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Abstract
In this paper, the bounds for convex combination of the first Seiffert and Logarithmic means by
general Heronian mean

Hp(α)(a, b) < αP (a, b) + (1− α)L(a, b) < Hq(α)(a, b)

are proved, where a, b > 0, a 6= b, α ∈ [0, 1]. The left bound is the best possible.
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1 Introduction
In the paper [(15)], Gao, Guo and Li proved the following optimal inequalities:
Let a, b > 0, a 6= b then

Hδ(a, b) < P (a, b) for δ ≥ π − 2 and P (a, b) < Hβ(a, b) for β ≤ 1 (1.1)

and δ = π − 2, β = 1 are the best constants,

Hγ(a, b) < L(a, b) for γ = +∞ and L(a, b) < Hτ (a, b) for τ ≤ 4 (1.2)

and γ = +∞, τ = 4 are the best constants.

P (a, b) is the first Seiffert mean introduced by Seiffert [(22)]

P (a, b) =
a− b

4 arctan
(√

a
b

)
− π

=
a− b

2 arcsin
(
a−b
a+b

) for a, b > 0, a 6= b. (1.3)

L(a, b) is the Logarithmic mean

L(a, b) =
a− b

log a− log b
for a, b > 0, a 6= b. (1.4)
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Hω(a, b) is the Heronian mean introduced by Janous [(18)]

Hω(a, b) =
a+ ω

√
ab+ b

ω + 2
for 0 ≤ ω < +∞, (1.5)

=
√
ab for ω = +∞.

Recently, the Logarithmic, Seiffert and Heronian means have been the subject of intensive research.
In particular, many remarkable inequalities for the means can be found in the literature [(1)-(28)].

In [(19)], Liu, Meng proved interesting bounds. They found the greatest values α1, α2 and the
least values β1, β2 such that the double inequalities

α1C(a, b) + (1− α1)G(a, b) < P (a, b) < β1C(a, b) + (1− β1)G(a, b)

and
α2C(a, b) + (1− α2)G(a, b) < P (a, b) < β2C(a, b) + (1− β2)G(a, b)

hold for all a, b > 0 with a 6= b, where C(a, b), G(a, b), H(a, b) and P (a, b) denote the Contraharmonic,
Geometric, Harmonic, and Seifferts means of two positive numbers a and b, respectively.

Similarly, in [(28)], the following double inequality for α ∈ (0, 1), was shown:

Mlog 2/(log 2−logα)(a, b) ≤ αA(a, b) + (1− α)L(a, b) ≤M(1+2α)/3(a, b)

holds for all a, b > 0, each inequality becomes an equality if and only if a = b, and the given
parameters log 2/(log 2 − logα) and (1 + 2α)/3 in each inequality are best possible. Here Mp(a, b),
L(a, b), A(a, b) are Power, Logarithmic, Arithmetic means, respectively.

In [(21)], the following inequalities were proved. Let α ∈ (0, 1/2) ∪ (1/2, 1), a 6= b, a, b > 0. Let
p(α) be a solution of

1

p
log(1 + p) + logα/2 = 0 in (−1, 1).

Then
if α ∈ (0, 1/2), then αA(a, b) + (1− α)G(a, b) < Lp(a, b) for p ≥ p(α)

and p(α) is the best constant,

if α ∈ (1/2, 1), then αA(a, b) + (1− α)G(a, b) > Lp(a, b) for p ≤ p(α)

and p(α) is the best constant.
Here Lp(a, b), A(a, b), G(a, b) are Generalized logarithmic, Arithmetic, Geometric means, respectively.

It might be surprising that the means have applications in physics, economics, and even in
meteorology. Logarithmic mean, which can be expressed in terms of Gausss’s hypergeometric
function 2F1, has many applications. For example, a variant of Jensen’s functional equation involving
the Logarithmic mean, appears in heat conduction problem. Heronian and Seiffert means have
applications in geometry, topology, fuzzy sets, ordinary differential equations and so on. For example,
Runge-Kutta methods are based on the Heronian mean. Similarly, Seiffert mean is used for a
characterization of Stolarsky means, which can been implicated in finding relative metrics.
It is well known, that Hω(a, b) is a decreasing continuous function of the argument ω. From this and
from results of Gao, Guo and Li [(15)] it follows that there exist optimal functions p(α), q(α), 0 ≤ α ≤ 1
such that

Hp(α)(a, b) < αP (a, b) + (1− α)L(a, b) < Hq(α)(a, b).

Therefore, it is natural to ask what are the optimal functions. The purpose of this paper is to find or
establish suitable bounds for the optimal functions. The inequalities we obtained are new and improve
the existing corresponding results. The left inequality is optimal.
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2 Main Results
In this section we prove the following theorem.

Theorem 2.1. Let a, b > 0, a 6= b. Let P (a, b), L(a, b), Hω(a, b), be the first Seiffert mean, the
Logarithmic mean and the Heronian mean. Let α ∈ [0, 1]. Then

Hp(a, b) < αP (a, b) + (1− α)L(a, b) (2.1)

if and only if p < p(α) = π
α
− 2.

If
αP (a, b) + (1− α)L(a, b) < Hq(a, b) (2.2)

then q < 4− 3α. Moreover, if q ≤ 4
1+3α

then (2.2) holds.

Prof. (2.1), (2.2) are equivalent to

1

b
Hp(a, b) <

α

b
P (a, b) +

(1− α)
b

L(a, b) <
1

b
Hq(a, b). (2.3)

Without loss of generality we can suppose that 0 < b < a. Denote t =
√
b/a and put

F (t, α, ω) = α
1− t2

π − 4 arctan t
+ (1− α) 1− t

2

−2 ln t −
1

ω + 2
(t2 + ωt+ 1). (2.4)

Then 0 < t < 1. First we prove the left inequality. This inequality is equivalent to R(t, α) =
F (t, α, π/α− 2) > 0 for 0 < t, α < 1. Some computation gives

R(t, α) = α
1− t2

π − 4 arctan t
+ (1− α) 1− t

2

−2 ln t −
αt2

π
−
(
1− 2α

π

)
t− α

π
. (2.5)

Because of R(t, α) is a linear function of argument α, it suffices to show that R(t, 0) > 0 and R(t, 1) >
0 for t ∈ (0, 1). Denote F1(t) = R(t, 0) and F2(t) = R(t, 1). Then

F1(t) =
s(t)

2 ln t
=
t2 − 1− 2t ln t

2 ln t
. (2.6)

From s′′(t) = 2t−2
t

< 0, s′(1) = 0, where s′(t) = 2t − 2 ln t − 2 we have s′(t) > 0 and from s(1) = 0
we obtain s(t) < 0 and so R(t, 0) > 0. F2(t) = R(t, 1) > 0 is equivalent to

h(t) = π − 4 arctan t− π 1− t2

t2 + (π − 2)t+ 1
< 0. (2.7)

Because of h(0) = 0, h(1) = 0 and h′(0) = π2 − 2π − 4 < 0, where

h′(t) = − 4

1 + t2
− π

(
−2t(t2 + (π − 2)t+ 1)− (1− t2)(2t+ π − 2)

(t2 + (π − 2)t+ 1)2

)
(2.8)

it suffices to show that h′(t) has only one root in (0, 1). From h′(t) = p(t)/((1+t2)((t2+(π−2)t+1)2)),
where

p(t) =
(
π2 − 2π − 4

)
t4 + (16− 4π)t3 +

(
−2π2 + 12π − 24

)
t2 + (16− 4π)t+ π2 − 2π − 4. (2.9)

it suffices to show that p(t) has only one root in (0, 1).
Some computation gives that It is easy to show that

p(t) = (1− t2)q(t) = (1− t2)
((
π2 − 2π − 4

)
t2 +

(
2π2 − 8π + 8

)
t+ π2 − 2π − 4

)
. (2.10)
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From q(0) = π2 − 2π − 4 < 0 and q(1) = 4π(π − 3) > 0 we have R(t, 1) > 0.
From

lim
t→0+

F (t, α, ω) =
α

π
− 1

ω + 2

we obtain that p(α) is the best possible function.
Now we prove the right bounds.
To show q(α) > 4/(1 + 3α) we need to prove F (t, α, 4/(1 + 3α)) < 0 for all t, α ∈ (0, 1). This is
equivalent to

G(t, α) = α
1− t2

π − 4 arctan t
+ (1− α) 1− t

2

−2 ln t −
1 + 3α

6 + 6α
(t2 +

4

1 + 3α
t+ 1) < 0. (2.11)

Some computation leads to

G′′αα(t, α) = 6
1− t2

(π − 4 arctan t)(ln t)
{2 ln t− 4 arctan t+ π} . (2.12)

Denote u(t) = 2 ln t− 4 arctan t+ π. Because u(1) = 0 and

u′(t) =
2t2 − 4t+ 2

t(1 + t2)
> 0

we have u(t) < 0 and G′′αα(t, α) > 0. It implies G(t, α) is a convex function in argument α for each
t ∈ (0, 1). If we show that G(t, 0) < 0 and G(t, 1) < 0 for all t ∈ (0, 1) then G(t, α) < 0. G(t, 0) < 0 is
equivalent to s(t) = (3t2 − 3)/(t2 + 4t+ 1)− ln t > 0. Simple computation leads to

s′(t) =
ξ(t)

t(t2 + 4t+ 1)2
=
−t4 + 4t3 − 6t2 + 4t− 1

t(t2 + 4t+ 1)2
.

From ξ′(t) = −4t3 + 12t2 − 12t+ 4, and ξ′′(t) = −12t2 + 24t− 12 < 0, ξ′(1) = 0, ξ(1) = 0 we have
ξ′(t) > 0 and ξ(t) < 0. From this and from s(1) = 0 we obtain G(t, 0) < 0.
G(t, 1) < 0 is equivalent to v(t) = 3(t2− 1)/(t2 + t+1)− 4 arctan t+π > 0. From v(1) = 0 it suffices
to show that v′(t) < 0. It follows from

v′(t) =
ξ(t)

(1 + t2)(t2 + t+ 1)2
=
−t4 + 4t3 − 6t2 + 4t− 1

(1 + t2)(t2 + 4t+ 1)2
.

To show q(α) < 4 − 3α we need to prove F (t, α, 4 − 3α) > 0 for each α and some tα ∈ (0, 1). Put
tα = 1 − α + α2. We show that F (1 − α + α2, α, 4 − 3α) > 0 for α ∈ (0, 1). We use the following
inequality

1− t2

− ln t
>

1− t2(
1− t+ (1−t)2

2
+ (1−t)3

3t

) .
This inequality follows from the Taylor’s series for ln t, t ∈ (0, 1)

− ln t < 1− t+ (1− t)2

2
+

(1− t)3

3
+

(1− t)4

3
+ ....

To prove F (t, α, 4− 3α) > 0 for tα = 1− α+ α2, α ∈ (0, 1) it suffices to show that

(6α− 3α2)
1− t2α

π − 4 arctan tα
+ (3α2 − 9α+ 6)

1− t2α
2
(
1− tα + (1−tα)2

2
+ (1−tα)3

3ta

) (2.13)

−t2α − (4− 3α)tα − 1 > 0.
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Some calculation gives (17) is equivalent to

(6α− 3α2)
1− t2α

π − 4 arctan tα
>
ϕ(tα)

ψ(tα)
, (2.14)

where
ϕ(tα) = t4α − (1 + 3α)t3α + (9α2 − 12α− 3)t2α + (9α2 − 21α+ 5)tα − 2, (2.15)

ψ(tα) = t2α − 5tα − 2. (2.16)

It is easy to show that
t2α = 1− 2α+ 3α2 − 2α3 + α4,

t3α = 1− 3α+ 6α2 − 7α3 + 6α4 − 3α5 + α6,

t4α = 1− 4α+ 10α2 − 16α3 + 19α4 − 16α5 + 10α6 − 4α7 + α8

ϕ(tα) = αχα) = α(α7 − 7α6 + 27α5 − 61α4 + 91α3 − 105α2 + 72α− 36). (2.17)

It implies

χ(α) < −36(1− α)2 − 46α2(1− α)2 + α2(−23− 15α2 + 27α3 − 7α4 + α5). (2.18)

Denote k(α) = −23−15α2+27α3−7α4+α5. We have k(α) < l(u) = −23+12u−6u2, where u = α2

From l(1) = −17 and l′(u) = 12(1 − u) > 0 we have l(u) < 0 so ϕ(tα) < 0. Evidently ψ(tα) < 0.
Denote

H(α) = 4 arctan(tα)− π + (6α− 3α2)(1− t2α)
ψ(tα)

ϕ(tα)
. (2.19)

We need to show H(α) > 0. From H(1) = H(0) = 0 it suffices to show that H ′(α) has only one root
in (0, 1), and H ′(0) > 0. Some computation gives

H(α) = 4 arctan(1− α+ α2)− π− (2.20)

(6− 3α)(12α− 24α2 + 25α3 − 14α4 − α5 + 5α6 − 4α7 + α8)

−36 + 72α− 105α2 + 91α3 − 61α4 + 27α5 − 7α6 + α7
.

This can be rewritten as
H(α) = 4 arctan(1− α+ α2)− π − a(α)

b(α)
, (2.21)

where
a(α) = 72α− 180α2 + 222α3 − 159α4 + 36α5 + 33α6 − 39α7 + 18α8 − 3α9, (2.22)

b(α) = −36 + 72α− 105α2 + 91α3 − 61α4 + 27α5 − 7α6 + α7. (2.23)

Some computation gives

H ′(α) =
8α− 4

2− 2α+ 3α2 − 2α3 + α4
− a′(α)b(α)− a(α)b′(α)

b2(α)
= (2.24)

v(α)

(2− 2α+ 3α2 − 2α3 + α4)b(α)2
,

where
v(α) = α3(α− 1)3s(α) (2.25)

s(α) = −2304 + 11232α− 26976α2 + 46372α3 − 59080α4 + 59711α5 − 48129α6+ (2.26)

31498α7 − 16634α8 + 6980α9 − 2250α10 + 513α11 − 75α12 + 6α13.

We used

b2(α) = 1296− 5184α+ 12744α2 − 21672α3 + 28521α4 − 29838α5 + 25483α6 (2.27)
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−17852α7 + 10249α8 − 4778α9 + 1765α10 − 500α11 + 103α12 − 14α13 + α14,

a′(α) = 72− 360α+ 666α2 − 636α3 + 180α4 + 198α5 − 273α6 + 144α7 − 27α8, (2.28)

b′(α) = 72− 210α+ 273α2 − 244α3 + 135α4 − 42α5 + 7α6, (2.29)

a′(α)b(α) = −2592 + 18144α− 57456α2 + 115200α3 − 159354α4 + 157122α5 (2.30)

−103542α6 + 30120α7 + 24849α8 − 44007α9 + 36042α10 − 19818α11 + 7644α12

−2010α13 + 333α14 − 27α15,

a(α)b′(α) = 5184α− 28080α2 + 73440α3 − 124776α4 + 150228α5 − 130083α6+ (2.31)

76920α7 − 22338α8 − 9603α9 + 16890α10 − 11610α11 + 5031α12 − 1434α13 + 252α14

−21α15.

Now, we show that H ′(α) has only one root in (0, 1) which is equivalent to s(α) has only one root in
(0, 1). Because s(0) = −2304 and s(1) = 864 it suffices to show that s′(α) > 0

s′(α) = 11232− 53952α+ 139116α2 − 236320α3 + 298555α4 − 288774α5+ (2.32)

220486α6 − 133072α7 + 62820α8 − 22500α9 + 5643α10 − 900α11 + 78α12.

Using α < 1 we get

s′(α) > ξ(α) = 11232− 53952α+ 139116α2 − 236320α3 + 298555α4 − 288774α5+ (2.33)

220486α6 − 133072α7 + 62820α8 − 22500α9 + 4743α10.

ξ(α)

105
> p(α) = 0.11− 0.54α+ 1.39α2 − 2.364α3 + 2.985α4 − 2.888α5 + 2.204α6 (2.34)

−1.331α7 + 0.628α8 − 0.23α9 + 0.04α10.

Therefore, s′(α) > p(α). Now we show p(α) > 0. We distinguish three cases.

Case 1. α ∈ (0, 0.45].

Case 2. α ∈ [0.45, 0.57].

Case 3. α ∈ [0.57, 1).

Case 1. Denote

p1(α) = 2.204α6 − 1.331α7 + 0.628α8 − 0.23α9 + 0.04α10. (2.35)

p2(α) = 0.11− 0.54α+ 1.39α2 − 2.364α3 + 2.985α4 − 2.888α5. (2.36)

We have
p1(α) = α6q1(α) = α6(2.204− 1.331α+ 0.628α2 − 0.23α3 + 0.04α4). (2.37)

Some computations give

q′1(α) = −1.331 + 1.256α− 0.69α2 + 0.16α3, q′′1 (α) = 1.256− 1.38α+ 0.48α2,

q′′′1 (α) = −1.38α+ 0.96α.
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From q′′′1 (α) < 0 and q′′1 (1) = 0.356 we have q′′1 (α) > 0. From this and from q′1(1) = −0.605 we obtain
q′1(α) < 0. Because q1(1) = 1.311 we have q1(α) > 0 and so p1(α) > 0 for α ∈ (0, 1).

p′2(α) = −0.54 + 2.78α− 7.092α2 + 11.94α3 − 14.44α4,

p′′2 (α) = 2.78− 14.184α+ 35.82α2 − 57.76α3.

Using the Cardano’s formula we obtain that p′′2 (α) = 0 only for one real α∗ = 0.3218153. From
p′2(0) = −0.54, p′2(α∗) = −0.1367703, p′2(0.45) = −0.2292278 we get p′2(α) < 0 for α ∈ (0, 0.45].
From p2(0.45) = 0.0021674 we have p(α) = p1(α) + p2(α) > 0 for α ∈ (0, 0.45].

Case 2. Put
q1(α) = p1(α)− 0.77α5, q2(α) = p2(α) + 0.77α5 (2.38)

We have

q1(α) = α5r1(α) = α5 (−0.77 + 2.204α− 1.331α2 + 0.628α3 − 0.23α4 + 0.04α5) . (2.39)

Some computations give

r′1(α) = 2.204− 2.662α+ 1.884α2 − 0.92α3 + 0.2α4,

r′′1 (α) = −2.662 + 3.768α− 2.76α2 + 0.8α3,

r′′′1 (α) = 3.768− 5.52α+ 2.4α2, r′′′′1 (α) = −5.52 + 4.8α < 0.

From r′′′′1 (α) < 0 and r′′′1 (0.57) = 1.40136 we have r′′′1 (α) > 0. From this and from r′′1 (0.57) =
−1.2628096 we obtain r′′1 (α) < 0. From r′1(0.57) = 1.149506 we have r′1(α) > 0 for α ∈ (0.45, 0.57].
From r1(0.45) = 0.0008057 we have q1(α) > 0 for α ∈ (0.45, 0.57].

q′2(α) = −0.54 + 2.78α− 7.092α2 + 11.94α3 − 10.59α4,

q′′2 (α) = 2.78− 14.184α+ 35.82α2 − 42.36α3,

q′′′2 (α) = −14.184 + 71.64α− 127.08α2 q′′′′2 (α) = 71.64− 254.16α < 0.

From q′′′2 (0.45) = −7.6797 we have q′′′2 (α) < 0. From q′′2 (0.45) = −0.209305 we have q′′2 (α) < 0. From
q′2(0.45) = −0.0713537 we get q′2(α) < 0. From q2(0.57) = 0.003673 we have p(α) = q1(α)+ q2(α) >
0 for α ∈ [0.45, 0.57].

Case 3. Using elementary computations we obtain

p(1) = 0.004, p′(1) = −0.091, p′′(1) = −0.918, p′′′(1) = −6.966,

p(4)(1) = −38.4, p(5)(1) = −161.64, p(6)(1) = −323.28,

p(7)(1) = 1073.52, p(8)(1) = 14434.56, p(9)(1) = 61689.6, p(10)(1) = 145152.

From this we obtain

p(α) = ζ(1− α) = 0.004 + 0.091(1− α)− 0.459(1− α)2 + 1.161(1− α)3 − 1.6(1− α)4+ (2.40)

1.347(1− α)5 − 0.449(1− α)6 − 0.213(1− α)7 + 0.358(1− α)8 − 0.17(1− α)9 + 0.04(1− α)10.
Denote sα = 1− α. If we show ζ(sα) > 0 for 0 < sα < 0.44 then the proof will be completed. Denote

ζ1(sα) = 0.004− 0.449s6α − 0.213s7α + 0.358s8α − 0.17s9α + 0.04s10α . (2.41)

ζ2(sα) = 0.091sα − 0.459s2α + 1.161s3α − 1.6s4α + 1.347s5α. (2.42)

We have
ζ′1(sα) = s5α%1(sα) = s5α

(
−2.694− 1.491sα + 2.864s2α − 1.53s3α + 0.4s4α

)
. (2.43)

271



British Journal of Mathematics and Computer Science 3(3), 265–274, 2013

Some computations give

%′1(sα) = −1.491 + 5.728sα − 4.59s2α + 1.6s3α.

Using the Cardano’s formula we obtain that %′′1 (sα) = 0 only for one real s∗α = 0.3435535. From
%1(0) = −2.694, %1(0.44) = −2.9109087, %1(s∗α) = −2.9246712 we get ζ′1(sα) < 0. From ζ1(0.44) =
0.0004706 we have ζ1(sα) > 0 for sα ∈ (0, 0.44]. Next we have

ζ2(sα) = sαz(sα) = sα
(
0.091− 0.459sα + 1.161s2α − 1.6s3α + 1.347s4α

)
,

z′(sα) = −0.459 + 2.322sα − 4.8s2α + 5.388s3α.

Using the Cardano’s formula we obtain that z′(sα) = 0 only for one real s∗∗α = 0.3534804. From
z(0) = 0.091, z(0.44) = 0.280021, z(s∗∗α ) = 0.0241802 we have ζ2(sα) > 0 for sα ∈ (0, 0.44]. The
proof is complete.
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