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ABSTRACT 
 

Plane of symmetry is a physical chemical phenomenon and an instrument. Geometrical plane of 
symmetry indicates two identical achiral halves. In a slightly modified form, it is applied also in 
chemistry. In geometry it cuts a point or a line, while in chemistry it cuts a cloud of electrons (a 
bond) or one or more atoms. The second type, chemical plane of symmetry, named also mirror 
plane of symmetry, indicates two enantiomeric chiral halves uniformly linked with each other or 
uniformly linked on a suitable matrix. Compounds characterized by a mirror plane of symmetry 
have been designated meso. Meso compounds designated in this way by Cahn-Ingold-Prelog rules 
do not change the latter assertion: one can assert that molecules of this group are formed of two 
imaginary enantiomeric halves separated by an imaginary mirror plane of symmetry. From the 
definition of meso compounds one can infer, by molecular modelling, that alternative dimerization 
of the two enantiomeric halves, between them or on the initial matrix, would produce two chiral 
enantiomeric products. However, inositols, considered meso by numerous authors, present 
spectacular and unexpected surprises. 
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1. INTRODUCTION 
 
Systematization of a multitude formed of similar 
elements, regardless of its magnitude, is not the 
most difficult task, the most difficult is to find out 
a principle, a criterion, able to logically integrate 
all present and future component entities. In a 
tentative for systematization of natural micro 
molecular organic compounds, the elements of 
symmetry – mirror plane of symmetry, center of 
symmetry and (alternating) axis of symmetry 
have been considered as principles (criteria) for 
the aimed task. It has been constantly searched 
the capacity of organic compounds to exist in a 
symmetric form [1-11]. Symmetry is discussed in 
connection with planes of symmetry. Plane of 
symmetry is a physical chemical phenomenon 
and an instrument. Geometrical plane of 
symmetry indicates two identical achiral halves. It 
can be applied to regular geometrical figures 
(circle, square, rectangle, equilateral triangle,  
etc.) or to regular geometrical bodies (sphere, 
cube, cone, cylinder, etc.). In an equilateral 
triangle a geometrical plane of symmetry cuts a 
point and a line, in a square two lines or two 
points, in a sphere or a cube it cuts an area, etc. 
In a slightly modified form, geometrical plane of 
symmetry can be applied also in chemistry. In 
the latter science it cuts a cloud of electrons (i.e. 
a bond) or one or more atoms (i.e. a nucleus or 
nuclei and their electronic clouds). In chemistry, 
geometrical plane of symmetry operates in this 
way: applied to cyclopropane it cuts an atom of C 
and two atoms of H, as well as a C-C bond, and 
what appears as two identical halves are the two 
methylene groups (see below). There are two 
alternatives in cyclobutane: (a) geometrical plane 
of symmetry cuts two C-C bonds, and two 
ethylene groups appear as the two identical 
halves; (b) it cuts the two diagonal methylene 
group, and what appears as two halves are the 
other two methylene groups. Nonetheless that in 
chemistry, the geometrical plane of symmetry 
has the property to hide (or to mask) some 
chemical groups cut by it or situated in it. The 
second type, chemical plane of symmetry, 
named also mirror plane of symmetry, indicates 
two enantiomeric chiral halves uniformly linked 
with each other or uniformly linked on a         
suitable matrix. In heterodimeric compounds 
characterized by a mirror (or chemical) plane of 
symmetry, the cut atoms are hidden (masked) of 
polarized light. E.g. xylitol, ribitol and numerous 
synthetic compounds [10,12]. 

 
Natural and synthetic organic compounds have 
been classified, in a tentative of their 
systematization, in three types [5,9-11].  
 

A. Symmetric, especially meso (A1) and C2 
symmetric (C2 symm.) (A2). The molecule 
of meso compounds is formed of two 
enantiomeric halves, evidenced by a mirror 
plane of symmetry. meso Compounds 
designated in this way by Cahn-Ingold-
Prelog rules do not change the latter 
assertion: one can assert that molecules of 
this group are formed of two imaginary 
enantiomeric halves separated by an 
imaginary mirror plane of symmetry. From 
the definition of meso compounds one can 
infer, by molecular modelling, that 
alternative dimerization of the two 
enantiomeric halves, between them or on 
the initial matrix, would produce two chiral 
C2 symm. enantiomeric products; it should 
be stressed that the matrix, without being 
necessarily chiral has to satisfy the 
definition of C2 symmetrical compounds 
[12]. Consequently, alternative uniform 
dimerization of his two halves produces 
two chiral enantiomeric C2 symm. 
combinations. Hence, the molecule of C2 
symm. combinations is formed of two 
identical chiral halves uniformly linked with 
each other or on a suitable mono- or poly-
atomic matrix [13]. 

B. Possible symmetry generators, i.e. 
compounds possessing a real or imaginary, 
but plausible, chemically symmetric 
correspondent: irrechi (from irregular 
distribution of chiral carbons) (B1) and 
constitutional (constit.) (B2). 

C. archaic (or primitive) that are neither 
symmetric nor possible generators of 
chemical symmetry.  

 
Two hypotheses can be advanced concerning 
the mode of action of the plane of symmetry: (A) 
the atoms situated in the plane of symmetry are 
concealed of the polarized light; (B) the atoms 
situated in the plane of symmetry contribute in an 
equal measure to the two enantiomeric halves. 
 
Symmetric compounds are a minority in organic 
chemistry. The three groups are (bio)chemically 
interchangeable. In preceding papers we have 
demonstrated that almost all natural 
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micromolecular combinations [1,3-9] appear as 
constit., however they all  are possible 
generators of chemical symmetry. Archaic 
(primitive) type is also represented in natural 
chemistry. On the other hand, it should be 
stressed that symmetric compounds, both meso 
and C2 symm. have been found almost 
exclusively in plants and microorganisms, and 
they are usually produced from constit. 
precursors. 
 
The term meso-inositol is as ubiquitous as a 
pollutant. It can be found in all textbooks and 
journals, inclusively in English Nature and 
American Science. In this paper is demonstrated 
that no inositol per se is meso. All achiral 
inositols present a geometrical symmetry, like 
benzene and toluene. Comparatively, meso 
compounds of seven classes of combinations are 
presented (Figs. 1-9 and Table 1). Moreover, our 
aim is to identify as much as possible 
compounds possessing a real or possible degree 
of enantiomorphism in their molecule, both in 
natural realm and synthetic group, i.e. potential 
chemical symmetry generators. 
 

2. CARBOHYDRATES 
 
At the beginning of the nineteenth century, 
polarized light and optical activity have been 
discovered and polarimeter was invented. When 
Pasteur approached tartaric acid, two specimens 
of this acid were known: a dextrorotary type that 
had been discovered by Scheele (1770) in the 
sediment (tartar) deposited during the grape juice 
fermentation [14], and a specimen devoid of 
optical activity prepared by Kestner (1822) [15]. 
Pasteur (1848) separated two types of 
enantiomorphic crystals from a Kestner’s sample 
(Fig. 1), and found out that their watery solutions 
were dextrorotary and levorotary, respectively. 
Hence, Kestner’s specimen of tartaric acid was in 
fact a racemic mixture. When van’t Hoff [16] and 
LeBel [17] invented steric molecular models, a 
question had to be raised concerning the 
correspondence between the samples of the 
enantiomeric tartaric acids and the two models 
elaborated by van’t Hoff. Since [+]-tartaric acid 
had been the first discovered, it was selected as 
reference. Of all chemists faced up with this 
dilemma, E. Fischer probabilistically solved it   
(Fig. 1) [18] and steadfastly followed it in the 
elaboration of the reasoning concerning structure 
elucidation of linear aldohexoses and their linear 
isomers [19,20]. The configuration of [+]-tartaric 
acid has been doubtlessly elucidated by Bijvoet 
et al., [21]. An important contribution to E. 

Fischer’s biography was brought by showing that 
a preparative method elaborated by H. O. L. 
Fischer, his son, aiming at (+)- and (‒)-
glyceraldehyde [22,23], significantly facillitates 
the elucidation of configuration of C-2 of linear 
hexitols. By integration of finding of H. O. L. 
Fischer in the strategy of E. Fischer, a 
remarkable shortcut to structure elucidation of 
linear aldohexoses has been obtained [1]. 
 
meso-Tartaric acid has been discovered also by 
Pasteur (1853) as an optically inactive compound, 
non-cleavable by chemical, physical or biological 
methods [24,25]. A series of structural 
relationsips between carbohydrates meso 
compounds and their C2 symm. isomers are 
presented (Fig. 1). Concerning meso trehalose 
and ent-trehalose all experimental premises are 
fulfilled: Unreducing character of trehalose was 
inferred by Fischer [26] from the fact that this 
sugar did not react with phenylhydrazin. 
Trehalose doesn’t reduce Fehling solution and its 
optical rotation is not influenced by time or 
temperature [27]. The two isomeris of trehalose 
have been prepared by synthetical methods. 
Fischer and Delbrück [28] obtained isotrehalose, 
i. e., the ββ-form, by condensing tetraacetyl 
glucosyl bromide in the presence of silver 
carbonate; isotrehalose is also a C2 symm. 
compound, while the αβ one is irrechi. Moreover, 
since L-glucose was synthesized [29], the 
preparation of a meso isomer based on α-D-
glucopyranose and α-L-glucopyranose is within 
our reach. 
 

2.1 Amino Acids 
 
Linear aminoacids with dimeric structure ‒ 
cysteine, lanthionine, α,ε-diaminopimelic acid 
(Figs. 2,3) [30-32], etc., and their higher 
homologues, present both types of isomers, 
meso and C2 symm. Vickery [33] included α,ε-
L,L-diamminopimelic acid in the same category 
with threitol, tartaric acid and cystine. A series of 
representatives of linear synthetic diamino 
dicarboxylic acids (L/L or D/D) were synthesized 
and their biochemical activity investigated [34]. 
Lanthionine was discovered as a product of 
action of alkali on wool [35]. Subsequently, this 
amino acid was discovered in living matter and 
its isomers synthesized and characterized 
[31,36]. Lanthionine presents eight β-methyl 
derivatives, at least one of them found in nature 
[37], and structural analysis of these isomers 
showed that every C2 symm. isomer has                   
two β-methyl isomers while meso one alone has 
four. 
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Fig. 1. Stereochemistry relationship between meso carbohydrates and their C2 symm. isomers 
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Fig. 2. All linear isomers of natural symmetric isomers are known 

 
When meso isomer is naturally methylated, 
methyl group is found on D-moiety since this 
fragment come from L-Thr via a didehydro 
intermediate [38]. As expected, homolanthionine 
[32] presents also three linear isomers, two C2 
symm. and one meso. α,ε-Diaminopimelic acid 
was discovered in bacterial products. Even from 
its discovery this amino acid was compared with 
cystine and, as expected, three isomers were 
identified, two as a pair of externally 
compensated isomers (L,L- and D,D-) and the 
other one as a non-resolvable, internally 
compensated meso form (L,D-). To accomplish 
their separation, a synthetic mixture of the three 
forms was converted into diamides and treated 
with a hog kidney amidase-Mn

2+
. The action of 

the L-directed enzyme led to the following 
mixture: the free L,L-diaminopimelic acid, the 
D,D-diamide and the L-diaminopimelic acid-D-
monoamide. This mixture was then separated by 
ion-exchange chromatography [30]. At least L,L- 
and meso forms are natural compounds [39], and 
an epimerase converts L,L-diaminopimelic acid 
to the meso-isomer. An interesting biochemical 
equivalence of lanthionine and diaminopimelic 
acid has been noticed [40]. According to the 
same principle, at least three isomers are known 
for diketopiperazine of Pro: LL, LD, DD [41]. 

2.2 Diketopiperazines and Their 
Derivatives 

 

Of the 20 common aminoacids, 19 produce C2 
symm. diketopiperazines (DKPs) and derivatives 
(Table 1). 2,5-Diketopiperazines were discovered 
by E. Fischer [42]. All possible forms of 
homogenous (LL, DD) and mixed (D and L) as 
well as of different amino acids, were 
synthesized and/or discovered in natural 
materials [43]. Cyclo(L-Val-L-Val) and cyclo(L-
Val-D-Val) were synthesized in view of their 
comparative oxidation with dioxiranes. 
Cyclodipeptide synthases were discovered as a 
novel enzyme family that employs aminoacyl-
tRNAs as substrates for 2,5-diketopiperazine 
synthesis. A cyclodipeptide synthase of 
Streptomyces noursei AlbC, uses aminoacyl-
tRNAs as substrates to catalyze the formation of 
cyclo(L-Phe-L-Leu) [44]. A number of 51 
cyclodipeptide synthases were analyzed 
concerning their substrate specificity, and                  
the conclusion was that they use 17 
proteinogenic amino acids. Two such enzymes of 
Nocardiopsis sp., NozA and NcdA, catalyze 
cyclo(L-Trp-L-Trp) biosynthesis from 
tryptophanyl-tRNA, being outstandingly specific 
[45]. A few dozens of 2,5-diketopiperazines and 
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their derivatives have been evidenced in marine 
organisms. 
 
Some diketopiperazines (especially based on L-
Phe, L-Tyr and L-DOPA) and their derivatives, 
have antibiotic activity [43]. Cyclo(L-Phe-L-Phe) 
was isolated from P. nigricans and from a marine 
mangrove endophytic fungus. Cyclo(L-Tyr-L-Tyr) 
was isolated from the culture liquid of Cordyceps 
sinensis (Berk.) Sacc. Both these DKPs are C2 

symm. molecules. The Tyr DKP is converted into 
the DOPA analogue, that is also a C2 symm. 
compound, by PC12 cell lysate, which produces 
high levels of tyrosine hydroxylase. In fact, both 
these DKPs are intermediates in the biosynthesis 
of the anticancer natural products. The 
dimethylanalogue of cyclo(L-Tyr-L-Tyr) was 
isolated from Streptomyces griseus [43]. Other 
meso derivatives (Fig. 3) can be submitted to the 
same test for their symmetry quality. 

 

Table 1.  Meso compounds and C2 symm. Of  2,5-diketopiperazine 
 

L/L-2,5-Diketopiperazine 

(C2 symm.) 

L/D-2,5-Diketopiperazine 

(meso) 

D/D-2,5-Diketopiperazine 

(C2 symm.) 

Cyclo-L-Ala-L-Ala Cyclo-L-Ala-D-Ala Cyclo-D-Ala-D-Ala 

Cyclo-L-Val-L-Val Cyclo-L-Val-D-Val Cyclo-D-Val-D-Val 

Cyclo-L-Leu-L-Leu Cyclo-L-Leu-D-Leu Cyclo-D-Leu-D-Leu 

Cyclo-L-Ile-L-Ile Cyclo-L-Ile-D-Ile Cyclo-D-Ile-D-Ile 

Cyclo-L-Thr-L-Thr Cyclo-L-Thr-D-Thr Cyclo-D-Thr-D-Thr 

Cyclo-L-Ser-L-Ser Cyclo-L-Ser-D-Ser Cyclo-D-Ser-D-Ser 
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Cyclo-L-Met-L-Met Cyclo-L-Met-D-Met Cyclo-D-Met-D-Met 
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Cyclo-L-His-L-His Cyclo-L-His-D-His Cyclo-D-His-D-His 

Cyclo-L-Trp-L-Trp Cyclo-L-Trp-D-Trp Cyclo-D-Trp-D-Trp 
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Fig. 3. Meso derivatives related with C2 symm. compounds 
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3. CAROTENOIDS 
 

Carotenoid (polyprenyl, isoprenoid) compounds 
constitute one of the best and the most abundant 
illustration of C2 symm. phenomenon (Fig. 4). 
They present a large structural variety and 
numerous outlines of relationships between 
meso, C2 symm. irrechi and constit. because all 
their representatives (about 1000) are possible 
symmetry generators. Hence no carotene or 
carotenoid is archaic [46]. 
 

Chemical representations of perhydro polyprenyl 
compounds – squalane, lycopane, carotane, 
isorenieratane, renierapurpurane, 1,10-
bis(2’,2’,6’-trimethylcyclohexyl)-3,8 
dimethyldodecane – are presented in an 
equivocal way concerning their chirality [47,48], 
and this allow us to hypothesize that the isomers 
of these compounds can belong to the three 
types: meso, C2 symm and constit. 
 

As expected, carotenoids possessing two 
asymmetric carbons present only two types of 
optical isomers, meso and C2 symm. C40 
carotenoids with two chiral centers are 
represented by β-carotene-2,2’-diol [49], β-
carotene-3,3’-diol (zeaxanthin), β-carotene-4,4’-
diol (isozeaxanthin), astaxanthin [50], alloxanthin, 
tetrahydrozeaxanthin dione, 
tetradehydroastaxanthin [51]. At least in case of 
zeaxanthin, β-carotene-2,2’-diol, alloxanthin [52], 
(6,6’S)-ε,ε-Carotene-3,3’-dione [53,54] and 
astaxanthin, all three isomers – two enantiomeric 
C2 symm. and one meso, are known [51]. meso-
Zeaxanthin [(3R,3’S)-β,β-carotene-3,3’-diol] (Fig. 
4) is largely distributed in nature, usually mixed 
with other isomers, especially (3R,3’R)- and 
(3S,3’S)-. Separation was made 
chromatographically, e.g. via the dicarbamates of 
(S)-(+)-α-(1-naphthyl) ethyl isocyanate. After the 
first isolation of meso-zeaxanthin in nature [55], it 
was found in shellfishes, human retina (as a 
major carotenoid), shrimp, fish and turtle [55]. 
Meso-zeaxanthin was synthesized by  
 

 

asymmetric hydroboration. Meso-dihydroxy-β-
carotene [(2R,2’S)-β,β-carotene-2,2’-diol] has 
been isolated from the stick insect Ectatosoma 
tiaratum as a mixture with the other two isomers 
[56]. Tunaxanthin D [(3R,6S,3’S,6’R)-ε,ε-
carotene-3,3’-diol] was isolated as a major 
carotenoid from the yellow-tail rockfish Sebastes 
flavidus [57] and the fresh-water fish Siniperca 
scherzeri [58]. A HPLC chiral colum was used for 
its purification.Tunaxanthin E [(3R,6R,3’S,6’S)-
ε,ε-carotene-3,3’-diol] was isolated as a minor 
carotenoid from the fishes Chaenogobius isaza 
and Siniperca scherzeri [58]. Five meso 
compounds ‒ (3R,3'S)-astaxanthin, (3R,3’S)-
zeaxanthin, (6R,6’S)-3,3’-diketo-ε-carotene, 
tunaxanthin D, tunaxanthin E ‒ are linked in 
Siniperca scherzeri by a reductive metabolic 
pathway from astaxanthins to tunaxanthins (Fig. 
4). Meso-astaxanthin is distributed in natural 
materials in the crab Paralithodes brevipes, 
shellfishes [59], northern circumpolar shrimp 
Pandalus borealis (Crustaceae Malacostraca, 
order Decapoda), as well as in other aquatic 
animals [58]. Meso-3,3’-diketo-ε-carotene 
[(6R,6’S)-ε,ε-carotene-3,3’-dione] has been 
isolated from the yellow-tail rockfish Sebastes 
flavidus [57] in a mixture with its optical isomers, 
(6R,6’R) and (6S,6’S). They were separated by 
HPLC on a chiral column. Some aquatic 
organisms contain abundantly alloxanthin, all 
three isomers. The structure of meso-alloxanthin 
was checked also by chemical synthesis [60]. C40 
carotenoids with four or more chiral centers 
present the four types of isomers, C2 symm., 
meso, irrechi, constit. e. g., capsorubin 
[(3S,5R,3’S,5’R)-3,3’-dihydroxy-κ,κ-carotene-
6,6’-dione] [61], auroxanthin-
(3S,5R,8R,3’S,5’R,8’R), auroxanthin-
(3S,5R,8S,3’S,5’R,8’S), [62]. Of C50 carotenoids, 
sarcinene, decaprenoxanthin, okadaxanthin and 
sarcinaxanthin possess four chiral carbon while 
flavuxanthin, C. p. 450, bacterioruberin, 
bisanhydrobacterioruberin, tetrahydro 
bisanhydrobacterioruberin has two. 
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Fig. 4. Chemical modelling of 2,5-diketopiperazines 
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4. LIGNANS 
 
Discovery of phenylpropanoids, lignans (Fig. 5) 
and neolignans, is due to three criteria: (i) the 
need to increase the therapeutic efficiency of 
plants, used as remedies for millennia, 
determined the knowledge of their chemical 
composition, and sometimes even the 
recognition of chemicals as the active biological 
components; (ii) the elaboration and practice of 
biological or biochemical tests, the so called 
bioasays i. e., the quality of some compounds to 
regulate biochemical or biological parameters: 
the activity of enzymes, the level of hormones, 
the life of culture cells, etc.; (iii) systematic 
chemical inquiry of biological material, its  
relative abundance of some principles being 
important. 
 
The word lignan was coined by Haworth [63] as 
an unequivocal term concerning the vegetable 
origin of these compounds. Lignans and 
neolignans have a wide distribution in plants 
kingdom, and in the same plant they are usually 
found in all its organs. Lignans are typically 
dimerization products of phenylpropanoids, 
which are called monolignols in this instance. 
Dimerization reaction is accomplished in such a 
manner to block it at this stage, completely 
different from lignin biosynthesis. Lignans are 
optically active. Lignans are formed by the fusion 
of two phenylpropane units through the center 
carbon atoms (C-8/C-8′) of their sidechains. 
Systematization of lignans used in this paper is 
based on Lignan Nomenclature [64], the work of 
Hearon and MacGregor [65] and Tepono et al., 
[66]. 
 
8’-epi-Larreatricin and its isomer 3,3’-
didemethoxynectandrin B have been found as 
products of biosynthesis from anol [67]. ent-8’-
epi-Larreatricin can be found in a series of 
natural compounds: fragransins (A2, B2, C2), (–
)-talaumidin, (–)-galbelgin, (–)-galbacin, etc., [68]. 
Nordihydroguaiaretic and dihydroguaiaretic acid 
are also biosynthesized from anol via larreatricin 
and 3,3’-dihydroxylarreatricin in creosote bush 
[67].  C2 symm. isomers of  nordihydroguaiaretic 
[69] and dihydroguaiaretic acid [70] are also 
known.  
 
Under the title 1,4-diaryl-2,3-dimethylbutane (2,3-
dibenzylbutane) derivatives have been included 
guaiaretic acid, dihydroguaiaretic acids, 

nordihydroguaiaretic acids and their derivatives. 
This type of lignans contains usually two chiral 
centers, hence they present only two types of 
isomers, C2 symm. and meso. Guaiaretic acid 
was isolated from the resin of Guaiacum 
officinale L. or G. sanctum L. as insoluble 
potassium salt in alcoholic solution [65]. Its 
structure was elucidated by Schroeter et al [71] 
and confirmed by Haworth et al [72]. Guaiaretic 
acid has been a key compound in the elucidation 
of the absolute configuration of lignans. As 
expected, its hydrogenation leads to two isomers, 
meso-dihydroguaiaretic acid and (–)-
dihydroguaiaretic acid. Rao and Chattopadhyay 

[73] discovered (–)-dihydroguaiaretic acid in the 
plant Saururus cernuus, and in order to prove its 
structure they synthesized (–)-dihydroguaiaretic 
acid from (–)-austrobailignan-5. The other 
isomers are also known: (+)-dihydroguaiaretic 
acid (C2 symm.), meso-dihydroguaiaretic, (+)-and 
(–)-nordihydroguaiaretic (both C2 symm.) [69] 
and meso-nordihydroguaiaretic acid. 
 
Tetrahydrofuroguaiacin B (isonectandrin B) has 
been isolated from Myristica fragrans (nutmeg); 
its structure was elucidated by chemical and 
spectroscopical methods (

1
H and 

13
C NMR 

spectra) [74]. (+)-Saucernetindiol has been 
isolated and characterized of the same material 
[75], while (‒)-saucernetindiol has been found in 
Hippophae rhamnoides fruits [76]. Zuonin B, has 
been separated from the stem bark of Machilus 
thunbergii [77]. (+)-Galbacin is of the same group 
with 8-epi-larreatricin. (+)-Galbacin was isolated 
from the bark of Machilus thunbergii [78], was 
found in Aristolochia triangularis Chamisso [79], 
in Virola surinamensis (accompanied by (+)-
galbelgin, 5-methoxygalbelgin and grandisin) [80], 
in Machilus japonica Zieb. et Zucc., 
(accompanied by (+)-galbelgin) [81]. For 
structure elucidation, the latter authors combined 
chemical methods (permanganate oxidation) with 
physical ones (NMR and MS). The main and 
significant products of potassium permanganate 
oxidation were veratric acid (3,4-
dimethoxybenzoic) and piperonylic acid (3,4-
methylenedioxybenzoic acid). Both (+)-galbacin 
and (+)-galbelgin have been prepared by 
chemical synthesis [82]. (‒)-Galbacin was 
isolated from Myristica fragrans (nutmeg). 
Nectandrin B was also found in Myristica 
fragrans and fragransin A2 in the seeds             
of Vietnamese nutmeg Myristica fragrans                 
[83]. 
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Fig. 5. Chemical modelling of meso carotenoids 
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5. PHENOLS 
 
Meso Phenols are also represented among 
natural compounds (Fig. 6). Hybocarpone [6,6'-
bis(3-ethyl-2,7-dihydroxynaphthazarin)] (C2 
symm.) was isolated from the cultured mycobiont 
of Lecanora hybocarpa (Tuck.) Brodo [84]. 
Natural hybocarpone and some of its isomers 
have been synthesized, by an oxidative 
dimerization of hydroxynaphthoquinone by a 
technique of single electron transfer, and studied 
by Nicolaou and Gray [85]. Some isomers were 
compared about their relative thermodynamic 
stability: (2S,3S,4S,5S) (natural compound; C2 
symm.), (2S,3R,4S,5S) (irrechi), (2S,3S,4S,5R) 
(irrechi), (2S,3R,4S,5R) (meso), (2R,3S,4S,5R) 
(C2 symm.), (2R,3R,4S,5S) (meso) [85]. The 
following conclusions could be drawn: the most 
stable isomer proved to be the natural one, 
followed by a meso isomer, and the least               
stable was a meso isomer, i. e., the all-cis                     
one. These results are in agreement with            
a study about lignans: grandisin, a C2 symm. 
compound, proved to be more stable by 6.5 
kcal·mol

–1
 than its all-cis isomer (meso), [rel-

(7R,8S,7’S,8’R)-3,4,5,3’,4’,5’-hexamethoxy-7,7’-
epoxylignan], due to the hydrogen bonds  
between methoxy groups in trimethoxyphenyl 
rings [86].  
 
Five diarylheptanoids including a C2 symm. 
compound have been isolated from the rhizomes 
of Curcuma xanthorrhiza (Zingiberaceae) [87]. Its 
structure was determined to be 
octahydrocurcumin [(3S,5S)-1,7-bis(4-hydroxy-3-
methoxyphenyl)-heptane-3,5-diol], while the 
structure of a similar chiral compound (a 
biosynthesis precursor, probably) was concluded 
as (3R,5R)-l-(4-hydroxyphenyl)-7-phenylheptane-
3,5-diol. Catalytic hydrogenation of curcumin led 
to three isomers, two C2 symm. and one meso: 
(3S,5S)-, (3R,5R)- and (3R,5S)-
octahydrocurcumin [87]. 
 
A diol, hannokinol [3,5-dihydroxy-1,7-di-(p-
hydroxyphenyl)-heptane], has been isolated from 
vegetable tissue in all three forms: meso, (+), (–) 
[88]. Its enantiomers are (3S,5S)-hannokinol and 
(3R,5R)-hannokinol, both C2 symm. 
 
Gordonia sp. 647W.R.1a.05, a bacterium isolated 
from the venom duct of the cone snail, Conus 
circumcises, produces two C2 symm. molecules 
with the same configuration of their chiral centers, 

(2S,3S)-1,4-diphenyl-(+)-2,3-butanediol and 
diolmycin B2 [(2S,3S)-1,4-di-(p-hydroxyphenyl)-
(+)-2,3-butanediol] [89]. Four other compounds, 
circumcins A-C and kurasoin, found in the same 
material, suggest a strong metabolic relationship 
between these compounds. Intermediates of 
benzoin type (circumcins B and C, kurasoin) 
show that their biosynthesis is similar to 2,3-
butanediols. A meso isomer, diolmycin B1, was 
isolated from the fermentation broth of 
Streptomyces sp. WK-2955 [90]. 
 

6. ALKALOIDS 
 
Meso Isomers of the spectacular group of 
alkaloids are not abundantly represented (Fig. 7). 
Monomeric unit of pyrrolidinoindoline alkaloids is 
hexahydropyrrolo [2,3,-b]indole (HPI) ring [91]. 
Its dimerization, preceded by partial and specific 
N-methylation, produces dimeric isomers (Fig. 7). 
Oxidative dimerization of a natural product 
(dipterin; N-methyltryptamine) suggested a 
biochemical pathway to chimonanthine [92]. The 
indole alkaloid family of chimonanthines includes 
all three possible isomers ‒ meso, levo, dextro, 
(the latter two, C2 symm.) and all three have 
been found in nature: meso- and (‒)-
chimonanthine in plants as Psychotria colorata 
flowers, [93,94], (+)-chimonanthine in a 
dendrobatid frog and in plants [95]. Psychotria 
colorata (Willd., ex R & S.) Muell. Arg. is a 
medicinal plant used by some Amazon tribes in 
the treatment of earache (flowers) and to 
alleviate abdominal pain (roots and fruits). 
Chemical analysis indicated that these vegetable 
materials contained alkaloids and its 
fractionation, monitored by bioassay, led to an 
alkaloid with molecular formula C22H22N4. 

1
H and 

13
C NMR spectra disclosed a C2 symm. 

compound, chimonanthine. Polarimetry indicated 
a levorotary combination [93]; meso 
chimonanthine was found in the same                         
source [94]. The chimonanthine isomers          
are both C2 symm., a result provided by 

13
C NMR 

analysis [96]. Absolute configuration of 
chimonanthine C2 symm. enantiomers has been 
elucidated by circular dichroism in comparison 
with their isomer, (+)-calycanthine. In acidic 
conditions, the latter is in equilibrium with (‒)-
chimonanthine. It was easy to conclude that the 
frog alkaloid was very similar to the alkaloid from 
plants; however the optical rotation of the first 
was levorotary, while the second was 
dextrorotary. 
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Fig. 6. Relationship between meso lignans and their C2 symm. isomers 
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Fig. 7. Isomerism of natural phenols 
 

7. SESQUITERPENOIDS 
 
Meso terpenoides are less numerous than other 
isomers of this group. Well known and 
characterized are daibudilactone C (meso) and 
daibudilactone D (C2 symm.) (Fig. 8). 
Daibudilactones B and C have been isolated 
from the stem of Neolitsea daibuensis Kamikoti 
by bioassay-guided fractionation. Their structures 
were elucidated by spectral analysis and single-
crystal X-ray diffraction. Both daibudilactones 
presented potent anti-inflammatory activity using 
an inducible enitric oxide synthase (iNOS) assay 
[97,98]. ent-Daibudilactone B is a hypothetical 
compound for the time being. 

8. ARCHAIC (PRIMITIVE) COMBINATIONS 
AND GEOMETRICAL  SYMMETRY 

 

Archaic (primitive) combinations have been 
defined as a distinct group devoid of chemical 
symmetry and of an imaginary partner 
possessing chemical symmetry. Many of them 
are in an advanced degree of oxidation [9]. 
However, they are characterized by a 
geometrical symmetry (Fig. 9). Benzene has six 
planes of symmetry, and toluene one. The 
symmetry parts of benzene depend of the plane 
of symmetry, whether it cuts two =CH- or two 
bonds. Symmetry plane of toluene cuts a C, a 
CH (of methyl groups) and an =CH- (C-4 of 
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benzene ring). Important combinations belong to 
archaic group: alkanes (C1-C7. C7 is the first 
alkane presenting optically active isomers), 
alkenes (C2-C4), alkynes (alkadienes) (C2-C6), 
arenes (benzene, toluene, naphthalene, 
anthracene, phenanthrene, diphenyl, etc.), 
alcohols (C1-C8), aldehydes (ketones) (C1-C4), 
saturated organic acids (C1-C2). Other 
combinations also belong to archaic group: 
fumaric/maleic acids, benzoic acid, phthalic acid, 
nucleic bases, sepiapterine, niacin (nicotinic acid, 
nicotinamide), xanthopterin, leucopterin, pyrrole, 
imidazole, choline, indole, glycerol, salicylic acid, 
etc. 
 

9. IS THERE ANY INOSITOL A MESO 
DERIVATIVE? 

 
When the same reasoning is applied to inositols, 
the following results are obtained. cis-Inositol, a 
compound formed of six equivalent carbons and 
characterized by six geometrical planes of 

symmetry, and epi-inositol give neo-Inositol (Fig. 
9a and b). myo-Inositol gives muco-inositol and 
the latter gives scyllo-inositol, a centrosymmetric 
molecule with three geometrical planes of 
symmetry. Geometrical symmetry is clearly 
broken in case of neo- allo- and scyllo-inositol:             
all three compounds produce (+)- and (‒)-inositol 
(Fig. 9). Hence inositols behave completely 
different of typical meso compounds in the    
sense that dimerization of their halves fails to 
produce C2 symm. derivatives, and from this 
behaviour we have concluded that they are not 
meso. 
 
Disubstituted derivatives instead (usually 
phosphorylated or methylated) are clearly meso 
(Fig. 11), at least in Haworth  representations. An 
interesting behaviour has 1,3-dideoxy-1,3-
diguanidyl-scyllo-inositol, a constituent of 
streptomycin (Fig. 12). It is neither meso nor C2 
symm. However, 1,3-dideoxy-1,3-diguanidyl-2,5-
diketo-scyllo-inositol is clearly meso (Fig. 12). 
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Fig.  8. Three isomeric chimonanthines: One meso and two C2 symm 
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Fig. 10. Symmetry planes of benzene and toluene 
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Fig. 11. Symmetry properties of inositols 
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Fig. 12. Cis-Inositol-1,2-bis-phosphate is a meso compound 
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Fig. 13. Symmetry comparison of two disubstituted derivatives of scyllo-inositol 
 

10. CONCLUSIONS 
 

1. Meso Isomers are exemplified in seven 
classes of natural compounds: 
Carbohydrates, amino acids, carotenoids, 
lignans, phenols, alkaloids, terpenoids. 

2. Two types of symmetries can be 
distinguished to chemical combinations: 
Geometrical and chemical (the latter 
characterized by the mirror plane of 
symmetry). 

3. Alternative dimerization of the two halves 
of a meso combination produced two 
enantiomerical C2 symm. compounds. 

4. All the achiral inositols behaved in a 
different manner at this modelling. It has 
been concluded that no inositol per se is a 
meso compound; they present a 
geometrical symmetry instead.  
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