g}

containing totally gN elements.
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Hence it follows

(A	A)g mod N = (A	A)g

By Corollary 3.16,

B 	B = {(1− gN)∨1, (2− gN)∨2, ...,−1∨(gN−1), 0∨gN , 1∨(gN−1), 2∨(gN−2), ..., (gN − 2)∨2, (gN − 1)∨1}

Now let eB ∈ B 	 B be an arbitrary element such that eB 6= 0; then it must be of the form eB = i ± gN with
1 ≤ i ≤ N − 1. Note that , for j = 1, 2, ..., g, it holds

eB mod N = i± gN mod N = i, 1 ≤ i ≤ N − 1

Hence it follows

(B 	B) mod N = {(1−N)∨g , (2−N)∨2g , ...,−1∨(N−1)g , 0∨gN , 1∨(N−1)g , 2∨(N−2), ..., (N − 2)∨2g , (gN − 1)∨g}

establishing the theorem.

4 Application in Integer Factorization

Given an odd semiprime N = pq, where p and q are odd primes such that 1 < p < q. Assume p and q are
bounded in two host intervals, say Ip = [ps, pb] and Iq = [qs, qb], respectively, where ps, pb, qs, and qb are odd
positive integers satisfying 2 < ps < pb ≤

√
N and

√
N ≤ qs < qb; finding out p in Ip or q in Iq surely factorizes

N . The theorems and corollaries proven in the previous section show that elements hosting N ’s divisors can be
concentrated in a set. This provides an opportunity to search the host elements in that set.

Let Ap = [1, ps − 1], Bp = Ip, Cp = [pb + 1, pe], and Sp = Ap ∪Bp ∪ Cp, where pe > pb + 1 is an integer; then

S 	 S =



0, −1, −2, ... −ps, ... ... −pb, ... ... −(pe − 3), −(pe − 2), −(pe − 1),

1, 0, −1, ... ... −ps, ... ... −pb, ... −(pe − 4), −(pe − 3), −(pe − 2),

2, 1, 0, ... ... ... ... ... ... v ... −(pe − 4), −(pe − 3),

... ... ... ... ... ... ... ... ... ... ... ... ...

ps, ... ... ... ... ... ... ... ... ... ... −pb, v

... ps, ... ... ... ... −1, ... ... ... ... v −pb,

... ... ... ... ... ... 0, −1, ... ... ... ... ...

pb, ... ... ... ... ... 1, 0, −1, ... ... −ps, ...

... pb, ... ... ... · · · ... 1, 0, ... ... ... −ps,

... v ... ... ... ... ... ... v ... ... ... ...

pe − 3, pe − 4, ... ... ... ... ... ... ... ... 0, −1, −2,

pe − 2, pe − 3, pe − 4, ... pb, ... ... ps, ... ... 1, 0, −1,

pe − 1, pe − 2, pe − 3, ... ... pb, ... ... ps, ... 2, 1, 0



By Remark 3.3, the elements in Bp repeatedly occur in S 	 S and a bigger pe will increase
the repeated times. This surely provides a way to enhance the chance to find out an objective
element. Next is to investigate two typical cases: pe = N and pe = gN , where g ≥ 1 is an
integer.
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4.1 Case Pe = N

The case pe = N yields

S 	 S =



0, −1, −2, · · · −ps, · · · · · · −pb, · · · · · · −(N − 3), −(N − 2), −(N − 1),

1, 0, −1, · · · · · · −ps, · · · · · · −pb, · · · −(N − 4), −(N − 3), −(N − 2),

2, 1, 0, · · · · · · · · · · · · · · · · · · · · · · · · −(N − 4), −(N − 3),

· · · · · · · · · · · · · · · · · · · · · −ps, · · · · · · · · · · · · · · ·

ps, · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · −pb, · · ·

· · · ps, · · · · · · · · · · · · −1, · · · · · · · · · · · · · · · −pb,

· · · · · · · · · · · · · · · · · · 0, −1, · · · · · · · · · · · · · · ·

pb, · · · · · · · · · · · · · · · 1, 0, −1, · · · · · · −ps, · · ·

· · · pb, · · · · · · · · · · · · · · · 1, 0, · · · · · · · · · −ps,

· · · · · · · · · · · · · · · ps, · · · · · · · · · · · · · · · · · · · · ·

N − 3, N − 4, · · · · · · · · · · · · · · · · · · · · · · · · 0, −1, −2,

N − 2, N − 3, N − 4, · · · pb, · · · · · · ps, · · · · · · 1, 0, −1,

N − 1, N − 2, N − 3, · · · · · · pb, · · · · · · ps, · · · 2, 1, 0



(4.1)

or
Ŝp = {0∨N , 1∨2(N−1), ..., j∨2(N−j), ..., (ps − 1)∨2(N−ps+1), ps

∨2(N−ps), ...,

(ps + j)∨2(N−ps−j), ..., (N − 2)∨4, (N − 1)∨2}

It hence follows in Ŝp

mp = 2(N − ps − p),m2p = 2(N − ps − 2p), ...,mαp = 2(N − ps − αp), ...,m(q−1)p = 2(N − ps − (q − 1)p)

where α is an integer satisfying 1 ≤ α ≤ q − 1.

The elements hosting divisor p are distributed sparsely in Ŝp, occurring every p elements from
the first occurrence . Their total number is

np = 2(N − ps − p) + 2(N − ps − 2p) + ...+ 2(N − ps − αp) + ...+ 2(N − ps − (q − 1)p) = (q − 1)N

Note that, pe = N means Ŝp also contains q, 2q, 3q,...,(p − 1)q. They occur every q elements
from the first occurrence and their total number is given by

nq = (p− 1)N

Therefore, the total number of the elements hosting N ’s divisors in Ŝp is given by

nd = np + nq = (p+ q − 2)N

For example, taking N = 35 leads to p =5 and q =7. Direct calculation shows Ŝ35 has sixty
elements taking value 5, fifty elements taking value 10, forty elements taking value 15, thirty
elements taking value 20, twenty elements taking value 25, and ten elements taking value 30,
totally 210 elements containing divisor 5. It also has fifty six elements taking value 7, forty two
elements taking value 14, twenty eight elements taking value 21, and fourteen elements taking
value 28, totally 140 ones.
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Note that the negative and positive elements in S 	 S are separated by the N zeros and look
like two triangles, each of which contain the same number of the elements hosting N ’s divisors.
Seen in the lower triangle, there is a band bordered with the repeated elements of ps and
pb respectively, as illustrated in Fig. 2. Since ps ≤ p ≤ pb, the repeated elements of p are
contained in the band. So that the band is called a p-band. Meanwhile the triangle lower the
p-band contains all the elements of αp with integer α > 1, and all the elements of βq with
integer β ≥ 1. Hence the triangle is called a pq-triangle.

Fig. 2. p-band and pq-triangle in Ŝp

The number of the elements in the p-band is

np−band =
1

2
(2N − pb − ps)(pb − ps + 1)

and that in the pq-triangle is

npq−∆ =
1

2
(N − pb − 1)(N − pb)

As a result, the total number of the elements in both the p-band and the pq-triangle all together
is calculated by

nboth =
1

2
(N − ps)(N − ps + 1)

On the other hand, the number of the repeated elements of p in the p-band is

npp−band = N − p− ps

hence the number of the elements hosting N ’s divisors in the pq-triangle is

ndpq−∆ = (p+ q − 2)N −N − ps − p = (p− 3)N + (q − p)N − ps
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Now let

pq-both =p-band ∪ pq-triangle

and check the density or the concentration of the elements hosting a divisor of N in the p-band,
pq-triangle, and pq-both. This can done by picking randomly an element in the three areas
respectively and seeing the probability of successfully obtaining a divisor.

Since

P p
p−band =

npp−band
np−band

=
2(N − p− ps)

(2N − pb − ps)(pb − ps + 1)

P d
pq−∆ =

ndpq−∆

npq−∆
=

2((p+ q − 2)N −N − ps − p)
(N − pb − 1)(N − pb)

and

P d
both =

nd
nboth

=
2(p+ q − 2)N

(N − ps)(N − ps + 1)

direct calculations show

P d
pq−∆

P p
p−band

= (pb−ps+1)(1+
pb

N − pb
)(1+

N − ps + 1

N − pb − 1
)(1+

p+ q

N − p− ps
) > 2(pb−ps+1) (4.2)

and
P d
both

P d
pq−∆

=
(N − pb)(N − pb − 1)

2(N − ps)(N − ps + 1)
(1 +

N + ps + p

(p+ q − 2)N −N − ps − p
) (4.3)

Because

q > p > ps ⇒ N+ps+p
(p+q−2)N−N−ps−p <

N+2p
2p(N−1)−3N

⇒ 1 + N+ps+p
(p+q−2)N−N−ps−p < 1 + N+2p

2p(N−1)−3N = 2(p−1)N
(2p−3)N−2p

and
2(p− 1)N

(2p− 3)N − 2p
=

2(p− 1)N

(2p− 2)N −N − 2p
=

2

2− N+2p
pN−N

=
2

2− 1
pN+2p
N+2p

−1

< 2

it follows with (4.3)

P d
both

P d
pq−∆

<
(N − pb)(N − pb − 1)

(N − ps)(N − ps + 1)
< 1 (4.4)

The inequalities (4.4) and (4.2) indicate that the elements hosting N ’s divisors are more densely
distributed in the pq-triangle. In another word, the concentration of the elements hosting N ’s
divisors in the pq-triangle is bigger than that either in the p-band or in the pq-both.

59



Wang; J. Adv. Math. Com. Sci., vol. 38, no. 10, pp. 44-69, 2023; Article no.JAMCS.106765

4.2 Case pe = gN

Denote Ξ = [1, gN ]; then

Ξ	 Ξ = {(1− gN)∨1, (2− gN)∨2, ...,−1∨(gN−1), 0∨gN , 1∨(gN−1), 2∨(gN−2), ..., (gN − 2)∨2, (gN − 1)∨1}

containing (q−1)gN elements hosting divisor p and (p−1)gN elements hosting divisor q. Since
each element except 0 is of the form i ± jNwith 1 ≤ i ≤ N − 1and 0 ≤ j ≤ g, the elements
hosting divisor p occur every p elements from the first occurrence and those hosting divisor q
occur every q elements from the first occurrence.

Like that of (4.1), Ξ	 Ξ can be arranged in rows and columns by

Ξ 	 Ξ =



0, −1, −2, · · · −p, · · · · · · −2p, · · · · · · −(gN − 3), −(gN − 2), −(gN − 1),

1, 0, −1, · · · · · · −p, · · · · · · −2p, · · · · · · −(gN − 3), −(gN − 2),

2, 1, 0, · · · · · · · · · · · · · · · · · · · · · · · · · · · −(gN − 3),

· · · · · · · · · · · · · · · · · · · · · −p, · · · · · · · · · · · · · · ·

p, · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · −2p, · · ·

· · · p, · · · · · · · · · · · · −1, · · · · · · · · · · · · · · · −2p,

· · · · · · · · · · · · · · · · · · 0, −1, · · · · · · · · · · · · · · ·

2p, · · · · · · · · · · · · · · · 1, 0, −1, · · · · · · −p, · · ·

· · · 2p, · · · · · · · · · · · · · · · 1, 0, · · · · · · · · · −p,

· · · · · · · · · · · · · · · p, · · · · · · · · · · · · · · · · · · · · ·

gN − 3, · · · · · · · · · · · · · · · · · · · · · · · · · · · 0, −1, −2,

gN − 2, gN − 3, · · · · · · · · · · · · · · · p, · · · · · · 1, 0, −1,

gN − 1, gN − 2, gN − 3, · · · · · · 2p, · · · · · · p, · · · 2, 1, 0



Seen from the point-view of rows and columns, from the first occurrence, the elements hosting
divisor p occur every p rows or columns while the elements hosting divisor q occur every q rows
or columns, all sparsely distributed in Ξ	 Ξ.
Now consider Ξ	 Ξ mod N . By Theorem 3.28,

(S 	 S)g = Ξ	 Ξ(modN)(S)

As a result, the case pe = gN is turned into the repeated case of pe = N . Arranged in rows
and columns, (S 	 S)g is of the form described with Fig. 3.

There are surely a pg-band, a (pq)g-triangle and a (pq)g-both like those in S 	 S. Similarly,
the elements hostingN ’s divisors are denser in the (pq)g-triangle than those in the other two
zones, the pg-band and (pq)g-both.

4.3 Elements in pq-triangle

Denote the pq-triangle with symbol ∆pq. By definition, ∆pq can be geometrically considered to
be an isosceles right triangle. Each of its two legs is formed by the elements pb + 1, ..., pb + j, ...,
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Fig. 3. (S 	 S)g in the form of rows and columns

and N − 1 while its hypotenuse is composed of N − pb− 1 elements with the same value pb + 1.
Using X and Y to express the indices of the row and the column of ∆pq respectively, it follows

1 ≤ X ≤ N − pb − 1 and 1 ≤ Y ≤ X

and the three borders are lattices such that

line Y = 1, line X = N − pb − 1 and Y = X

The element ωX,Y at row X and column Y is calculated by

ωX,Y = pb + 1 +X − Y (4.5)

4.4 Elements in (pq)g-triangle

Denote the (pq)g-triangle by symbol T g
pq; then

T g
pq = {(pb + 1)∨g(N−pb−1), ..., e = (pb + j)∨g(N−pb−j), ..., (N − 2)∨2g, (N − 1)∨g}

Arranged in rows and columns, it is of the form

T gpq =



pb + 1 · · · pb + 1︸ ︷︷ ︸
g times

,

· · · · · ·
e · · · e︸ ︷︷ ︸
g times

, · · · pb + 1 · · · pb + 1︸ ︷︷ ︸
g times

,

· · · · · · · · · · · ·
N − 1 · · · N − 1︸ ︷︷ ︸

g times

, · · · e · · · e︸ ︷︷ ︸
g times

, · · · pb + 1 · · · pb + 1︸ ︷︷ ︸
g times

,


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T g
pq is geometrically seen to be a right trapezium with one side composed of (N − pb − 1)g

elements of pb + 1. Take on each row one pb + 1 to form the following right triangle ∆g
pq:

row 1: d1,1 = pb + 1;
row 2: d2,1 = d2,2 = ... = d2,g = pb + 2︸ ︷︷ ︸

g items

, d2,g+1 = pb + 1;

row 3:

d3,1 = d3,2 = ... = d3,g = pb + 3︸ ︷︷ ︸
g items

, d3,g+1 = ... = d3,2g = pb + 3− 1︸ ︷︷ ︸
g items

,

d3,2g+1 = pb + 3− 2

row 4:
d4,1 = ... = d4,g = pb + 4︸ ︷︷ ︸

g items

, d4,g+1 = ... = d4,2g = pb + 4− 1︸ ︷︷ ︸
g items

,

d4,2g+1 = ... = d4,3g = pb + 4− 2︸ ︷︷ ︸
g items

, d4,3g+1 = pb + 4− 3

row k:

dk,1 = ... = dk,g = pb + k︸ ︷︷ ︸
g items

, ..., dk,(j−1)g+1 = ... = dk,jg = pb + k − (j − 1)︸ ︷︷ ︸
g items

, ...,

dk,(k−2)g = ... = dk,(k−1)g = pb + 2︸ ︷︷ ︸
g items

, d4,(k−1)g+1 = pb + k − (k − 1) = pb + 1

where 1 ≤ k ≤ N − pb − 1 and 1 ≤ j ≤ k − 1.
Still using X and Y to express the indices of the row and the column respectively, it follows

1 ≤ X ≤ N − pb − 1, 1 ≤ Y ≤ (X − 1)g + 1

and the three borders of ∆g
pq are lattices corresponding to

line Y = 1, line X = N − pb − 1, and line Y = (X − 1)g + 1.

The element ΩX,Y at row X and column Y is

ΩX,Y = pb +X −
⌊
Y − 1

g

⌋
(4.6)

62



Wang; J. Adv. Math. Com. Sci., vol. 38, no. 10, pp. 44-69, 2023; Article no.JAMCS.106765

By the way, it is sure that the concentration of the elements hosting N ’s divisors is bigger in
∆g

pq than that in T g
pq because the total number of the elements in ∆g

pq is less than that in T g
pq.

4.5 Random-walk approach to find a divisor-host

Now that ∆pq and ∆g
pq have the most concentration of the elements hosting N ’s divisors, it is

a natural choice to search N ’s divisors in either of them. Once one of the host elements, say e,
is found, d =gcd(e, N) is surely the divisor of N . Theoretically there are many approaches for
such searching. Here introduce the approach of using a two-dimensional simple random walk
to perform the search.

Such a random walk is obviously the one within a bounded domain. As seen in literatures such
as [11], [12], and [13], the start point, restart point, and walking-step are primarily necessary
for the random walk within a bounded domain.

By the recurrent property and the distribution property of the two-dimensional simple random
walk, the start point, say (X0, Y0 ), is better to set near where the elements hosting N ’s divisors
locate. Since those host elements are unknown before one of them is found, an initial start
point can be chosen by a rough estimation. Note that p ≤

√
N ≤ q ⇒ ip ≤ i

√
N ≤ iq for an

arbitrary positive integer i , p is out of T g
∆, and

⌊√
N
⌋

is the biggest i such that i
√
N ≤ N ;

X0 can be chosen by

X0 = α
⌊√

N
⌋

where 1 < α ≤
⌊√

N
⌋

is an integer.

Then Y0 is chosen by Y0 = X0 if the walk is in ∆pq; otherwise Y0 = gX0.

If the random walk goes out of the zone, ∆pq or ∆g
pq, it is forced to restart a next round. The

restart point , say (Xrst, Yrst ), is better to choose like the choice of (X0, Y0 ) because it ensures
the restart point near the elements hosting N ’s divisors.

For a walk in ∆pq, its walking step δx in X-direction and step δy are set to be the same one
though they can be set to different ones. For a walk in ∆g

pq, δx is different from δy because
each distinct lattice along the Y -direction is wrapped by g times, and the total number of the
lattices along the Y -direction is almost g times of that along X-direction.

Finally, the random walk will be forced to stop if it walks too many steps, say B steps, without
finding the objective element.

After all the preliminary settings done, the random-walk algorithm is designed to find a divisor
of a composite integer N as follows.

63



Wang; J. Adv. Math. Com. Sci., vol. 38, no. 10, pp. 44-69, 2023; Article no.JAMCS.106765

Algorithm 1 Random-walk Algorithm to Factorize Integer

Input: N , pb,g,δx,δy,B;
Step 1. (X, Y ) =SetStart(

√
N);

Step 2. Initialize counter = 0 and f =1;
Step 3. Loop while f = 1 and counter <B;

Calculate ω = pb +X −
⌊
Y−1
g

⌋
and f = gcd(N , ω);

if f >1 then break loop; endif ;
(X, Y )=aRandStep( X ,Y , δx , δy);
if OutofBorder(X, Y ) then (X ,Y )= SetStart(

√
N ); endIf ;

counter=counter+1;
endloop

Step 4.if f >1 then Output f and counter;
else Declare failure of search; endif

Remark 4.1. The Algorithm 1 is designed for the random walk in ∆g
pq. It can also applied on

∆pq by taking g =1 . The parameter pb can be chosen around
√
N while δx , δy are chosen

tentatively. In the algorithm, the subroutine aRandStep( X ,Y , δx , δy) is to calculate the
next position of a random move from (X, Y ) by steps δx and δy, OutofBorder(X, Y ) is to
test whether (X, Y ) is out of the border, and SetStart(

√
N) is to set the start point that is

randomly chosen near the elements hosting N ’s divisors. The subroutine SetStart perform the
following calculations.

Algorithm 2 Subroutine SetStart

Input:
√
N ;

Step 1. Select randomly an integer α ∈ [2,
⌊√

N
⌋
];

Step 2. Calculate X = α
⌊√

N
⌋

and Y = gX;

Output: X, Y ;

4.5.1 Numerical Experiments

With Maple software, a random walk program to factorize integers is programmed in ∆pq

according to the designed algorithm. The source codes of the program are list in the appendix
section. Semiprimes containing 5 to 10 digits are randomly selected to do the numerical
experiments whose results are shown in Table 1. In the table, the column ’Failure?’ records if
there is a failure in the experiments. Readers can see the experimental data in the appendix
section.
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Table 1: Records of Numerical Experiments

Semiprime N Digits of N Number of Experiments Min Searching Steps Max Searching Steps Failure?

49901 5 5 26 271 Yes
567191 6 5 78 436 Yes
2425789 7 7 48 955 Yes
75506467 8 5 2105 5574 Yes
826522877 9 5 474 27480 Yes
1231065553 10 5 1108 34289 Yes

It should be pointed out that, the random-walk method of factoring integer exhibits randomization.
One experiment is hardly identical to the other one even with the same input arguments. That
is the essence of the random algorithm, as claimed in [3].

5 Conclusion and Future Work

Densification of the objective elements surely enriches the abundance of witnesses. The research
in this paper shows the Cartesian subtraction can realize densification of certain elements in
a countable set because the operation can make a set without repeated elements be a set
with repeated elements. Our experiments that apply the two-dimensional simple random walk
to factorize composite integers show that densification and the random algorithm are trustable.

Nevertheless, we still have work to do related with this paper. For example, how to set a proper
start point or a restart point and how to choose proper parameters δx and δy for a random walk
in ∆g

pq still need investigating. In addition, we need to promote the efficiency of the random
walk algorithm so as for the algorithm to be a practical one. These remain our future work.
Hope more young people to join us.
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APPENDIX

Maple Source Codes and Experimental Cases

Maple Source Codes

# Subrountie:- aRandStep2D

aRandStep2D := proc(X0, Y0, dx, dy)

local X, Y, P, R;

P := Array(1 .. 2);

R := rand(1 .. 8)();

if R = 1 then X := X0 - dx; Y := Y0 + dy; end if;

if R = 2 then X := X0; Y := Y0 + dy; end if;

if R = 3 then X := X0 + dx; Y := Y0 + dy; end if;

if R = 4 then X := X0 - dx; Y := Y0; end if;

if R = 5 then X := X0 + dx; Y := Y0; end if;

if R = 6 then X := X0 - dx; Y := Y0 - dy; end if;

if R = 7 then X := X0; Y := Y0 - dy; end if;

if R = 8 then X := X0 + dx; Y := Y0 - dy; end if;

P[1] := X; P[2] := Y;

return P;

end proc

# Subrountie:- SetStart

SetStart := proc(b)

local alpha, R, P;

P:= Array(1 .. 2);

alpha:= rand(1 .. b)();

P[1] := alpha*b;

P[2] := alpha*b;

return P;

end proc

# MainRountie:- RandomFactTpq

RandomFactTpq := proc(N, pb, dx, dy)

local alpha, X, Y, f, P, counter, B, n, T;

P := Array(1 .. 2);

counter := 0; f := 1;

B := floor(evalf(sqrt(N))); #Set maximal searching steps

T := floor(evalf(sqrt(N))); #For SetStart’s use

P := SetStart(T);

X := P[1]; Y := P[2];

while f = 1 and counter <B do #loop

n:= pb - X - Y;
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f:= gcd(N, n);

if f >1 and f <N then break; end if;

P := aRandStep2D(X, Y, dx, dy); #A random move

X := P[1]; Y := P[2];

if X <1 or Y <1 or N - pb - 1 <X or X <= Y then

P := SetStart(T); # Restart when out of borders

X := P[1]; Y := P[2];

end if;

counter := counter + 1; #Counting the searched steps

end do;

if f >1 then print(Find at point (X, Y), found divisor = f,searching steps = counter);

else print(This*time*finds*no*result, test*again!); end if;

end proc

5.1 Experimental Cases

The following experimental cases are run in Maple with the programs list in the previous
section. The original data are reserved at the webpage:
https://www.mapleprimes.com/DocumentFiles/221856 post/wxbRandWalkTpqNew4.pdf

RandomFactTpq(49901, 150, 1, 1);
Find at point (2230, 2229), found divisor = 139, searching steps = 77

RandomFactTpq(49901, 150, 1, 1);
Find at point (17173, 17171), found divisor = 139, searching steps = 211

RandomFactTpq(49901, 150, 1, 1);
Find at point (27875, 27875), found divisor = 139, searching steps = 141

RandomFactTpq(49901, 150, 1, 1);
Find at point (16948, 16948), found divisor = 359, searching steps = 26

RandomFactTpq(49901, 150, 1, 1);
This time finds no result, test factorial(again)

RandomFactTpq(567191, 700, 1, 1);
Find at point (51960, 51955), found divisor = 983, searching steps = 436

RandomFactTpq(567191, 700, 1, 1);
Find at point (405118, 405113), found divisor = 577, searching steps = 78

RandomFactTpq(567191, 700, 1, 1);
Find at point (360687, 360686), found divisor = 577, searching steps = 243

RandomFactTpq(567191, 700, 1, 1);
Find at point (480414, 480414), found divisor = 577, searching steps = 157

RandomFactTpq(567191, 700, 1, 1);
This time finds no result, test factorial(again)

RandomFactTpq(2425789, 1500, 2, 2);
Find at point (351976, 351828), found divisor = 1291, searching steps = 955

RandomFactTpq(2425789, 1500, 2, 2);
Find at point (2186028, 2186026), found divisor = 1879, searching steps = 496

RandomFactTpq(2425789, 1500, 2, 2);
Find at point (926471, 926323), found divisor = 1291, searching steps = 859

RandomFactTpq(2425789, 1500, 2, 2);
Find at point (2158020, 2158002), found divisor = 1291, searching steps = 177

RandomFactTpq(2425789, 1500, 2, 2);
Find at point (1077444, 1077444), found divisor = 1291, searching steps = 48

RandomFactTpq(75506467, 8500, 3, 3);
Find at point (53559017, 53559005), found divisor = 9739, searching steps = 2105
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RandomFactTpq(75506467, 8500, 3, 3);
Find at point (58624683, 58624683), found divisor = 7753, searching steps = 3959

RandomFactTpq(75506467, 8500, 3, 3);
Find at point (27318333, 27317805), found divisor = 7753, searching steps = 5072

RandomFactTpq(75506467, 8500, 3, 3);
Find at point (16083339, 16083339), found divisor = 9739, searching steps = 5574

RandomFactTpq(75506467, 8500, 3, 3);
This time finds no result, test factorial(again)

RandomFactTpq(826522877, 28000, 7, 7);
Find at point (693828366, 693828366), found divisor = 35323, searching steps = 22337

RandomFactTpq(826522877, 28000, 7, 7);
Find at point (152945149, 152944708), found divisor = 35323, searching steps = 20818

RandomFactTpq(826522877, 28000, 7, 7);
Find at point (624802626, 624802171), found divisor = 23399, searching steps = 27480

RandomFactTpq(826522877, 28000, 7, 7);
Find at point (144233740, 144233733), found divisor = 23399, searching steps = 474

RandomFactTpq(826522877, 28000, 7, 7);
This time finds no result, test factorial(again)

RandomFactTpq(1231065553, 35000, 11, 11);
Find at point (495624803, 495624528), found divisor = 30853, searching steps = 16533

RandomFactTpq(1231065553, 35000, 11, 11);
Find at point (735472732, 735472732), found divisor = 39901, searching steps = 3899

RandomFactTpq(1231065553, 35000, 11, 11);
Find at point (432329780, 432329692), found divisor = 30853, searching steps = 1108

RandomFactTpq(1231065553, 35000, 11, 11);
Find at point (972689178, 972689178), found divisor = 30853, searching steps = 34389 ———————————
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