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Abstract

This note suggests that near earth objects and Central Force Optimization have something in
common, that NEO theory may hold the key to solving some vexing problems in deterministic
optimization: local trapping and proof of convergence.  CFO analogizes Newton’s laws to locate
the global maxima of a function.  The NEO-CFO nexus is the striking similarity between CFO’s

avgD and an NEO’s V curves. Both exhibit oscillatory plateau-like regions connected by
jumps, suggesting that CFO’s metaphorical “gravity” indeed behaves like real gravity, thereby
connecting NEOs and CFO and being the basis for speculating that NEO theory may address
difficult issues in optimization.

Keywords: Central force optimization, CFO, near earth objects, NEO, optimization theory, proof
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1 Introduction

This note suggests that the theory of gravitationally trapped Near Earth Objects (NEOs) provides
an analytical framework for the further theoretical development of Central Force Optimization
(CFO). NEO theory may lead to deterministic mitigation of local trapping (a significant problem
for many optimization algorithms). It also may lead to a new proof of convergence (a milestone
achievement for any algorithm). Applying NEO theory likely requires collaboration between
theorists in celestial mechanics and optimization. Hopefully these observations will stimulate that
collaboration.

2 Methodology

CFO locates the global maxima (fitnesses) of a scalar-valued objective function
),...,,( 21 Nxxxf with unknown topology (landscape) defined on an N-dimensional (n-D)

decision space (DS).  CFO [1-3] is a Nature-inspired metaheuristic like Particle Swarm
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Optimization and Ant Colony Optimization. But unlike PSO and ACO, it is deterministic instead
of stochastic. CFO analogizes gravitational kinematics, thus embracing the metaphor of Newton’s
precise laws of gravity and motion. Under certain conditions small objects moving through space
close to our planet (NEOs) can be gravitationally captured. Such encounters modify the NEO's
orbit, at least for a while. In the absence of energy dissipation, orbital changes may persist for
some time while the NEO and planet earth conservatively exchange energy. The NEO has been
"trapped" in proximity to the earth, and it is this effect that the CFO metaphor embraces. Of
course, CFO is an algorithm, a step-by-step procedure for processing numbers. It is not literally,
nor is it intended to be, a precise model of how small masses move through space on paths
bringing them close to a planet (indeed, the problem of calculating the motion of even three
gravitating bodies remains unsolved). CFO thus is a conceptual approach to multidimensional
search and optimization, a metaheuristic, drawing its inspiration from gravitational kinematics
and, in a formal way, reflecting the equations underlying gravitational motion. But the similarity
ends there. CFO also is similar in some ways to gradient-based optimization methods as discussed
in [4].  Proofs of convergence for CFO and an extended version have been developed [5,6], and
the algorithm has been implemented on a GPU using various topologies [7-9]. The algorithm has
been successfully applied to a variety of problems, among them: training neural networks [10];
power grid reliability assessment [11]; drinking water distribution networks [12]; solving
nonlinear circuits [13]; array synthesis [14,15]; microstrip patch antenna design [16]; multiband
slotted bowtie design [17]; rectangular microstrip patch design [18]; microwave broadband
absorber design [19]; antenna optimization generally [20]; notched ultra wideband E-shape
antenna design [21]; and increasing impedance bandwidth [22,23].

The NEO-CFO connection is illustrated using two well-known benchmark functions: (1) the n-D
step function in 2D (which can be visualized); and (2) the Griewank function in 30D.  The step is

defined as   
2
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5.0)( 
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i
oi xxxf , 100100  ix (here 2dN , 751 ox ,

302 ox ). This highly discontinuous function is unimodal with a maximum value of zero offset

to the point )30,75( .  Figs. 1(a) and (b) plot it over its domain and in the vicinity of the
maximum.

Fig. 1(a).  2D Step over its domain
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Fig. 1(b).  2D Step near the global maximum

The 30-dimensional modified Griewank function is defined as
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The Griewank’s global maximum value is zero at the offset point 30,..,1,123.75  ixi .  This
function is extremely multimodal, and one of the most challenging benchmark functions because
the number of local maxima increases exponentially with increasing decision space dimensionality
[24].  In addition, offsetting the maximum from the origin ( 00 x ) to a substantially distant point

( 123.750 x ) makes it even more difficult to locate the global maximum (it appears that an
offset is uncommon in the literature).  The Griewank’s complexity is illustrated by the 2-
dimensional version plotted in Fig. 2 in a truncated region around the maximum.

Fig. 2.  2D Griewank near the global maximum
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CFO flies “probes” through DS over “time steps” (iterations). Their trajectories are computed
from two equations of motion analogous to the equations of motion for masses moving through
space under the influence of real gravity.  CFO “mass” is created by defining a function of the
objective function’s fitness.  The equations of motion for the probes’ acceleration and position

vectors are 


p
j

k
j

p
j

k
j

N

pk
k

p
j

k
j

p
j

k
j

p
j

RR

RR
MMMMUGa

p

11

11

1
11111

)(
)()(












  




and

1,
2
1 2

11   jtaRR p
j

p
j

p
j


, where ),...,,( 1,1,

2
1,

11


 
jp

N
jpjpp

j xxxfM ,

k

N

k

jp
k

p
j exR

d

ˆ
1

,





, in which the jp
kx , are probe p ’s coordinates at time step j , and kê is the
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probes converge on a maximum is the average distance between the probe with the best fitness

and all other probes at the thj iteration normalized to the size of the decision space, that is,
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2minmax )( is the length of the decision space principal diagonal,

and diii Nixxx ,..,1,maxmin  defines DS (minimum/maximum values of each
coordinate). The original CFO paper [1] included a velocity term that was set equal to zero as a
matter of convenience because it simply was a additive constant in the case of rectilinear motion.
It became clear upon further consideration that this term should not be included in equation at all
because, in general, a probe's motion is not rectilinear. Instead it is curvilinear, so that the
acceleration and velocity vectors are in different directions.  In the case of circular motion, for
example, the velocity vector is tangent to the trajectory circle while the acceleration is inwardly
directed along the circle's radius, that is, perpendicular to the velocity. This limiting case
illustrates why, in general, the velocity term appearing in real-world kinematic equations should
not be included in metaphorical CFO-space because of how it effects the direction of a probe's
acceleration.
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3 Results and Discussion

Fig. 3(a) plots the 2D step function's probe trajectories for the probes with the best fitnesses, while
Fig. 3(b) shows the individual probe trajectories ordered by probe number. These plots are
visually chaotic, providing no hint whatsoever of the underlying mathematical regularity that
forms the NEO-CFO nexus. That regularity appears in CFO’s avgD curve plotted in Fig. 4

(annotated with run parameters). avgD exhibits four oscillatory plateaus connected by jumps.
Although the oscillation may not be precisely repetitive, in many cases it is (for example, in this
case starting at step 162 avgD comprises the repeating sequence 0.6859416, 0.6917107,
0.6868708, 0.6952526, 0.6855014, 0.6956451, 0.6859433, 0.6917887, 0.6868326, 0.6859393,
0.6877515, 0.6939823, 0.6870971, 0.6956298, 0.6859431, 0.6866136, 0.6872625, 0.6940363,
0.6861267, 0.6953240, which presumably repeats indefinitely).  Oscillation in avgD appears to be
a reliable signal of local trapping (determined empirically).  In this case, CFO is trapped at a local
maximum of 1 at )57142857.28,75( . Trapping caused CFO to miss the global maximum,
which often a problem with deterministic algorithms.

Fig. 3(a). Trajectories of probes with best fitnesses
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Fig. 3(b).  CFO probe trajectories by probe number

Fig. 4. 2D step avgD vs. time step

For the 30D Griewank function, CFO returns a maximum fitness of -0.0030385 at step 151, and
its avgD curve is shown in Fig. 5.  The oscillatory plateau-like regions connected by jumps seen

in the step function's avgD curve again are evident in this plot, and it is this characteristic that

connects CFO to NEO's.  CFO's avgD curves under trapping are structurally similar to the V



British Journal of Mathematics & Computer Science 3(3), 341-351, 2013

347

curve for a gravitationally trapped Near Earth Object.  The similarity is obvious from Fig. 6,
which plots asteroid Apophis’ V curve (reproduced from [25] with permission) computed by
Professors Andrea Milani and Andrea Caruso using the theory of resonant returns [26] (private
communication, Astronaut “Rusty” Schweickart). V is the velocity change needed to avoid
earth impact, and avgD is a similar variable because it is proportional to velocity if t is
constant.  Another example of this effect using the Space Gravitational Optimization (SGO)
benchmark function is described in detail in [27].

Apophis’ V curve in Fig. 6 contains two well-defined oscillatory plateaus connected by a jump
and what appears to be the beginning of a third plateau, also connected by a jump, that is cut off
by the vertical line marking earth impact in year 2036.  The structural similarity to avgD in Figs.

4 and 5 is striking.  Both the avgD and V curves comprise oscillatory plateau-like regions
connected by jumps, and it is difficult to imagine that their similarity is accidental.  Rather,
because the Apophis plot is based on real gravity trapping the asteroid in earth orbit, and avgD is
based on CFO’s metaphorical gravity trapping a probe at a local (possibly global) maximum, it
seems reasonable to speculate that the similarity actually may be inevitable.

Fig. 5. 30D Griewank avgD vs. time step
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Fig. 6. Asteroid Apophis’ V plot

4 Conclusions

The unanswered question raised by this note is, Why are CFO's avgD and an NEO's V curves
so similar in structure?  Is it pure coincidence, which seems unlikely, or is it a consequence of
CFO's gravitational metaphor reflecting gravitational kinematics as they affect actual physical
objects?  If the correct answer is the latter, then this observation is a compelling validation of the
CFO gravitational metaphor, as well as the basis for speculating that NEO theory may hold the
key to solving important problems in optimization. Hopefully researchers with appropriate skills
and interests will find out if it does.
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