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Abstract

Central Force Optimization is a deterministic metaheuristic for an evolutionary algorithm that
searches a decision space by flying probes whose trajectories are computed using a gravitational
metaphor. CFO benefits from the inclusion of a pseudorandom component (a numerical
sequence that is precisely known by specification or calculation but otherwise arbitrary). The
essential requirement is that the sequence is uncorrelated with the decision space topology, so
that its effect is to pseudorandomly distribute probes throughout the landscape.  While this
process may appear to be similar to the randomness in an inherently stochastic algorithm, it is in
fact fundamentally different because CFO remains deterministic at every step.  Three
pseudorandom methods are discussed (initial probe distribution, repositioning factor, and
decision space adaptation).  A sample problem is presented in detail and summary data included
for a 23-function benchmark suite.  CFO’s performance is quite good compared to other highly
developed, state-of-the-art algorithms.

Keywords: Central force optimization; CFO; optimization; metaheuristic; evolutionary algorithm;
pseudorandomness; decision space exploration and exploitation.

1 Introduction

This note examines the role of pseudorandomness in Central Force Optimization.  CFO is a
deterministic Nature-inspired search and optimization metaheuristic for an evolutionary algorithm
(EA) based on gravitational kinematics [1-3].  CFO is similar to gradient-based optimization
methods as discussed in detail in [4].  Proofs of convergence for CFO and an extended version
have been developed [5,6], and the algorithm has been implemented on a GPU using various
topologies [7-9].  The algorithm has been successfully applied to a variety of problems, among
them: training neural networks [10]; power grid reliability assessment [11]; drinking water
distribution networks [12]; solving nonlinear circuits [13]; array synthesis [14,15]; microstrip
patch antenna design [16]; multiband slotted bowtie design [17]; rectangular microstrip patch
design [18]; microwave broadband absorber design [19]; antenna optimization generally [20];
notched ultra wideband E-shape antenna design [21]; and increasing impedance bandwidth
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[22,23].

CFO analogizes Newton’s mathematically precise laws of motion and gravity, so that its
underlying equations are equally precise.  The algorithm locates the global maxima of an objective
function defined on a decision space Ω with unknown topology (landscape).  CFO searches Ω by
flying a group of probes whose trajectories are computed from two deterministic equations of
motion at a series of discrete time steps (iterations). Details of the CFO metaheuristic are in the
Appendix. CFO is fundamentally different from Nature-inspired EAs whose underlying equations
are inherently stochastic. Particle Swarm Optimization (PSO) and Ant Colony Optimization
(ACO) are examples. Their equations are formulated in terms of true random variables, and
removing randomness causes these algorithms to fail completely. By contrast, CFO’s equations
are inherently deterministic. Every CFO run with the same setup returns precisely the same values
step-by-step throughout the entire run. Nevertheless, effective implementations benefit from a
pseudorandom component that enters the algorithm indirectly, not through its basic equations.
Although pseudorandomness is not required in CFO, numerical experiments show that it is an
important feature in effective implementations.

A pseudorandom variable is defined here as one whose value is precisely known but arbitrarily
assigned.  The value can be specified in advance (for example, an arbitrary sequence of numbers)
or it can be calculated in a prescribed manner. The variable’s randomness derives from the fact
that its value is arbitrary and uncorrelated with Ω’s topology, not that it is uncertain in the sense of
a true random variable. A true random variable’s value is calculated from a probability
distribution with successive calculations yielding different values that cannot be known in
advance. This type of randomness is fundamentally different from CFO’s pseudorandomness.
Even when CFO includes pseudorandomness, it remains deterministic, always yielding the same
result for runs with the same setup. Once a pseudorandom variable is specified, either explicitly or
by calculation, its value is known with absolute precision, so that CFO’s trajectory calculations
are deterministic even in the presence of pseudorandomness. The original CFO implementation
did not include a pseudorandom component [1], thereby limiting its ability to explore Ω; but this
limitation can be mitigated to some extent by introducing a measure of pseudorandomness. There
are many ways this can be accomplished; three simple methods are described here.

2 CFO Methodology

This paper discusses a CFO implementation with pseudorandomness injected in the following
ways: (1) the initial probe distribution (IPD); (2) the repositioning factor; and (3) changing the
decision space boundaries.  The algorithm is referred to as CFO-PR. Every CFO run starts with a
user-specified IPD (total number of probes and their locations in Ω at the beginning of the run,
step 0). An arbitrary, variable initial probe distribution is a convenient way to inject
pseudorandomness, the effect of which is to provide better sampling of Ω’s topology than a static
distribution.  Each initial probe distribution in a set of distributions provides different information
about Ω’s landscape.  As the results below show, certain ones perform much better than others.

The second method of injecting pseudorandomness is the use of a step-by-step variable
repositioning factor 1 reprep FF where repF is the step increment. Repositioning refers to
the process of retrieving a probe that has flown outside the decision space (discussed in detail in
the Appendix).  A variable repF has the effect of pseudorandomly distributing probes throughout
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Ω, which provides better sampling of the decision space landscape as a run progresses. The third
way pseudorandomness is injected is by shrinking the decision space around the best probe’s
location.  This process coupled with variable repF redistributes probes in the smaller Ω in an
arbitrary but precise, hence pseudorandom, manner.  The effect is to speed CFO’s convergence,
but at the risk of premature convergence (on an empirical basis, this issue does not appear to be
significant using the procedures described below). Pseudocode for CFO-PR appears in Fig. 1.  The
inner time step loop ( j loop) is common to all CFO implementations, but the two outer loops
inject initial probe pseudorandomness. The  loop controls where initial probes are deployed,
and the dp NN loop determines their number. These two parameters define the initial probe
distribution, and the two loops together create a variable, pseudorandom distribution (see
Appendix for notation and equations).  The variable repF procedure appears in step (f) of the
pseudocode. And the pseudorandom decision space adaptation is in step (g). Ω’s boundaries
shrink around the then best probe position vector every 20th step as discussed in detail below. A
two-dimensional example is used to illustrate these techniques because it provides a concrete
visualization of the different methods. In the actual CFO-PR implementation, of course, these
techniques are generalized to the dN -dimensional case.

2.1 Initial Probes

The manner in which initial probes are deployed using  is shown schematically in Fig. 2, which
provides a 2-dimensional (2D) schematic representation of a variable initial probe distribution

comprising an orthogonal array of
d

p
N

N probes per axis deployed uniformly on probe lines

parallel to the coordinate axes that intersect at a point along Ω’s principal diagonal. dN is Ω’s

dimensionality (here 2dN ), and maxmin
iii xxx  , dNi 1 define Ω’s domain (decision

space).
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Fig. 1.  CFO-PR pseudocode with variable initial probes and repF and DS adaptation

For illustrative purposes, Fig. 2 shows nine probes on each probe line. The lines, which are
parallel to the 1x and 2x axes, intersect at a point on Ω’s principal diagonal marked by position
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the diagonal’s endpoint vectors.  Parameter 10   specifies where along the diagonal the
orthogonal probe array is placed by locating the probe lines’ intersection point.
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While Fig. 2 shows an equal number of probes on each line, a different number of probes per axis
can be used instead.  For example, if equal probe spacing were desired in a decision space with
unequal boundaries, or if overlapping probes were to be excluded in a symmetrical space, then
unequal numbers would be used. Unequal numbers also might be appropriate if a priori
knowledge of Ω’s landscape, however obtained, suggests denser sampling in one area. The initial

probe distribution in Fig. 2 with variable
d

p
N

N
was used for the CFO-PR runs reported here,

but any number of other variable initial probe distributions could be used instead. The key idea is
that the initial probe distribution must be pseudorandom, that is, arbitrary and therefore
uncorrelated with the decision space landscape.

2.2 Repositioning Factor

A variable value for repF also adds pseudorandomness. repF starts at some arbitrary initial value

that is incremented at each iteration by an arbitrary amount repF so that 1 reprep FF .
This errant probe retrieval scheme is an example of an arbitrary sequence of calculated numbers
deterministically assigned to a CFO parameter.  CFO’s ability to search the decision space
depends on where errant probes are reinserted in Ω, and this process is pseudorandom in nature
because repF is deterministic but arbitrary and uncorrelated with Ω’s topology.  By placing errant
probes pseudorandomly throughout the decision space, more information is developed about its
topology as the run progresses.  The scheme used here was empirically determined, and appears to
work well across a wide range of objective functions.  But, of course, there are many other
procedures for setting repF ’s value, some no doubt better than others.

Fig. 2. Variable 2-D initial probe distribution used for CFO runs reported here
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2.3 Decision Space Adaptation

CFO-PR also includes adaptive reconfiguration of the decision space in order to improve
convergence speed.  This feature also is pseudorandom in nature because the way Ω’s boundaries
are changed is arbitrary and uncorrelated with the landscape.  Fig. 3 illustrates in 2D how Ω’s size
is adaptively reduced in this case every 20th step around the probe’s location with the then best

fitness throughout the run up to the current iteration, bestR


.  Ω’s boundary coordinates are reduced
by one-half the distance from the best probe’s position to the each boundary on a coordinate-by-

coordinate basis, that is,
2
ˆ min

minmin iibest
ii

xeRxx 



and
2

ˆmax
maxmax ibesti
ii

eRxxx 




,

where the primed coordinate is the new decision space boundary, and the dot denotes vector inner

product.  For clarity, Fig. 3 shows bestR


as fixed, whereas generally it varies throughout a run.
Changing Ω’s boundary every twenty steps instead of some other interval was chosen arbitrarily
(another, probably better approach, might be a reactive adaptation based on performance measures
such as convergence speed or fitness saturation).

Fig. 3.  Schematic 2-D decision space adaptation (with constant bestR


)
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3 Results and Discussion

3.1 A Sample Problem

The effectiveness of injecting pseudorandomness into CFO-PR will be illustrated with the 2D
Goldstein-Price function (GP) plotted in Fig. 4.  GP is defined as
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,

where Ω: 100,100 21  xx (note that in most published reports Ω is much smaller, viz.,
2,2 21  xx ).  GP’s global maximum is ‒3 at (0,‒1).  This function is multimodal with few

local maxima, and it varies over nearly nineteen orders of magnitude as shown in Fig. 4.

Fig. 4.  Goldstein-price (GP) function

The following parameter values were used for all runs reported in this note: 2 , 2 ,

2G , 1t , initial acceleration of zero, initial 5.0repF , 05.0 repF , 0start ,

1stop with 1.0 (eleven runs).  For GP, 2by14to4dp NN , with different
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ranges of this parameter for the other test functions as described below.  In all cases, a run was
terminated early if the average best fitness over 50 steps (including the current step) and the
current best fitness differed by less than 10-6.  The pseudorandom IPD's computed using the
procedure illustrated in Fig. 2 for GP are plotted in Fig. 5.  A further illustration of the Probe Line
IPD concept is shown in 3D in Fig. 6.

Table 1 shows a summary of the results for the GP function.  A total of sixty-six optimization runs
were made in six groups of eleven runs each (data for Run #0 are starting values). The column
headings are for the most part self-explanatory.  Each run began with 500tN , but, as the
#Steps column shows, in no case were 500 iterations used because every run terminated early.

evalN is the number of function evaluations performed for the shortened run, and the total number

of evaluations over all runs appears at the bottom of this column.  The repF column lists repF ’s

value at the end of the run, and the V denotes that repF was variable as discussed above. Fitness
tabulates the best fitness returned during the run.  The Initial Probes column shows the type of
IPD, in this case probes uniformly spaced along probe lines parallel to Ω’s axes (notated ǁ-AXIS)
as described above and shown in Fig. 5.

The best fitness ranged from a low of ...6643.236 in run 12 to the global maximum of 3 at
)1,0(  , which was returned in run #54 (best results highlighted in blue).  Parameters for run #54

were 12dp NN , 24pN , and 9.0 .  The total number of function evaluations over all

runs was 472,180 while evalN for the best run was 464,1 (60 iterations).  Fig. 7 plots the
evolution of GP’s best fitness, which in only two steps increases from

1210x729922682476.2  to GP’s actual global maximum of 3 .  This seems to be quite
remarkable in view of the initial probe distribution for 9.0 (Fig. 5) in which all probes are
far removed from the maximum’s location at )1,0(  . As the data in Table 1 clearly show, some
sets of parameters are much better than others.  Without pseudorandom initial probes, a single run
would be made with, in this example, only 13.6% probability of locating the global maximum
with a fractional accuracy of 0.03% (9 of 66 runs).  This statistic highlights the importance of
pseudorandomness in CFO.

Fig. 8 plots CFO’s avgD curve for GP. avgD is the normalized average distance between the
probe with the best fitness and all other probes at each time step, viz.,
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2minmax )( is the length of Ω’s principal diagonal (see Appendix

for definitions). avgD decreases monotonically through step 10 to 0.0496977, then increases very
quickly to a peak of 0.4767301 at step 11, followed by another quasi-monotonic decrease through
step 29 to 0.0274355.  This cycle repeats through step 48 where avgD is 0.0169657, followed by a
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jump to 0.1194779 at step 49.  After a slight dip through step 53, avgD flattens out around a value

of 0.11…  The quasi-oscillatory behavior in avgD usually correlates with local trapping, which in

this case happens to be at the global maximum.  Oscillation in avgD may be a similar

phenomenon to oscillation seen in V curves for gravitationally trapped Near Earth Objects
(NEOs), where V is the velocity change needed to avoid earth impact, which suggests that
NEO theory may hold the key to analytical mitigation or elimination of local trapping at local
maxima and possibly another proof of convergence for CFO.

Because CFO-PR converges so quickly on GP’s global maximum, the number of the probe with
the best fitness is constant after step #1 as seen in the best probe plot in Fig. 9.  The best probe
number (#14) is the same for steps 0 and 1, but it switches to probe #2 at step 2.  Neither the
number of the best probe nor the fitness change after step 2.  Of course, for most functions the best
probe number varies throughout a run, often quite erratically.

Figs. 10 and 11, respectively, plot the probe trajectories for the probes with the best ten fitnesses
ordered by fitness and for the first sixteen individual probes ordered by probe number (number of
trajectories plotted chosen as a matter of convenience). Both plots are very chaotic with no
obvious sign of regularity in how probes gravitate to the global maximum. Nevertheless, there is
some measure of regularity as reflected in the avgD curve because its appearance is not nearly as

chaotic as the trajectory plots. In fact, in many cases avgD exhibits a mathematically precise
oscillation even when the probe trajectories look like Figs. 10 and 11 (see in particular [1]).
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Fig. 5.  GP best run initial probe distributions
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Fig. 6.  Example of a 3D probe line IPD

3.2 A Benchmark Suite

CFO was tested against the same twenty-three function 2-30D benchmark suite used to evaluate
Group Search Optimizer (GSO) [24]. GSO has gained some notoriety as an effective state-of-the-
art stochastic algorithm [25]. In [24] GSO is compared to two other algorithms, PSO and GA,
using the benchmark suite described in detail in [26] (functions, decision spaces, and
characteristics). PSO is a stochastic Particle Swarm Optimization algorithm implemented using
PSOt, a MATLAB-based toolbox that includes standard and variant PSO algorithms. The standard
PSO algorithm was used with recommended default parameters: population, 50; acceleration
factors, 2.0; inertia weight decaying from 0.9 to 0.4. GA is a stochastic Genetic Algorithm
implemented using the GAOT toolbox (Genetic Algorithm Optimization Toolbox).  GA also
employed recommended default parameter values with a fixed population size (50), uniform
mutation, heuristic crossover, and normalized geometric ranking for selection.  Thus, while the
results reported here compare CFO and GSO directly, they also compare CFO to PSO and GA
indirectly.

Table 1 summarizes results using the same function numbering as [24]. maxf is the known global
maximum (note that the negative of each benchmark in [24] is used here because, unlike the other
algorithms, CFO locates maxima, not minima).  denotes average value.  Because GSO, PSO
and GA are inherently stochastic, their performance must be described statistically. Statistical data
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in Table 2 for those algorithms are reproduced from [24], while Table 3 shows the number of
function evaluations per GSO/GA/PSO run. The tabulated fitnesses are average values over 1,000
runs for the first thirteen benchmarks, and over 50 for the others. In marked contrast, CFO’s
results are repeatable over runs with the same parameters because the algorithm is completely
deterministic, even when pseudorandomness is included. CFO therefore never requires a statistical
description of its performance, which is a major advantage and a significant departure from the far
more common stochastic approaches.

Table 1.  Summary results for GP function using pseudorandom CFO-PR
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Table 2.  CFO-PR comparative results for 23 benchmark functions (GSO/GA/PSO data from [24])

Test
function

dN maxf <Best fitness>/
other algorithm

- - - - - - - - - - - - - CFO-PR - - - - - - - - - - - - - - - - - - - CFO - - - - - -
Best fitness with fixed
DS boundary & fixed

10dp NN , 5.0repF .

Best fitness
best Best

dp NN
evalN

Best Run Total

Unimodal functions (other algorithms: average of 1000 runs)
f1 30 0 -3.6927x10-37 / PSO -4.8438x10-4 0.1 4 20,640 507,060 0
f2 30 0 -2.9168x10-24 / PSO -4x10-8 0.5 2 5,040 716,400 0
f3 30 0 -1.1979x10-3 / PSO -6x10-8 0.5 2 10,260 1,534,260 0
f4 30 0 -0.1078 / GSO -4.2x10-7 0.5 2 5,160 332,340 0
f5 30 0 -37.3582 / PSO -1.09289x10-3 0.9 6 34,560 845,640 -29
f6 30 0 -1.6000x10-2 / GSO 0 1.0 6 10,980 350,280 0
f7 30 0 -9.9024x10-3 / PSO -4.249x10-5 0.1 4 60,120 1,983,960 -0.002354
Multimodal functions, many local maxima (other algorithms: avg 1000 runs)
f8 30 12,569.5 12,569.4882 / GSO 12,569.4866 0.5 4 12,720 448,800 12,536.3016
f9 30 0 -0.6509 / GA -2.05x10-6 0.7 4 16,440 680,640 0
f10 30 0 -2.6548x10-5 / GSO -1.5x10-7 0.5 2 5,100 904,980 0
f11 30 0 -3.0792x10-2 / GSO -9.97293x10-2 0.1 6 42,660 489,060 -1.4141
f12 30 0 -2.7648x10-11 / GSO -2.067x10-5 0.5 2 3,660 341,400 -1.7671
f13 30 0 -4.6948x10-5 / GSO -3.2853x10-3 0.6 6 16,920 679,620 -5.8
Multimodal functions, few local maxima (other algorithms: avg 50 runs)
f14 2 -1 -0.9980 / GSO -0.9980 0.2 12 5,952 141,076 -1.4064
f15 4 -3.075x10-5 -3.7713x10-4 / GSO -4.889x10-4 0 12 3,360 304,664 -6.4685x10-3

f16 2 1.0316285 1.031628 / GSO 1.031626 0.4 12 6,288 124,340 0.8535
f17 2 -0.398 -0.3979 / GSO -0.3979 0 8 1,872 108,340 -0.4001
f18 2 -3 -3 / GSO -3 0.9 12 1,464 180,472 -3
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f19 3 3.86 3.8628 / GSO 3.8627 0.2 14 3,150 200,268 3.8521
f20 6 3.32 3.2697 / GSO 3.32173 0.3 12 18,072 730,212 3.3107
f21 4 10 7.5439 / PSO 10.1532 0.4 6 1,896 336,712 7.7245
f22 4 10 8.3553 / PSO 10.4029 0.8 6 2,208 386,176 9.4308
f23 4 10 8.9439 / PSO 10.5363 0.8 6 2,256 394,320 10.1523

( dN = Function Dimension; maxf = Known Global Maximum; < > Denotes Average Value)
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Table 3.  Number of GSO/GA/PSO Function Evaluations Per Run (from [24]).

Function GSO/GA/PSO Function GSO/GA/PSO
f1 150,000 f13 150,000
f2 150,000 f14 7,500
f3 250,000 f15 250,000
f4 150,000 f16 1,250
f5 150,000 f17 5,000
f6 150,000 f18 10,000
f7 150,000 f19 4,000
f8 150,000 f20 7,500
f9 250,000 f21 10,000
f10 150,000 f22 10,000
f11 150,000 f23 10,000
f12 150,000 - -

Two columns of CFO-PR and CFO data are presented in Table 2. The CFO-PR data correspond to
the best fitness returned by the single best run in the set of runs with variable dp NN and

variable . For functions f14 - f23 eleven runs were made with 10   in increments of 0.1 and

2by144  dp NN (66 runs total). For f1 - f13 the same procedure was used, but with

2by62  dp NN (33 runs total) in order to avoid excessive runtimes.  Table 2 shows the

 value corresponding to the best fitness, best , and the corresponding best value of dp NN .

evalN is the number of function evaluations, and it is tabulated for the single best run and for the

group of runs used to determine best and the best number of probes per axis. The CFO column
contains results for runs in which pseudorandomness has been removed from the algorithm except
for the probe line IPD, which was unchanged. Those runs employed fixed decision space
boundaries, a fixed value of 5.0repF , and a fixed value of 10dp NN .

Comparing CFO-PR to GSO/GA/PSO, in the first group of high dimensionality unimodal
functions, f1 - f7, CFO-PR returned the best fitness on five of the seven functions (f3 - f7). PSO
performed best on the first two. In the second set of high dimensionality multimodal functions
with many local maxima, f8 – f13, CFO-PR performed best on two (f9, f10) and essentially the same
as the best other algorithm (GSO) on f8.  In last group of ten multimodal functions with few local
maxima, f14 - f23, CFO-PR returned the best fitness on four (f20 - f23), equal fitnesses on three (f14,
f17, f18), and very slightly lower fitnesses on the remaining three.  Even though it is in its infancy,
CFO-PR performed very well against three other highly sophisticated algorithms. It returned the
best, equal, essentially equal, or very slightly lower fitnesses on eighteen of the twenty three test
functions. It is reasonable to conclude that, overall, CFO-PR performed as well or better than
GSO, which in turn performed better than PSO or GA.

Comparing CFO-PR to CFO alone (most pseudorandomness taken out), CFO alone returned the
best fitness overall on f1 - f4, f6, f9, and on f10. On f19, GSO, CFO-PR and CFO all returned the same
fitness, which happens to be the global maximum. On the other benchmarks, however, CFO with
reduced pseudorandomness returned worse best fitnesses than CFO-PR. These results suggest that
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CFO-PR performs better than CFO alone, but not by a wide margin.

Fig. 7.  Evolution of GP function best fitness

Fig. 8.  Evolution of GP function avgD
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Fig. 9.  GP Function best probe number

Fig. 10.  GP Function trajectories of probes with best fitness
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Fig. 11.  GP function probe trajectories by probe number

4 Conclusion

This note suggests that pseudorandomness is an important, indeed perhaps essential, aspect of
effective CFO implementations. A pseudorandom variable has an arbitrary but precisely known
value that may be assigned or calculated. Its essential characteristic is that the value is
uncorrelated with the decision space’s topology, so that it has the effect of distributing probes
pseudorandomly throughout the landscape. While in a general sense this process may appear to be
similar to the randomness in an inherently stochastic algorithm, it is in fact fundamentally
different. The equations underlying stochastic algorithms are formulated in terms of true random
variables whose values are computed from probability distributions and consequently are
unknowable until the calculation is made. Therefore successive calculations yield different values,
and as a result every optimization run has a different outcome. By contrast, a pseudorandom
variable in the context of CFO is known with absolute precision because of how its value is
determined (assignment or deterministic calculation). This property allows CFO to compute probe
trajectories precisely because it is inherently deterministic.  Every CFO with the same setup, with
or without a pseudorandom component, yields exactly the same results, step-by-step throughout
the entire run. Importantly, CFO’s reproducibility lends itself well to reactive implementations in
which run parameters are tuned in response to performance metrics such as rate of convergence or
fitness saturation as examples.  Reactive stochastic algorithms, on the other hand, are very
difficult to implement.
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This paper provides examples of how pseudorandomness can improve CFO’s performance. Three
different approaches are used (initial probe distribution, repositioning factor, and decision space
adaptation), and each was discussed in detail. A sample CFO-PR problem was presented in detail,
and summary data included for a standard 23-function benchmark suite. CFO-PR’s performance is
quite good compared to other highly developed, state-of-the-art algorithms. In addition, data are
presented for a CFO implementation in which all pseudorandomness except the IPD has been
removed, and those results show that, as a general rule, injecting pseudorandomness improves
CFO's performance. Hopefully these results will encourage further work on improved
methodologies for injecting pseudorandomness into CFO, in particular where and how. Of course,
any or all of CFO’s run parameters can be pseudorandomized, not only the three considered here.
But even with respect to those parameters, different approaches to how they are
pseudorandomized may yield better results or faster runtimes. There are many fruitful areas of
research on CFO, and it is the author’s hope that this and the other CFO papers will provide the
foundation and catalyst for that work.
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Appendix

CFO searches an dN -dimensional decision space  for the global maxima of an objective

function ),...,,( 21 dNxxxf defined on  : maxmin
iii xxx  , dNi 1 .  The ix are the

decision variables, and i the coordinate number.  The term fitness refers to the value of )(xf  at
point x in  .  There is no a priori information about the objective function’s maxima, that is,

)(xf  ’s topology (landscape) is unknown [1].

CFO searches  by flying probes through the space at discrete time steps (iterations).  Each
probe’s location is specified by its position vector computed from two equations of motion that
analogize their real-world counterparts for material objects moving through physical space under
the influence of gravity without energy dissipation.

Probe p ’s position vector at step j is k
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, where the jp
kx , are its coordinates and

kê the unit vector along the kx -axis.  The indices p , pNp 1 , and j , tNj 0 ,

respectively, are the probe number and iteration number, where pN and tN are the
corresponding total number of probes and total number of time steps.

Equations of Motion: In metaphorical CFO space each of the pN probes experiences an

acceleration created by the gravitational pull of masses in  .  Probe p ’s acceleration at step
1j is given by
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which is the first of CFO’s two equations of motion. In equation (1),
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xxxfM is the objective function’s fitness at probe p ’s location at
time step 1j .  Each of the other probes at that step (iteration) has associated with it fitness
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j NppkM ,...,1,1,...,1,1  . G is CFO’s gravitational constant, and )(U is the
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at step 1j to p
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j according to the trajectory equation
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, (2)

which is CFO’s second equation of motion. Note that the original CFO paper [1] included a
velocity term that was set equal to zero as a matter of convenience because it simply was a
additive constant in the case of rectilinear motion. Upon further consideration, however, it became
clear that this term should not be included in equation (2) because, in general, a probe's motion is
not rectilinear. Instead it is curvilinear, in which case the acceleration and velocity vectors are in
different directions. As an example, in the case of circular motion the velocity vector is tangent to
the trajectory circle while the acceleration is inwardly directed along the radius, that is,
perpendicular to the velocity. This limiting case illustrates why, in general, the velocity term
appearing in real-world kinematic equations should not be included in metaphorical CFO-space
because it changes the direction of each probe's acceleration.

The CFO equations of motion, (1) and (2), combine to compute a new probe distribution at each
time step using masses discovered by the probe distribution at the previous step. t is the time
interval between steps during which the acceleration is constant.  Note that CFO’s terminology
has no significance beyond reflecting CFO’s kinematic roots, as does the factor ½ in eq. (2).  The
gravitational constant, G , and time increment, t , have direct analogues in Newton’s equations
of motion for real masses moving under real gravity through three-dimensional physical space.
The CFO exponents  and  , by contrast, have no analogues in Nature. They provide added
flexibility to the algorithm designer who, in metaphorical CFO space, is free to change how
gravity varies with distance, or mass, or both, if doing so creates a more effective algorithm.

Mass: The concept of mass in CFO space is very important and quite different than it is in real
space.  Mass in the physical Universe is an inherent, immutable property of matter, whereas in
CFO space it is a positive-definite user-defined function of the objective function’s fitness, not
necessarily the fitness itself. For example, in equation (1) mass is defined as

)()( 1111
p
j

k
j

p
j

k
jCFO MMMMUMASS   [difference in fitness values raised to the 

power multiplied by the Unit Step]. A different function can be used if it results in a better
performing CFO algorithm. In this specific implementation the Unit Step is a critical element
because it prevents negative mass. Without the Unit Step CFO mass could be negative depending
on which fitness is greater. But mass in the real Universe always is positive, and as a consequence
the force of gravity always attractive. By contrast, mass can be positive or negative in
metaphorical CFO space, depending on how it is defined, and undesirable effects may result from
the wrong definition.  Negative mass creates a repulsive gravitational force that flies probes away
from maxima instead of toward them, thus defeating the very purpose of the algorithm. See [1,3]
for graphical examples of the effect of repulsive gravitational force.

Errant Probes: At any iteration in a CFO run, it is possible that a probe’s acceleration computed
from eq. (2) may be too great to keep it inside . If any coordinate min

ii xx  or max
ii xx  , the

probe enters a region of unfeasible solutions that are not valid for the problem at hand.  The
question is what to do with an errant probe, and it arises in many algorithms.  There are many
approaches. While many schemes are possible, a simple, empirically determined one is used here.
On a coordinate-by-coordinate basis, probes flying out of the decision space are placed a fraction
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1 reprep FF of the distance between the probe’s starting coordinate and the corresponding

boundary coordinate. repF is the variable repositioning factor (see, for example, [2,3] for a more
detailed discussion).  Its value, as well as those of all the CFO parameters, was determined
empirically.
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