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ABSTRACT 
 

A deterministic mathematical method is adopted to evaluate the power absorption due to EMF 
radiation in bone and bone marrow. The specific absorption rate (SAR), in both anatomic 
structures, is computed according to the present mathematical model, is represented spatially in 
the bone-marrow-bone layers under study. The effect of exposure to electric field of strengths 
ranging from 1 V/m to 1 kV/m is investigated for a wide frequency spectrum in each layer of the 
proposed model. The frequency dependence of the SAR, through these layers, is illustrated for 
frequencies ranging from 1 kHz to1GHz. The present results are in agreement with international 
safety standards for applied filed strengths of maximum value; 10 V/m for bone and 100 V/m for 
bone marrow. Moreover the present model shows that oblique incidence results in higher SAR 
values than with normal incidence, highly evident for low frequency. 
Aim: Evaluation of the EMF power absorption and distribution, in bone and bone marrow, due to 
EMF radiation.  
Study Design: Mathematical analysis followed by computer simulation of the problem. 
Place and Duration of Study: Department of Engineering Physics & Math., Faculty of 
Engineering, Cairo University, between May 2014 and Dec.2015. 
Methodology: The author employs a bone-marrow-bone model to investigate the effect of incident 
EMF. The equations governing the total electric and magnetic field distributions in each layer are 
deduced, considering its biological electromagnetic properties. The model is simulated by a 
computer program using Maple V. The computed values of specific absorption rate (SAR) in bone 
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and bone marrow are graphically represented to show spatial distribution in each one. The 
exposure to electric field of strength ranging from 1V/m to 1kV/m is investigated using the proposed 
method. The frequency dependence of the SAR through the bone-marrow-bone layers under study 
is illustrated for a frequency range of 1 kHz-1GHz.  
Results: Electromagnetic radiation of 1 MHz-10MHz induce absorbed power within the safety limits 
for all applied field strengths. The 1 GHz incident radiation induces SAR values higher than 
permissible ranges for field strengths above 400V/m whereas the same occurs for a low frequency 
range at 100 V/m. Moreover, the present results are in agreement with international safety 
standards for applied filed strengths till 10 V/m for bone and till 100 V/m for bone marrow, covering 
the applied frequencies (1 kHz -1 GHz). Except for exposure to electric field of strength higher than 
100 V/m, the SAR acquired by the bone marrow is within the safety levels.  
Conclusion: The results obtained are in agreement with international safety standards for filed 
strengths of maximum value 10 V/m for bone and 100 V/m for bone marrow. Oblique incidence 
results in higher SAR values than normal incidence, especially for low frequency (1 kHz). 
 

 
Keywords:  Mathematical model; Specific absorption rate; Bone; Bone marrow; EMF radiation; EMF 

Power absorption; EMF strengths; Frequency dependence; SAR limitations. 
 
1. INTRODUCTION  
 
The recent electromagnetic environment intense 
existence, accompanying the progressive 
applications of electromagnetic fields, has 
indicated a growing threat to the public health. 
Various electronic devices employing EMF such 
as, cell phones and their networks, wi-fi routers, 
microwave transmitters, antennae, etc. impose 
significant biological effects. Hence, investigation 
on the EMF radiation interactions with tissues 
then assessment of their effect on biological 
systems, have considerably attracted the 
scientific attention [1-5]. 
 
The three main physical quantities for 
determination of the estimated effect of EMF 
exposure are: the flowing current per unit length 
through the body, the energy density the tissues 
are subjected to and the power absorbed per unit 
mass of biological tissue. The evaluation of the 
specific absorption rate (SAR), is the most 
acknowledged quantity for international 
standardization [6-11]. The possible EMF 
exposure hazards are estimated by; 
experiments, usually performed on animals              
[12, 13], mathematical approaches employing 
either sets of definite mathematical equations or 
stochastic modelling [14-18], or computer 
simulators, employing either frequency or time 
domain analysis. The latter is a dependable 
method for SAR evaluation. In 2008, D. Smith 
[19] has used SEMCAD X to evaluate directive 
antennae EMF near field propagation loss 
through different human body phantom sections. 
In addition to this, finite difference frequency 
domain (FDTD) is developed and applied to 
represent the EMF distribution through a human 

head phantom [20], where mobile antennae are 
placed at different distances from the head.  
 
However, the biological EMF effect remains 
argumentative and a potent source of 
controversy. There is no sufficient, reliable 
evidence to confirm or deny whether long-term 
exposure to these fields has an adverse health 
effect. Yet renowned scientific communities issue 
annual reports of safety EMF exposure 
standards. 
 
The present work adopts a deterministic 
mathematical model depending on tracing the 
wave propagation through a multilayer section of 
bone-bone marrow-bone. Maxwell equations are 
employed together with the physical and 
electromagnetic properties of the biological 
tissues under consideration. A parallel polarized 
electromagnetic wave is thus assumed to be 
incident on a homogeneous multilayer section. A 
mathematical simulation model is thus applied to 
calculate the root mean square value of the 
electric and magnetic fields, hence the 
electromagnetic power density absorbed in each 
layer. Bone and bone marrow are considered as 
non-magnetic materials, hence their magnetic 
permeability is less effective than their 
permittivity and conductivity are. Skin effect is 
neglected as it is significant only at VHF ranges. 
Therefore, the power absorption is studied as a 
function of both; the frequency (1 kHz-1 GHz) 
and the electric field strength (1 V/m-1 kV/m). 
The main goal of the current study is to introduce 
an approach to the problem of calculation of the 
average power absorbed by bone and bone 
marrow, hence compare the produced results to 
the approved international safety standards. 
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Computations are performed using Maple-V 
software. The author constructed a program to 
compute the total electric and magnetic fields, 
their root mean squared values, power absorbed 
and finally SAR in respective layers.  
 

2. MATHEMATICAL METHODOLOGY  
 
In the present work, the problem of 
electromagnetic wave incidence on a dissipative 
medium, namely biological tissue is investigated. 
Firstly, two planar sections of successive bone 
with marrow in between is assumed to be 
subjected to incident polarized electromagnetic 
wave, in the far field. Incident electromagnetic 
energy is transmitted through bone to bone 
marrow layer. The reflection on successive 
interfaces contributes to the overall energy 
consumed in each layer. Fundamental constants 
defining the reflected and transmitted fields are 
the electrical and magnetic parameters of the 
medium, permittivity, �(f), conductivity, σ(f), and 

permeability, �(f) for each layer. k(f) is the 
wavenumber for each layer. The incident 
polarized electric field is assumed to be 
propagating in the x-direction, represented by, 
Ei(t,x) and Hi(t,x) as thus:      
 

  ��(�, �) = �� × e�(�π������)                             (1) 
 

��(�, �) = �μ
�

(f)ε�(f)     �� × e�(�π�������π
�� )   (2) 

 
The posterior bone layer is denoted as layer 1, 
the bone marrow as layer 2, and the anterior 
bone layer as 3. Mathematical analysis is 
adopted to calculate the electric and magnetic 
field distributions in the three consecutive layers. 
To avoid complexity and redundancy of 
equations, the transmitted and reflected 
horizontal components of electromagnetic field 
through the marrow are given below: 

 

  ���(�, �) = ���(�) × �� × e�  δ� (�)
Δ��

�
��(�π������   )                                                                             (3) 

 

���(�, �) = ���(�)���(�) × ��e� δ�(�)
Δ��

�
 � δ�(�)

Δ��

�
 � �(�π������)                                                               (4) 

 

���(�, �) = ���(�)�μ
�

(�)ε�(�) × �� × e�  δ� (�)
Δ��

�
��(�π�������π

�� )                                                       (5) 

 

���(�, �) = ���(�)���(�)�μ
�

(�)ε�(�) × �� × e� δ�(�)
Δ��

�
 – δ�(�)

Δ��

�
����π�������π

�� �                                          (6) 

 
th1(f), rh2(f), and �2(f)  are transmission, reflection and absorption coefficients of the medium. Similarly, 
the vertical components of the field can be determined using the vertical reflection and transmission 
coefficients, Eq.(8). 
 

  ���(�) =
���  /���������/�����

���  /���������/�����
                  ���(�) =   

�

��� /���������/�����
                                             (7) 

 

 ���(�) =
�����   �����/��������

�����  �����/��������
                 ���(�) =  

�

����������/��������
                                               (8) 

 
Considering that the present study aims at the assessment of power absorption, electromagnetic 
power density vector, Stot (t,x), in a specific layer is represented as:  
 

 

����(�, �) = ����(�, �) × ����(�, �)                                                                                                                              (9) 
 

where ����(�, �) and ����(�, �) are the total electric and magnetic fields in the respective layer.  
 
The mathematical derivation, introduced in the present work, produces the total electric field, 

����(�, �), in the marrow layer, of thickness ∆�� as:  
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����(�, �) =
��1��2e

− δ1Δx
1
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2
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∆�� and ∆�� denote the posterior and anterior bone thicknesses respectively. Hence, the root mean 

square value of  ����(�, �) , ���� (x), is deduced from Eq.10 giving: 
 

����(�, �) = �
���

� ���
� ��

�

8�
�1 − ��� cos(��∆�� + 2��∆��)�

�

+
1

8�
��

�����(��∆�� + 2��∆��)� {sin(4�� + 2���) + sin(2���) + ½}                       (11) 

 
Similar derivations are carried out for the 
posterior and anterior bone layers. The incident 
field on a specific layer is that transmitted from 
the previous one. Reflection and transmission 

occurs at each interface. Similarly, ����(�) and 

����(�, �) are deduced, hence ����(�, �) absorbed 
in each layer can be calculated. 
 
The specific absorption rate, SAR, being 
dependent on the electric field root mean 

squared value, ����, is averaged over any 
thickness Δx as: 

                        

  ���(�) =
�

Δ�
∫

�(�)

�
����

� (�, �)
��

�
��             (12)  

 
The frequency dependence of the SAR function 
is thus complicated, considering the frequency 
dependence the electromagnetic properties 
involved.  
 

3. RESULTS 

  
A double layer of bone section, 3 mm thickness 
each, with a 5mm marrow layer in between, is 
subjected to incident electromagnetic waves. 
Horizontally polarized incident fields are 
assumed to be incident on a unit area of the 
section. Considerable biological tissues are 
assumed to be homogeneous. The root mean 
square of the phas or addition of the transmitted 
and the reflected electric fields is calculated for 
each layer as in Eq.11. The mathematical model 
is applied to illustrate the SAR variation with 
frequency. In addition to this, the relation 
between the SAR and the incident electric field 
strength, E0, for a wide frequency spectrum is 

represented. The spatial distribution of the SAR 
function, through the successive layers, is then 
calculated and represented as well. The 
electromagnetic parameters are actually reported 
data for cortical bone and marrow. The model 
applied depends greatly on the frequency 
dependent media parameters reported by 
references [21-24]. A horizontally polarized plane 
wave is assumed to be normally incident on a 
1mm2 surface of the bone-marrow-bone layers. 
The SAR function, due to the horizontally 
polarized electric field with normal incidence, is 
calculated. Figs. (1-a,1-b) illustrate the rise of 
SAR function, in log scale, versus the frequency 
in log scale as well, for different electric field 
strengths for both bone and marrow layers.   
Figs. (2-a,2-b) represent the spatial distribution of 
the SAR function across the bone- marrow-bone 
section. These figures show the change of 
pattern for 1 kHZ and 1 GHz.                                

   

   

The bone thickness, in the range (0.1 mm- 5 
mm), does not affect the SAR value. Fig. (3) 
illustrates the rise of SAR function, in log scale, 
versus the incident electric field strength, E0 in 
V/m, plotted at 1 kHz, 10 MHz and 1 GHz. 

 

For oblique incidence, Figs. (4-a,4-b) illustrate 
the rise of SAR function, in log scale, versus the 
frequency in log scale as well, for different 
electric field strengths for both bone and bone 
marrow layers. The SAR values are calculated 
due to horizontally polarized electric field incident 
at an angle of incidence 30°. 

  

  



 

Fig.

Fig. 1

Fig. 2-a. log(SAR) vs depth (m) for bone
values of vertically polarized  electric field 
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Fig. 1-a. log(SAR) vs log(f) for bone  

 

 
1-b. log(SAR) vs log(f) for marrow  

 

 
log(SAR) vs depth (m) for bone-marrow-bone layers calculated at 1kHz and different 

values of vertically polarized  electric field strengths 
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bone layers calculated at 1kHz and different 
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Fig. 2-b. log(SAR) vs depth (m) for bone
values of vertically polarized  electric field 

Fig. 3. log(SAR) vs E

Fig. 4-a. log(SAR) vs log(f) for bone calculated for different values of electric field strenghs 
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log(SAR) vs depth (m) for bone-marrow-bone layers calculated at 1GHz and different 
vertically polarized  electric field strengths   

 

 

log(SAR) vs E0 (V/m) calculated  for different frequencies  
 

 
log(SAR) vs log(f) for bone calculated for different values of electric field strenghs 

with oblique incidence θ=30⁰ 
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Fig. 4-b. log(SAR) vs log(f) for bone marrow calculated for different values of electric field 
strengths with oblique incidence θ=30⁰ 

 
4. DISCUSSION AND CONCLUSION 
 
Electromagnetic interactions with biological 
tissue present a potential source of controversy. 
This concerns not only the possible effects on 
health but also the mechanism leading to these 
effects. It is not well established whether this 
effect is thermal, caused by high frequency 
vibrations of the molecules, or non-thermal that 
could cause serious disturbance on the cell 
membrane or even the DNA. Zhong et al. [12] 
reported the harmful effects of low intensity 
electromagnetic field (0.5 mT, 50 Hz), on bone 
marrow, increasing cell proliferation and inducing 
cell differentiation. While, Prisco et al. [13] 
investigated the effects of GSM-modulated 
radiofrequency electromagnetic waves on bone 
marrow.  
 
For mobile phones and their networks, FCC 
proposes SAR international standards, not 
exceeding 0.04 W/kg [25]. Harmonization of 
ICNIRP and IEEE has been established between 
their standard limits. Their latest reports have 
restricted the safe SAR limits of the whole-body 
exposure to 0.4 W/kg and the partial body 
exposure to 10 W/kg for occupational exposure. 
For public exposure, SAR limitation for the whole 
body is 0.08 W/kg and for the partial body is 2 
W/kg [9,10,26,27]. European standards limit the 
maximum public exposure level to 1.6 W/kg [7]. 
 
The present work proposes a methodology 
based on mathematical formulation of EMF 
penetration through bone. It complements the 
SAR values resulting from other phantom and 

mathematical modeling [12-13]. This 
methodology is suitable for studying other 
complicated tissues, however the author was 
interested in obtaining the SAR values absorbed 
by bone and bone marrow. 
 
According the current results, the 
electromagnetic radiation of frequency values 
ranging 1MHz-10 MHz are within the safety limits 
for all applied field strengths. These data also 
show that for the 1GHz frequency, SAR values 
are higher than permissible ranges for field 
strengths above 400 V/m whereas the same 
occurs for a low frequency range at 100 V/m. 
Moreover, the present results are in agreement 
with international safety standards for applied 
filed strengths till 10 V/m for bone and till 100 
V/m for bone marrow, covering the applied 
frequencies (1 kHz -1 GHz). Except for exposure 
to electric field of strength higher than 100 V/m, 
the SAR acquired by the bone marrow is within 
the safety levels. Furthermore when oblique 
incidence is applied the SAR values are higher 
than with normal incidence case, especially for 
low frequency (1 kHz). 
 
On the other hand, some limitations of the 
present method ought to be mentioned; firstly the 
direction of propagation being taken very specific 
while in real cases the field is spatially random. 
Moreover, the present approach is only 
applicable to far field exposure. This is the 
common case for public exposure to different 
sources of radiation. Secondly, not only the 
reported physical properties of bone and bone 
marrow are very scarce, but their actual 
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dimensions vary considerably with sex, age and 
state of health. Despite the fact that at low 
frequency range, international standardization 
takes into account the current density instead of 
SAR, the results presented in this paper extend 
the SAR calculation to any frequencies. The 
present work has no previous parallel as most of 
the researchers did not examine experimentally 
the absorption of EMF due to the extreme 
difficulties to perform non -destructive tests in 
vivo or even in vitro. Moreover, numerical 
methods, employed using computer simulators to 
analyse EMF interaction with human body 
phantom, are usually investigating fields due to 
antennae either placed close to or implanted 
inside it. Hence producing data that could be 
applicable for directive near field regions. 
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