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ABSTRACT
Biclustering in gene-expression data is a subset of the genes
demonstrating consistent patterns over a subset of the condi-
tions. Recently, the most of research in biclustering involving
statistical and graph-theoretic approaches by adding or delet-
ing rows and/or columns in the data matrix based on some
constraints. This is an exhaustive search of the space, and
hence the solutions may not be feasible. The proposed work
finds the significant biclusters in large expression data using
shuffled cuckoo search with Nelder–Mead (SCS-NM). The diver-
sification and intensification of the search space are obtained
through shuffling and simplex NM, respectively. The proposed
work is tested on four benchmark datasets, and the results are
compared with the swarm intelligence techniques and the
various biclustering algorithms. The results show that there is
significant improvement in the fitness value of proposed work
SCS-NM. In addition, the work determines the biological rele-
vance of the biclusters with Gene Ontology in terms of func-
tion, process and component.

Introduction

The DNA microarray analysis is a technology which enables the researchers
to analyze the expression level of thousands of genes in a single reaction
rapidly and in an efficient manner (Lockhart and Winzeler 2000). A typical
DNA microarray analysis involves a multistep procedure which includes
fabrication of microarrays by fixing properly designed oligonucleotides
representing specific genes, hybridization of complementary DNA (cDNA)
populations onto the microarray, scanning hybridization signals, image ana-
lysis and normalization of data. After a number of preprocessing steps, the
low-level microarray analysis of a microarray can be represented as a numer-
ical matrix. In this matrix, the rows represent different genes and columns
represent experimental conditions. Each element of this matrix represents the
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expression level of a gene under a specific condition, and is represented by a
real number. In gene-expression matrix, a common goal is to group the genes
and conditions into subsets that convey biological significance. In its most
common form, this task translates to the computational problem known as
clustering.

However, clustering has some disadvantages (Madeira and Oliveira 2004).
To overcome the problems associated with clustering, biclustering was pro-
posed. Biclustering is a powerful analytical tool for the biologist. A biclusters
is a submatrix of the gene-expression data matrix. The rows and columns in
the submatrix need not be contiguous as in the gene-expression data matrix
(Madeira and Oliveira 2004). The computation of biclusters is costly because
one will have to consider all the combinations of columns and rows in order
to find out all the biclusters. The search space for the biclustering problem is
2m+n where m and n are the number of genes and conditions, respectively.
Usually m + n is more than 2000. Therefore, the biclustering problem is NP-
hard (Divina and Aguilar-Ruiz 2006; Tanay, Sharan, and Shamir 2009). The
problem of finding a coherent bicluster can be formulated as an optimization
problem. For stochastic algorithms, in general, there are two types—heuristic
and meta-heuristic—though their difference is small. Loosely speaking, heur-
istic means “to find” or “to discover by trial and error” (Julio and Michael
1997). This is good when we do not necessarily want the best solutions but
rather good solutions which are easily reachable. The Nelder–Mead (NM)
downhill simplex is an example of heuristic algorithm. Further development
over the heuristic algorithms is the so-called meta-heuristic algorithms. All
meta-heuristic algorithms use certain trade-off of randomization and local
search. Randomization provides a good way to move away from local search
to the search on the global scale. Therefore, almost all meta-heuristic algo-
rithms intend to be suitable for global optimization (Christian and Andrea
2003).

This work develops and implements the biclustering based on the most
popular and robust bio-inspired strategy cuckoo search (CS) (Yang and Deb
2009). An important advantage of CS algorithm is its simplicity. In fact, com-
paring with other population- or agent-based meta-heuristic algorithms such as
particle swarm optimization and harmony search, CS has fewer parameters that
need to be tuned before starting the search compared with other techniques
(apart from the population size). Therefore, it is very easy to implement. In the
conventional CS, each nest consists of a single egg and cuckoo imitates an egg
using Levy flight. In the proposed CS algorithm, a nest contains a clutch (three
eggs) instead of single egg. To avoid the premature convergence, the cuckoo
imitates an egg using the NM (Nelder and Mead 1965) approach and to obtain
near global optimum, the eggs within the nests are shuffled when the stagnation
occurs. In this study, shuffled cuckoo search with Nelder–Mead (SCS-NM) is
used for biclustering microarray gene-expression data. The remainder of this
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paper is organized as follows: Section 2 provides the problem statement. Section
3 gives related works in biclustering. The SCS-NM is illustrated in Section 4.
Kennedy and Eberhart proposed a discrete binary version of binary particle
swarm optimization (BPSO) for binary problems (Kennedy and Eberhart 1997).
The shuffled frog leaping (SFL) algorithm is a memetic meta-heuristic that is
designed to seek a global optimal solution by performing a heuristic search. It is
based on the evolution of memes carried by individuals and a global exchange of
information among the populations (Eusuff, Lansey, and Pasha 2006). Section 5
presents the detailed experimental setup and results for comparing the perfor-
mance of the SCS-NM with the BPSO, SFL, CS and CS-NM.

Problem Statement

The gene-expression data can be shown as N × M matrix A of real numbers.
Let G be a set of genes, C a set of conditions, and A(G,C) the expression
matrix, where G = {1,2,. . .,m} and C = {1,2,. . .,n}. The element GExi,j of A(G,
C) represents the expression level of gene ‘i’ under condition ‘j’. The objective
of biclustering is to extract the submatrix A(G’, C’) of A(G, C), which is
identified by gene subset G’ of G and condition subset C’ of C. In general, the
problem can be defined as finding large sets of rows and columns such that
the rows show unusual similarities along the dimensions characterized by
columns and vice versa. The bicluster cardinality or volume of bicluster is
simply the product of the number of genes and number of conditions in the
bicluster. The main objective here is to identify the biclusters of maximum
size with the minimum mean squared residue (MSR) (homogeneity) and
maximum of row variance (nontrivial).

Review of Related Works

As we mentioned in the introduction of this paper, the biclustering problem
is NP-hard (Tanay, Sharan, and Shamir 2009). For that reason, heuristic
search algorithms are usually used to approximate the problem by finding
suboptimal solutions. A number of biclustering techniques have been pro-
posed in the literature for gene-expression data analysis. Table 1 presents the
merits and demerits of the various existing biclustering method.

Shuffled Cuckoo Search with Nelder-Mead

In general, the performances of the meta-heuristic algorithms are mainly
dependent on two properties of the algorithm: diversification and intensifi-
cation, also mentioned as exploration and exploitation (Yang et al. 2013).
Although the basic CS algorithm demonstrates good global optimal search
ability in optimization problems, it has the problem of premature
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Table 1. Review of related work in biclustering gene expression data.
S. No. Algorithm Merits Demerits

1. CC (Cheng and
Church 2000)

The algorithm discovers biclusters
with coherent values.

CC discovers one bicluster at a time,
repeated application of the method on
a modified matrix is needed for
discovering multiple biclusters.
Therefore, it results in highly
overlapping gene sets.

2. SAMBA (Tanay,
Sharan, and
Shamir 2009)

Significant biclusters were identified
using graph theoretic approach
simultaneously.

The algorithm is based on exhaustive
enumeration of biclusters. Due to its
high complexity, the number of rows
the bicluster may have is restricted.

3. xMOTIFs
(Murali and
Kasif 2003)

In order to prevent the algorithm
from finding too small or too large
bicluster, some constraints on their
size, conservation, and maximality
have been added to its formal
definition.

The algorithm uses prior knowledge
about the sample phenotypes.

4. ISA (Bergmann,
Ihmels, and
Barkai 2003)

The method includes data
normalization and the use of
thresholds that determine the
resolutions of the different
transcription modules.

There is no evaluation of the statistical
significance. Additionally, two
threshold parameters should be
defined.

5. OPSM (Ben-Dor
et al. 2003)

The algorithm can also be used to
discover more than one bicluster in
the same dataset, even when they
are overlapped.

The model concerns only the order of
values and thus makes the model
quite restrictive.

6. FLOC (Yang
et al. 2003)

Deals with the Cheng and Church
random masking issue.

Minimum overall coverage of bicluster
in the dataset.

7. BIMAX (Prelic
et al. 2006)

At each step, the two partitioned
matrices may have elements in
common or not, allowing thus the
possibility of finding overlapped
biclusters.

Divide and conquer has the drawback
of possibly missing good biclusters by
early splits.

8. MOEA (Mitra
and Banka
2006)

The output consists of a large size
of bicluster to a given threshold.

Converges slowly and consumes much
time to find the best bicluster and no
overlapping is carried out.

9. SEBI (Divina
and Aguilar-
Ruiz 2006)

Matrix of weights is used for the
control of overlapped elements
among the different solutions.

Maximum similarity bicluster (MSB)
works well for the special case of
approximately small biclusters.

10. MSB (Liu and
Wang 2007)

(1) No discretization procedure is
required, (2) Performs well for
overlapping biclusters and works
well for additive biclusters.

MSB works for the special case of
approximately squares biclusters.

11. RWB (Angiulli,
Cesario, and
Pizzuti 2008)

In order to avoid getting trapped
into poor local minima, the
algorithm executes random moves
according to a probability given by
the user.

Randomness reduces the convergence
speed for large dataset. So it
consumes much time to find the best
bicluster.

12. CMOPSOB
(Liu et al. 2009)

Speed up the convergence to the
Pareto front and also guarantee
diversity of solutions.

Using PSO has the problems of
dependency on initial point and
parameters, difficulty in finding their
optimal design parameters, and the
stochastic characteristic of the final
outputs.

(Continued )
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convergence. Therefore, the CS is improved by balanced intensification and
diversification. This paper proposes a variant CS called SCS-NM. The tradi-
tional CS considers single egg in a nest and a cuckoo lays one egg at a time by
using Levy flight (Yang and Deb 2009). The proposed CS considers a clutch
which contains three eggs in each nest. So the population is partitioned into
several clutches which are evolved independently. To ensure that the evolu-
tion process is competitive, it is required to have higher probabilities that
better solutions contribute to the next generation. The use of a triangular
probability distribution ensures this fairness. The NM simplex algorithm, a
direct search method, is used to generate the new solution. This strategy uses
the information contained in the clutches to direct the evolution in an
improved direction (Nelder and Mead 1965). Every new solution replaces
the worst solution of the current clutch, rather than the worst solution of the
entire population. This substitution ensures that every member has at least an
opportunity to evolve before being discarded or replaced. Thus, none of the
information contained in the nest is ignored. The intensification is caused by
while using simplex method.

For high-dimensional data, the local minima has a severe effect on fitness
function value so that the global minimum is not well approximated. The CS
is said to be converge prematurely when the proposed solution approximates

Table 1. (Continued).

S. No. Algorithm Merits Demerits

13. BicFinder
(Ayadi et al,
2012a)

Do not require fixing a minimum or
a maximum number of genes or
conditions, enabling a generation of
diversified biclusters.

Place the restrictive constraints on the
structure of the biclustering solutions.

14. PDNS (Ayadi
et al, 2012b)

It works well for shifting and scaling
pattern of expression value.

No overlapping control is carried out
among the reported solutions.

15. CoBi (Roy,
Bhattacharyya,
and Kalita
2013)

Particularly, it is used for grouping
both positively and negatively
regulated genes from microarray
expression data.

It extracts small volume of biclusters
for large MSR value.

16. MBA (Ayadi,
Elloumi, and
Hao 2014)

It is used for grouping both
positively and negatively regulated
genes from microarray expression
data.

It extracts small-size biclusters, and the
quality of biclusters depends upon the
threshold value

17. EBACross
(Maatouk et al.
2014)

Increase in the diversification of
solution can be achieved by a
mutation operator.

Computational cost is high on large
inputs.

18. BiBin Max
(Saber and
Elloumi 2015)

Fast retrieval method. Too many parameter setting may
affect the overall performance.

19. UniBic (Wang,
Li, and
Robinson 2016)

Biologically meaningful trend-
preserving biclusters can be
detected.

It returns small volume of biclusters.

20. SEB (Yin and
Liu 2017)

Efficient and scalable in terms of
the biological significance and
runtime.

SEB works well for the special case of
approximately small biclusters.
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a local rather than global minimum. The objective of the proposed work is
when the solutions have prematurely converged due to stagnation, it shuffles
the eggs in a new search space. The purpose of shuffling is to increase the
diversity of the population (Yang et al 2013). After the certain number of
evolutions, the best solution does not change. The solution has converged to
local optimum of the objective function. Therefore, shuffling has a good
performance to solve the CS drawbacks. In this regard, all the best solutions
(eggs) are sorted in an ascending order according to their fitness. Then, the
eggs are partitions or shuffle into the nest, i.e. rank 1 goes to nest 1, rank 2
goes to nest 2, rank 3 goes to nest 3, rank 4 goes to nest 1 and so on. So, the
new clutches are formed through this process of shuffling. This strategy helps
to improve the solution by sharing the information and properties indepen-
dently gained by each clutch. Therefore, avoid trapping the local optimal
solution. The SCS-NM maintains the balanced intensification and diversifi-
cation via the process of NM simplex and shuffling in the solution of the
search space respectively. The Algorithm 1 for SCS-NM is given as follows:

Fitness Function

In order to measure the coherence of bicluster, Cheng and Church (2000)
introduced the concept of the MSR. Let AIJ = (I, J) be a submatrix of A where
I ∈ R and J ∈ C. AIJ contains only the elements aij belonging to the submatrix
with set of rows I and set of columns J. The residue of an element aij in a
submatrix AIJ equals

r ai;j
� � ¼ ai;j þ aI;J � aI;j � ai;J (1)

Algorithm 1. Pseudo code for SCS-NM.
Input: Number of nest n, Discovery rate of alien solutions pa, Maximum number of iteration MaxIter
Output: coherent biclusters

Generate random population with n nests and each nest consists of 3 eggs (clutch).
lwhile (t < MaxIter)

Get a cuckoo (say i) randomly and generate a solution using Nelder–Mead
Choose a nest among n (say, j) randomly;
Replace worst egg in j by the new solution i;
A fraction (pa) of worse nests are abandoned and new ones/solutions are built/generated
Keep best solutions (or nests with quality solutions)
Rank the solutions/nests and find the current best;
Pass the current best to the next generation;
if stagnation
Sort the eggs by increasing order
Partition or shuffle the egg into the nest, i.e. rank 1 goes to nest 1, rank 2 goes to nest 2, rank 3 goes to
nest 3, rank 4 goes to nest 1, and so on.

end while
Arrange the best solution of individual nest in ascending order present the best solution of each nest.
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where aiJ is the mean of the ith row in the bicluster, aIj the mean of the jth
column in the bicluster, and aIJ is the mean of all the elements within the
bicluster. The quality of a bicluster can be evaluated by computing the MSR,
i.e. the sum of all the squared residues of its elements is as per (2)

H I;J
� � ¼ 1

Ij j Jj j
X

i2I

X

j2J
r ai;j
� � 2

(2)

Low MSR value denotes strong coherence in the bicluster. This may include
the trivial or constant biclusters where there is no fluctuation. These trivial
biclusters may not be interesting but need to be revealed and masked so more
interesting ones can be found. Cheng and Church used row variance as an
accompanying score to find out trivial biclusters. The row variance can be
represented in Equation (3) as follows:

Varr I; Jð Þ ¼ 1
Ij j
X

i2I
vr ið Þ (3)

νr ið Þ ¼ 1
Jj j
X

j2J
ai;j � ai;J
� � 2

Our goal is to obtain biclusters with the maximum number of genes and
conditions and with the minimum value of f(I,J). The fitness function for
obtaining bicluster is defined in Equation (4) as follows:

f ðI; JÞ ¼ HðI; JÞ þ 1
VarðI; JÞ (4)

Experimental Results and Analysis

The proposed algorithm presented for the bicluster problem is coded in
MATLAB R2012a and run on an Intel i3 3.7 GHz. The biclustering algorithm
has been applied to four sets in order to study its performance, namely the yeast
Saccharomyces cerevisiae stress expression data (Gasch et al. 2000), Arabidopsis
thaliana expression data (Bleuler, Prelic, and Zitzler 2014), yeast Saccharomyces
cerevisiae cell-cycle expression data (Cho et al. 1998) and rat Central Nervous
System (CNS) expression data (Wen et al. 1998) are used. Table 2 shows the
description of dataset used in this paper. The parameters pa, α, and λ are set as
0.25, 1, and 1.5, respectively (Yang and Deb 2009). Through empirical analysis,

Table 2. Dataset description.
Dataset name Genes Samples

Yeast Saccharomyces cerevisiae stress data 2993 173
Arabidopsis thaliana expression data 734 69
Yeast Saccharomyces cerevisiae cell-cycle data 2884 17
Rat CNS expression data 112 9
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the population size and the number of iterations are set as 20 and 200,
respectively.

Figures 1–4 show the fitness value obtained for Saccharomyces cerevisiae
stress expression data, Arabidopsis thaliana expression data, yeast
Saccharomyces cerevisiae cell-cycle expression data and rat CNS expression
data, respectively. Through careful observation, it can be seen that SCS-NM

Figure 1. Plot of number of iterations versus fitness value for yeast stress data.

Figure 2. Plot of number of iterations versus fitness value for Arabidopsis thaliana data.
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fitness gets down rapidly in the initial stage of the evolution. The BPSO
algorithm has premature convergence due to high stagnation. The SFL per-
forms better on yeast stress expression data and the remaining three datasets
CS give better performance than SFL. However, CS and SFL have roughly the
same convergence speed. In addition, it is obvious to infer that SFL and
BPSO get stuck at local optima quickly as can be seen from Figure 1. For all

Figure 3. Plot of number of iterations versus fitness value for yeast cell-cycle data.

Figure 4. Plot of number of iterations versus fitness value for rat CNS data.
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the datasets, the proposed work SCS-NM outperforms all other algorithms
because the exploration and exploitation are made with shuffling and simplex
method. CS-NM performs better than BPSO, CS, and SFL. Moreover, SCS-
NM converges to the global optimum rapidly. It frequently gives significant
improvements in the first few iterations and quickly produces quite satisfac-
tory results.

According to the problem formulation, the size of an extracted bicluster should
be as large as possible while satisfying a homogeneity criterion. The bicluster
should satisfy two requirements simultaneously. The expression levels of each
gene within the bicluster should be similar over the range of conditions. That is, it
should have a low MSR score. On the other hand, the bicluster gene variance
should be high. The MSR represents the variance of the selected genes and
conditions with respect to the homogeneity of the bicluster and gene variance
removes the simple bicluster. To quantify biclusters, homogeneity and size should
satisfy the coherence index (CI) which is used as a measure for evaluating their
goodness (Mitra and Banka 2006). CI is defined as the ratio of MSR score to the
size of the formed bicluster. Table 3 shows the sample experimental results
obtained for yeast Saccharomyces cerevisiae cell-cycle expression data and the
biclusters are chosen randomly from 20 biclusters. In this table, the first column
contains the label of each bicluster. The second and third columns report the
number of rows (genes) and number of columns (conditions) of the bicluster,
respectively. The fourth column reports the volume of the bicluster and the fifth
column contains theMSRs of the biclusters. The sixth and seventh columns report
the row variance and CI of the bicluster, respectively. The last column contains the
fitness of the biclusters. TheMSRmaximum limit is 300. The largest size bicluster
is found at MSR = 285.24, with CI being minimal and indicating the goodness of
the discovered partitions. The minimum value of CI is 0.0219, with a correspond-
ing size of 14,020 being the best in the table. As mentioned earlier, a low MSR
indicates a high coherence of the discovered biclusters. Figure 5 shows clearly a
small bicluster of size 8 × 5 for Arabidopsis thaliana data.

Comparative Analysis

Table 4 shows a comparison summary of results obtained by various biclustering
algorithms for the yeast cell-cycle dataset. The MSR value of biclusters obtained

Table 3. Experiment results for Saccharomyces cerevisiae cell expression data.
Bicluster number Genes Conditions Volume MSR Gene variance CI Fitness

BC1 1487 4 5948 181.69 1371.89 0.0305 181.69
BC4 1520 5 7600 223.45 1249.52 0.0290 223.45
BC8 1451 7 10,157 248.11 1264.74 0.0284 248.11
BC15 1473 8 11,784 261.75 1290.42 0.0222 261.75
BC5 1402 10 14,020 285.24 1364.41 0.0219 285.24
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by all the algorithms listed in Table 4 and the maximum limit is 300. The
performance of SCS-NM is compared with flexible overlapped biclustering
(FLOC), deterministic biclustering with frequent pattern mining (DBF),
Cheng and Church (CC) and single-objective genetic algorithm (GA) on yeast
cell-cycle dataset by Mitra and Banka (2006) and the algorithm sequential
evolutionary biclustering (SEBI) by Divina and Aguilar-Ruiz (2006). FLOC
uses a probabilistic approach to find biclusters. Even it extracts only half of the
average volume of DBF for an average MSR of 187.44. DBF finds 100 biclusters,
with half of these lying in the size range 2000–3000 and amaximum size of 4000.
Similarly, CC algorithm gives a fractional volume of biclusters. Single-objective
GA has also been used with local search to generate considerably overlapped
biclusters. It is observed that a population size of 50 leads to the generation of a
largest bicluster of size 1408. This is less than the bicluster size generated by all
other algorithms. SEBI extracts only an average of 13 genes for average MSR of
205. On the other hand, it could find the biclusters of average genes are less than
the set of conditions. Multi-objective evolutionary algorithm (MOEA gives
maximum volume with the minimum MSR score. However, there is no

Figure 5. Plot of sample biclusters of size 8 × 5 for Arabidopsis thaliana data.

Table 4. Comparative analysis on yeast cell expression data.

Method
Average
MSR

Average
volume

Average number of
genes

Average number of
conditions

Largest
volume

FLOC 187.44 1825.78 195.00 12.20 2000
DBF 114.70 1627.20 188.00 11.00 4000
CC 204.29 1576.98 167.00 12.00 4485
Single-objective GA 52.87 570.86 191.12 5.13 1408
SEBI 205.18 209.92 13.61 15.25 1394
MOEA 234.87 10,301.71 1095.43 9.29 14,828
CS 286.24 10,925.10 1281.67 7.63 14,586
CS-NM 254.45 11,963.78 1295.88 7.79 14,996
SCS-NM 229.15 12,387.44 1356.50 8.20 15,012

An italic and bold font represents significance of the proposed method.
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overlapping carried out. Next CS method returns the largest bicluster; however,
average MSR of CS is larger than MSR of MOEA. Eventually, the SCS-NM
method extracts the largest bicluster of size 15,012 with average MSR of 229.15
as per the objective. In the case of SCS-NM, largest bicluster size as well as
average volume is better than that of all other algorithms. Even so, MSR value is
not better than that of all other algorithms because it extracts more than 60%
average volume of FLOC. It is better than all other methods in all aspects except
in the size of samples.

Biological Analysis of Biclusters

The proposed work determines the biological relevance of the biclusters found
by SCS-NMon the Gasch yeast dataset in terms of the statistically significant GO
annotation database. The degree of enrichment is measured by p values which
use a cumulative hypergeometric distribution to compute the probability of
observing the number of genes from a particular GO category (function, process,
and component) within each bicluster. The p value is the probability that the
genes are selected into the cluster by random. A small p value implies that the
cluster is highly differed found by chance. The annotations of genes for three
ontologies including biological process, cellular component, and molecular
function are obtained. With the intention of evaluating the biological relevance
of SCS-NM algorithm, the results of the proposed method are compared with
CC, ISA, Bimax, OPSM and BiMine on yeast cell-cycle dataset from Ayadi,
Elloumi, andHao (2009) by using web-tool of FuncAssociate (Berriz et al. 2003).
The FuncAssociate computes the adjusted significance scores for each bicluster.
Indeed, the adjusted significance scores assess genes in each bicluster by com-
puting adjusted p values, which indicates how well they match with the different
GO categories. Note that a smaller p value, close to 0, is indicative of a better
match. Figure 6 represents the different values of significant p values for each
algorithm over the percentage of total extracted biclusters. In fact with SCS-NM,
100% of tested biclusters have a p value = 5%. The same result is obtained with a
p value of 1%. Finally, 75% of extracted biclusters with SCS-NM have a p
value = 0.001%, while those of CS-NM and CS have 67% and 60%, respectively.
We note that SCS-NM performs well for 0.001% p values compared to CC, ISA,
Bimax and OPSM and it performs well for all cases of p value (p value = 5%, p
value = 1%, p value = 0.5%, p value = 0.1%, and p value = 0.001%).

Biological Annotation for Saccharomyces cerevisiae using GOTermFinder
Toolbox

In order to identify the biological annotations for the biclusters, we use
GOTermFinder which is tool available in the Saccharomyces Genome
Database (SGD). GOTermFinder is designed to search for the significant
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shared GO terms of the groups of genes and provides users with the means to
identify the characteristics that the genes may have in common. Table 5 lists
the significant shared GO terms used to describe the set of genes in each
bicluster for the process, function, and component ontologies. Only the most
significant terms are shown. For example, in the bicluster BC1, the genes are
mainly involved in binding activity. The tuple (n = 517, p = 2.06 × 10−9)
represents that out of 1487 genes in bicluster BC1, 517 genes belong to
binding activity function, and the statistical significance is given by the p
value of p = 2.06 × 10−9. Figure 7 shows the biological network of the
bicluster with 10 genes; the false discovery rate (FDR) is very low (0.0003)
and it is zero in many occasions. Further, the corresponding p value is very
small (p = 0.00042) which shows that there is a very less probability to obtain
the gene cluster in random. These results mean that the proposed SCS-NM
biclustering approach can find biologically meaningful biclusters.
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Figure 6. Plot of proportions of biclusters significantly enriched by GO annotations on yeast cell-
cycle data.

Table 5. Significant GO terms for three biclusters on Saccharomyces cerevisiae data.
Bicluster
number

Number of
genes Process Function Component

BC1 1487 Cellular component
organization
(n = 685,
p = 7.15 × 10−33)

Binding activity
(n = 517,
p = 2.06 × 10−9)

Nuclear part
(n = 372,
p = 7.89 × 10−19)

BC4 1520 Cellular process
(n = 1316,
p = 3.18 × 10−126)

Structural molecule
activity
(n = 294,
p = 6.02 × 10−24)

Cell part
(n = 1427,
p = 7.16 × 10−110)

BC8 1451 Metabolic process
(n = 1124,
p = 3.22 × 10−101)

Hydrolase activity
(n = 299,
p = 3.53 × 10−29)

Intracellular part
(n = 1312,
p = 1.26 × 10−93)
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Conclusions

In this work, SCS-NM algorithm for biclustering microarray gene-expression
data is proposed. It focuses on finding maximum biclusters with lower MSR
and higher gene variance. CS strategy is applied to find the optimal bicluster
in which the exploration and exploitation of the search space are controlled
and balanced through shuffling and simplex local search, respectively. Hence,
SCS-NM outperforms the BPSO, SFL, CS-NM, and CS with Levy flight and
the different biclustering methods. Moreover, the SCS-NM algorithm main-
tains its stochastic behavior capacity better than the BPSO and SFL algo-
rithms while searching for the global optimum value. A qualitative measure
of the formed biclusters with a comparative assessment of results are pro-
vided on four benchmark gene-expression datasets to demonstrate the effec-
tiveness of the proposed method. Biological validation of the selected genes
within the biclusters has been provided by publicly available GO consortium.
The patterns present a significant biological relevance in terms of related
biological processes, components, and molecular functions in a species-inde-
pendent manner.

Figure 7. Plot of Gene Ontology biological process of yeast cell-cycle data (10 genes).
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