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ABSTRACT

Aims: The main aim of the study is to identify the key residues involved in interactions of
KSRP and microRNAs of human.
Study Design: The KH type splicing regulatory protein acronymed as KSRP is a member
of the FUSE binding protein family. The FUSE is an AT rich DNA element which is present
1.7kb upstream of the c-Myc oncogene promoter. KSRP also known as FUSE binding
protein 2(FBP2). Various activities of KSRP has been reported by many workers over the
years, however recent report suggest that KSRP is involved in a crucial step of the
microRNA biogenesis pathway – the generation of precursor microRNAs from primary
microRNAs. The premise of this work stems from the observation that much micro RNA
has been implicated in numerous diseases and though antisense constructs have been
projected as possible therapeutic agents against such microRNAs, protein inhibitors or Site
directed mutagenesis (SDM) approaches should open up new intervention strategies.
Place and Duration: The work was done entirely at the DBT Centre for Bioinformatics,
Presidency university, Kolkata for a period from June 2012 – May 2013.
Methodology: Comparative modeling followed by molecular dynamic simulation strategies
based on flexible and rigid docking approaches were combined with in silico mutagenesis
to analyze the interactions of KSRP and human “microRNAs”
Results: Results indicate that specific residues of the K type single stranded RNA binding
domain play important roles in RNA binding and in their absence the binding affinities are
affected.
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Conclusion: In silico mutagenesis in protein structures can serve as important initial steps
to understand the interactions of proteins and their substrates. In context of KSRP the
protein active site residues were identified and these could serve as important targets for
future experiments.
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1. INTRODUCTION

The generation of mature microRNAs is an evolutionarily conserved phenomenon in which
primary miRNAs (pri – miRNAs) are initially processed to precursor microRNAs and finally to
the mature micro RNAs. Ribonucleases such as Drosha and Dicer are involved in regulated
endonucleolytic cleavages [1,2]. Over the years numerous experimental data have
accumulated a large body of evidence towards the understanding of microRNA biogenesis
[3,4]. As our understandings have increased it has become clear that numerous activators
and coactivators are required to successfully accomplish the mature silent assassin
production [5]. The identification of the microprocessor complex has helped us to understand
the roles of dead box helicases such as p68 and p78, Drosha cofactors that have RNA
binding activity – hnRNPA1 and KSRP [6–8]. Heo et.al. (2008) [9,10] have demonstrated
that KSRP promotes processing of let7g precursors. Trabucchi et al. (2009) [11] have shown
that KSRP is an essential component of the DICER complex in HELA cells. They have
further indicated that this protein recognizes short G rich stretches (KH3) with high specific
affinity. Knockout studies have also revealed that let7a mediated silencing pathway was
affected when KSRP action was inhibited. Recombinant KSRP was also shown to increase
the processivity of DICER.

The terminal loop (TL) acts as a pivotal structure as it is the very site where miRNA
processing activators interact. They are also of the opinion that repressors for example lin 28
are regulated by the same mechanism [12]. It has been proposed that KSRP – RNA
recognition depends both on the availability of single stranded RNA sequences and on the
selectivity of sequence of the KH domains. The KH3 domain displays a strong affinity
towards G containing sequences. It has also been implied that the recognition of the RE
sequences by KSRP is dependent on the binding modes.

2. MATERIAL AND METHODS / EXPERIMENTAL DETAILS / METHODOLOGY

The sequences of micro RNA precursors were derived from miRbase and initially the
secondary structures were obtained using the MFold server [13]. This server utilizes a
modified Zuker’s algorithm for the prediction of RNA secondary structures and sorts the best
structure according to the free energy. Once the secondary structures were obtained a
symbolic programming approach was used at the MC SYM pipeline and the 3D structures of
the precursors were obtained. These structures were then sorted according to their least free
energies and a library of 3D structures belonging to the precursors was created. The
creation of such a library was essential so as to sort the precursor structures according to
their length and class. Once the library creation was completed the KSRP protein sequence
was derived from the NCBI Genpept database and secondary structural analyses of the
sequence were performed (Fig. 2). Following this a BLAST search was performed against
the PDB database to identify suitable homologous structure.
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However the BLAST search proved to be ineffective and no structure homologue having
greater than 35% sequence – structure homology was found. Thus homology modelling was
ruled out and using Modeller version 9.4 [15] loop modelling followed by threading was used
to generate a 3D structure of the said protein. Along with this the sequence was submitted to
the I-Tasser server for validation of the model obtained. I – Tasser [16] returned 5 best fit
models and the model with the best sterically unhindered conformation was found to match
with the structure that was generated using threading and loop modelling. Both these
structures were then analyzed using Ramachandran plot at MOLPROBITY and no outliers
were found indicating a successful model generation (Fig. 1).

2.1 In Silico Mutation Analyses

The selected protein model was now loaded to DEEP VIEW [14] and in silico mutations were
introduced at reported interacting sites (nucleic acid binding site and GXXG motifs), The
induced mutations were performed according to table 2

Flow Chart of Work:

Fig. 1. Flow chart of work (MDS = Molecular Dynamic Simulation)

The dataset of microRNAs were let7 precursor sequences of Homo sapiens derived from
mirBASE [17]. Multiple sequence alignment was performed using SEAVIEW program [18]
using clustal W method with gaps and 100 bootstraps were performed leading to Cladogram
generation.
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3. RESULTS AND DISCUSSION

Over the years there has been much debate as to how the amino acid sequence of the
protein actually influences the biological property. An accepted standard measure of the
importance of protein residues has been sequence conservation [19-22]. Halabi et al. [23]
working on S1A serine proteases have indicated that “decomposition of the protein into three
quasi-independent groups of correlated amino acids” which they have termed as protein
sectors. However these sectors are actually basically structural evolutionary units and are
instrumental in maintenance of protein structures. The question however still remains that
conserved protein residues actually have influence on function or is the function of the
protein dependent on the spatial arrangement of a group of amino acids.

Fig. 2. Secondary Structure details of KSRP

Through this work with KSRP and its interactions with precursor miRNA structures we have
been able to locate key interaction sites in both the protein and RNA structures (Fig. 3). As is
indicated in the methodology the identification involved an exhaustive pipeline of in silico
mutation analyses. All mutants except six (406 MET/CYS; 424 GLY/PRO; 461 SER/THR;
473 LYS/ARG; 477 ILE/LEU; 619 THR /TYR;) exhibited differences in the binding energies
which were on the higher side (Table 1&2).  The six mentioned complexes exhibited lower
binding energy when compared with the wild type.

The second set of docking runs which involved the mutant analyses of nucleotides showed a
similar trend to the protein mutants.
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Fig. 3. Interactions of KSRP and human microRNA precursor (left – binding pocket
marked in green in the protein; right – microRNA precursor bound to the specific

pocket)

However all the mutants of nucleic acids were docked with the wild type protein to keep one
aspect of the complex constant.

Table 1. Results of wild type (both RNA and protein wild type structures)

Serial
number

Docking
mode

E- value Average
e-value

Remarks

1 FLEXIBLE -1679.86
-1680.255

Both molecules flexible
2 RIGID -1680.65 ksrp protein receptor kept rigid

and ligand (precursor microRNA)
kept flexible.

The Cladogram generated using SEAVIEW (Fig. 4) showed that a large part of the
interacting region was conserved across the homologues indicative of a sequence and
structure based functional assignment of this particular protein group.

Fig. 4. Cladogram generated using Seaview of all the KSRP homologues
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Ganguli et al. [5] has earlier indicated that major microRNA binding proteins such as dicer
and argonautes possess specific functional residues which serve as important binding motifs
for RNA. The current work further strengthens the concept that micro RNA – protein
interactions are modulated specifically by the capacity of targeted residues in the protein and
in the RNA molecule as well.

Table 2. Induced mutations and free energy values of docked complexes

Serial
number

Residue number Original residue
identity

Altered residue
identity

E value Remarks

1. 1 U A -1577.61 HIGH
2. 2 G C -1551.71 HIGH
3. 3 G C -1546.74 HIGH
4. 4 G C -1547.78 HIGH
5. 5 A U -1567.67 HIGH
6. 6 U A - 1568.56 HIGH
7. 7 G C -1569.78 HIGH
8. 8 A U -1544.87 HIGH
9. 9 G C -1543.67 HIGH
10. 10 G C -1548.67 HIGH
11. 11 U A -1546.67 HIGH
12. 12 A U -1547.78 HIGH
13. 13 G C -1566.78 HIGH
14. 65 U A -1556.68 HIGH
15. 66 C G -1566.78 HIGH
16. 67 U A -1566.78 HIGH
17. 68 A U -1545.78 HIGH
18. 69 C G -1535.67 HIGH
19. 70 U A -1545.67 HIGH
20. 70 U A -1565.46 HIGH
21. 71 G C -1546.76 HIGH
22. 72 U A -1566.87 HIGH
23. 73 C G -1546.76 HIGH
24. 74 U A -1546.76 HIGH
25. 75 U A -1566.87 HIGH
26. 76 U A -1576.76 HIGH
27. 77 C G -1556.67 HIGH
28. 78 C G -1556.67 HIGH
29. 79 U A -1566.76 HIGH
30. 80 A U -1545.76 HIGH
31. 145 MET Tryptophan -1656.78 HIGH
32. 147 GLU Asparagine -1656.78 HIGH
33. 157 GLY Phenylalanine -1656.78 HIGH
34. 158 LEU Valine -1666.72 HIGH
35. 159 ILE Leucine -1666.77 HIGH
36. 161 GLY Phenylalanine -1673.34 HIGH
37. 162 ARG Aspartic acid -1675.45 HIGH
38. 165 GLU Aspartic acid -1676.38 HIGH
39. 166 GLN Histidine -1654.28 HIGH
40. 168 ASN Cysteine -1656.78 HIGH
41. 169 LYS Arginine -1686.36 HIGH
42. 170 ILE Leucine -1677.56 HIGH
43. 196 GLY Valine -1645.87 HIGH
44. 198 PRO Glycine -1654.42 HIGH
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45. 199 GLU Aspartic acid -1656.78 HIGH
46. 201 VAL Glycine -1676.88 HIGH
47. 202 GLN Histidine -1646.82 HIGH
48. 203 LYS Aspartic acid -1667.98 HIGH
49. 204 ALA Valine -1656.78 HIGH
50. 205 LYS Aspartic acid -1666.88 HIGH
51. 206 MET Tryptophan -1656.88 HIGH
52. 207 MET Tryptophan -1636.84 HIGH
53. 209 ASP Glutamic acid -1656.48 HIGH
54. 210 ASP Glutamic acid -1666.84 HIGH
55. 212 VAL Proline -1656.78 HIGH
56. 213 SER Tyrosine -1656.88 HIGH
57. 214 ARG Lysine -1656.88 HIGH
58. 215 GLY Proline -1656.78 HIGH
59. 291 LYS Arginine -1646.88 HIGH
60. 294 GLN Asparagine -1676.88 HIGH
61. 294 GLN Asparagine -1634.65 HIGH
62. 295 ALA Tyrosine -1676.88 HIGH
63. 298 MET Tryptophan -1676.88 HIGH
64. 299 VAL Glycine -1656.78 HIGH
65. 300 MET Tryptophan -1634.67 HIGH
66. 301 ASP Glutamic acid -1646.34 HIGH
67. 303 LEU Isoleucine -1666.54 HIGH
68. 304 ARG Lysine -1676.88 HIGH
69. 305 GLU Aspartic acid -1636.56 HIGH
70. 306 ARG Lysine -1676.52 HIGH
71. 307 ASP Glutamic acid -1678.51 HIGH
72. 308 GLN Asparagine -1678.32 HIGH
73. 312 GLY Proline -1656.78 HIGH
74. 314 ARG Aspartic acid -1665.32 HIGH
75. 329 VAL Phenylalanine -1665.62 HIGH
76. 330 PRO Glycine -1638.32 HIGH
77. 331 ARG Lysine -1676.88 HIGH
78. 332 HIS Serine -1678.52 HIGH
79. 333 SER Threonine -1648.62 HIGH
80. 334 VAL Proline -1654.71 HIGH
81. 336 VAL Proline -1656.78 HIGH
82. 337 VAL Proline -1656.74 HIGH
83. 338 ILE Leucine -1638.32 HIGH
84. 341 SER Threonine -1643.32 HIGH
85. 355 ARG Lysine -1626.22 HIGH
86. 356 ILE Leucine -1646.36 HIGH
87. 358 PHE Alanine -1657.32 HIGH
88. 368 LYS Arginine -1667.22 HIGH
89. 370 ALA Leucine -1646.44 HIGH
90. 373 MET Tryptophan -1676.56 HIGH
91. 384 ARG Aspartic acid -1654.16 HIGH
92. 386 ILE Leucine -1644.18 HIGH
93. 387 ASN Histidine -1626.82 HIGH
94. 388 ASP Histidine -1665.42 HIGH
95. 389 LEU Isoleucine -1658.72 HIGH
96. 390 LEU Isoleucine -1655.92 HIGH
97. 391 GLN Serine -1648.34 HIGH
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98. 392 SER Threonine -1626.38 HIGH
99. 393 LEU Isoleucine -1658.49 HIGH
100. 394 ARG Lysine -1648.55 HIGH
101. 395 SER Threonine -1628.66 HIGH
102. 396 GLY Proline -1652.68 HIGH
103. 397 PRO Glycine -1634.32 HIGH
104. 398 PRO Glycine -1668.32 HIGH
105. 399 GLY Proline -1647.46 HIGH
106. 406 MET Cysteine -1688.32 LOW
107. 407 PRO Glycine -1618.62 HIGH
108. 409 GLY Proline -1647.46 HIGH
109. 411 ARG Lysine -1658.72 HIGH
110. 413 ARG Lysine -1628.33 HIGH
111. 415 ARG Lysine -1628.64 HIGH
112. 416 GLY Proline -1647.46 HIGH
113. 417 GLN Asparagine -1656.32 HIGH
114. 418 GLY Leucine -1645.63 HIGH
115. 419 ASN Glutamine -1636.23 HIGH
116. 420 TRP Serine -1664.34 HIGH
117. 421 GLY Proline -1627.26 HIGH
118. 424 GLY Proline -1682.46 LOW
119. 425 GLY Proline -1626.46 HIGH
120. 426 GLU Aspartic acid -1624.46 HIGH
121. 427 MET Tryptophan -1628.46 HIGH
122. 428 THR Cysteine -1644.46 HIGH
123. 429 PHE Leucine -1646.63 HIGH
124. 430 SER Threonine -1626.26 HIGH
125. 431 ILE Leucine -1645.63 HIGH
126. 433 THR Tyrosine -1636.26 HIGH
127. 435 LYS Asparagine -1668.26 HIGH
128. 437 GLY Proline -1657.42 HIGH
129. 438 LEU Isoleucine -1646.28 HIGH
130. 439 VAL Glycine -1636.29 HIGH
131. 461 SER Threonine -1686.25 LOW
132. 463 GLN Asparagine -1628.26 HIGH
133. 464 LEU Isoleucine -1624.26 HIGH
134. 472 PHE Leucine -1645.63 HIGH
135. 473 LYS Arginine -1686.26 LOW
136. 474 LEU Isoleucine -1626.26 HIGH
137. 475 PHE Leucine -1646.56 HIGH
138. 476 ILE Leucine -1664.58 HIGH
139. 477 ILE Leucine -1682.58 LOW
140. 478 ARG Aspartic acid -1622.76 HIGH
141. 479 GLY Valine -1612.48 HIGH
142. 479 GLY Valine -1632.56 HIGH
143. 480 SER Threonine -1612.48 HIGH
144. 481 PRO Glycine -1645.76 HIGH
145. 482 GLN Histidine -1646.78 HIGH
146. 483 GLN Histidine -1656.77 HIGH
147. 484 ILE Leucine -1667.76 HIGH
148. 485 ASP Glutamic acid -1646.86 HIGH
149. 487 ALA Valine -1626.21 HIGH
150. 488 LYS Arginine -1636.56 HIGH
151. 490 LEU Isoleucine -1646.44 HIGH
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152. 526 GLY Valine -1641.76 HIGH
153. 528 PRO Glycine -1641.76 HIGH
154. 529 GLY Valine -1642.77 HIGH
155. 530 ALA Leucine -1642.46 HIGH
156. 532 PRO Glycine -1641.56 HIGH
157. 538 PRO Glycine -1642.66 HIGH
158. 539 PRO Glycine -1643.66 HIGH
159. 540 HIS Serine -1644.88 HIGH
160. 541 GLN Asparagine -1628.26 HIGH
161. 542 TYR Threonine -1656.35 HIGH
162. 543 PRO Glycine -1626.36 HIGH
163. 544 PRO Glycine -1644.36 HIGH
164. 545 GLN Asparagine -1656.36 HIGH
165. 547 TRP Tyrosine -1624.36 HIGH
166. 548 GLY Valine -1668.36 HIGH
167. 549 ASN Glutamine -1624.36 HIGH
168. 557 PRO Valine -1635.18 HIGH
169. 558 ALA Leucine -1630.46 HIGH
170. 559 PRO Valine -1631.26 HIGH
171. 560 HIS Serine -1666.16 HIGH
172. 561 ASP Glutamine -1622.56 HIGH
173. 563 SER Threonine -1622.26 HIGH
174. 564 LYS Arginine -1628.16 HIGH
175. 573 ASN Histidine -1677.26 HIGH
176. 574 ALA Leucine -1655.96 HIGH
177. 575 ALA Leucine -1622.16 HIGH
178. 576 TRP Tyrosine -1634.26 HIGH
179. 577 ALA Leucine -1628.26 HIGH
180. 580 TYR Threonine -1624.46 HIGH
181. 618 TYR Threonine -1644.16 HIGH
182. 619 THR Tyrosine -1686.16 LOW
183. 620 LYS Arginine -1654.28 HIGH
184. 621 ALA Valine -1614.16 HIGH
185. 651 TYR Threonine -1648.16 HIGH
186. 682 TYR Threonine -1638.26 HIGH
187. 683 ARG Aspartic acid -1628.16 HIGH
188. 684 GLN Serine -1664.66 HIGH
189. 685 GLN Serine -1646.88 HIGH

4. CONCLUSION

We have been able to demonstrate through our analyses that KSRP interacts with multiple
human miRNA precursors through specific nucleic acid binding motifs. Specific binding
residues serve as prime interactors of these interactions. When mutated they cause a
reduction in the binding efficacy and complex formation. The precursor miRNA molecules
also possess some interacting hotspots. These data prove that interaction hotspots exist in
protein RNA interactions as well and can be utilized for the generation of aptamers or
antisense constructs as well as deletion experiments.
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