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Abstract: Let G = (V, E) be a simple connected undirected graph. In this paper, we define generalized the
Liouville’s and Möbius functions of a graph G which are the sum of Liouville λ and Möbius µ functions of
the degree of the vertices of a graph denoted by Λ(G) = ∑

v∈V(G)
λ(deg(v)) and M(G) = ∑

v∈V(G)
µ(deg(v)),

respectively. We also determine the Liouville’s and Möbius functions of some standard graphs as well as
determining the relationships between the two functions with their proofs. The sum of generalized the
Liouville and Möbius functions extending over the divisor d of degree of vertices of graphs is also given.
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1. Introduction

T he Liouville and Möbius functions arise and play an important role in various places in number theory
which are denoted by λ and µ, respectively. The Liouville λ-function is defined as:

λ(n) =

{
1 if n = 1;

(−1)a1+...+ak if n = p1
a1 p2

a2 . . . pk
ak .

For instance, since 8 = 23, thus λ(8) = (−1)3 = −1 [1]. The Möbius µ-function f : N → {−1, 0, 1} is
defined as:

µ(n) =


1 if n = 1;

(−1)t if n = p1 p2 . . . pt where the pi are distinct primes;

0 otherwise.

For example, since there are two distinct primes in factorizing 10 = 2 ∗ 5, therefore, µ(10) = (−1)2. Also,
there are no distinct primes in 9 = 32, hence, µ(9) = 0 [1]. A function f is said to be multiplicative if for all
positive integers m, n such thatm, n are relatively primes, then f (mn) = f (m) f (n) [2]. A function f is said to
be completely multiplicative if for all positive integers m, n, we have f (mn) = f (m) f (n) [3]. The Liouville’s
λ-function is an important example of a completely multiplicative function [3], whereas, the Möbius µ-function
is multiplicative [2]. Salih and Ibrahim in [4] defined the generalized Euler’s Φ-function of a graph which is
summation of the Euler’s Φ-function of degree of the vertices of a graph and it is denoted by Φ(G). The
general form of Euler’s Φ-function of some standard graphs is known. For all other standard terminologies
and notations we follow [5–10].

In this paper, we utilize two number theory functions called the Liouville’s λ-function and the Möbius
µ-function into graph theory in order to define new functions called the generalized Liouville’s Λ-function
Λ(G) and the generalized Möbius M-function M(G) of a graph G, which are defined as the sum of the
Liouville’s λ-function and the Möbius µ-function of the degree of vertices of a graph G, respectively. In
addition, the generalized Liouville’s and Möbius functions of some standard graphs are determined along
with determining the relationships between the two functions.
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2. Generalized the Liouville’s and Möbius Functions of Some Standard Graphs

In this section, the generalized Liouville’s and Möbius functions of some important graphs which are the
path graph Pn, cycle graph Cn, complete graph Kn, complete bipartite graph K(m,n), k-partite graph K(m1,m2,mn),
star graph Sn, and wheel graph Wn are determined.

Definition 1. Let G be a simple connected graph. The generalized Liouville,s Λ-function is defined as the sum
of the Liouville λ-function of the degree of vertices v of a graph G which is denoted by Λ(G). That is

Λ(G) = ∑
v∈V(G)

λ(deg(v)).

Definition 2. Let G be a simple connected graph. The generalized Möbius M-function is defined as the sum
of the Möbius µ-function of the degree of vertices v of a graph G which is denoted by M(G). That is

M(G) = ∑
v∈V(G)

µ(deg(v)).

In the following propositions, we determine general form and exact values of the generalized Liouville
Λ-function and the generalized Möbius µ-function of some standard graphs.

Proposition 1. 1. The generalized Liouville Λ-function of the path graph G = Pn, for n ≥ 2 vertices, is Λ(Pn) =

4− n.
2. The generalized Liouville Λ-function of the cycle graph G = Cn, for n ≥ 3 vertices, is Λ(Cn) = −n.
3. The generalized Liouville Λ-function of the complete graph G = Kn, for n ≥ 3 vertices, is Λ(Kn) = nλ(n− 1) =

n(−1)a1+a2+···+ak , where (n− 1) = p1
a1 p2

a2 . . . pk
ak .

4. The generalized Liouville Λ-function of the complete bipartite graph G = Km,n, for any positive integers m, n
vertices, is Λ(Km,n) = (m ∗ λ(n)) + (n ∗ λ(m)) = (m ∗ (−1)a1+a2+···+ak ) + (n ∗ (−1)b1+b2+···+bj), where
m = p1

a1 p2
a2 . . . pk

ak and n = q1
b1 q2

b2 . . . qj
bj .

5. The generalized Liouville Λ-function of the star graph G = Sn, for n ≥ 2 vertices, is Λ(Sn) = λ(n− 1) + (n−
1) = (−1)a1+a2+···+ak + (n− 1), where (n− 1) = p1

a1 p2
a2 . . . pk

ak .
6. The generalized Liouville Λ-function of the k-partite graph G = Km1,m2,...,mn , for any positive integers

m1, m2, . . . , mn vertices, is Λ(Km1,m2,...,mn) =
n
∑

i=1

(
mi ∗ λ

(
∑

j 6=i, j=1,2,...n
mj

))
=

n
∑

i=1
(mi ∗ (−1)a1+a2+···+ak ) ,

where

(
∑

j=1,2,...n
mj = p1

a1 p2
a2 . . . pk

ak

)
.

7. The generalized Liouville Λ-function of the Wheel graph G = Wn, for n ≥ 4 vertices, is Λ(Wn) = (1− n) +
λ(n− 1) = (1− n) + (−1)a1+a2+···+ak , where (n− 1) = p1

a1 p2
a2 . . . pk

ak .

Proof. 1. In the path graph Pn of order n, if n = 2, we have two vertices of degree one, then we have
Λ(P2) = λ(1) + λ(1) = 2. If n ≥ 3, we have two vertices of degree one and n− 2 vertices of degree two,
then we have:

Λ(P3) = 2λ(1) + λ(2) = 1;
Λ(P4) = 2λ(1) + 2λ(2) = 0;

Λ(P5) = 2λ(1) + 3λ(2) = −1;
...

Λ(Pn) = 2λ(1) + (n− 2)λ(2) = 4− n.

2. There are n vertices of degree two in a cycle graph Cn of order n, hence we have:

Λ(Cn) = ∑
v∈V(Cn)

λ(deg(v)) = λ(deg(v1)) + λ(deg(v2)) + · · ·+ λ(deg(vn)) = nλ(2) = −n.

3. There are n vertices of degree n− 1 in a complete graph Kn of order n, hence we have:

Λ(Kn) = ∑
v∈V(Kn)

λ(deg(v)) = λ(deg(v1)) + λ(deg(v2)) + · · ·+ λ(deg(vn))

= nλ(n− 1) = n ∗ (−1)a1+a2+···+ak , where (n− 1) = p1
a1 p2

a2 . . . pk
ak .
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4. There are m vertices of degree n and n vertices of degree m in a complete bipartite graph Km,n of order
m + n, hence we have:

Λ(Km,n) = ∑
v∈V(Km,n)

λ(deg(v))

= λ(deg(u1)) + λ(deg(u2)) + · · ·+ λ(deg(um)) + λ(deg(v1)) + λ(deg(v2)) + · · ·+ λ(deg(vn))

= λ(n) + λ(n) + · · ·+ λ(n) + λ(m) + λ(m) + · · ·+ λ(m)

= (m ∗ λ(n)) + (n ∗ λ(m))

= (m ∗ (−1)a1+a2+···+ak ) + (n ∗ (−1)b1+b2+···+bj),

where m = p1
a1 p2

a2 . . . pk
ak and n = q1

b1 q2
b2 . . . qj

bj

5. There are n− 1 vertices of degree one and there is one vertex of degree n− 1, say v1, in a star graph Sn

of order n, hence we have:

Λ(Sn) = ∑
v∈V(Sn)

λ(deg(v))

= λ(deg(v1)) + λ(deg(v2)) + · · ·+ λ(deg(vn))

= λ(n− 1) + (n− 1)λ(1)

= (−1)a1+a2+···+ak + n− 1, where (n− 1) = p1
a1 p2

a2 . . . pk
ak .

6. There are mi vertices of degree ∑
j 6=i

mj where j, i = 1, 2, . . . , n in a complete k-partite graph Km1,m2,...,mn of

order m1 + m2 + · · ·+ mn, hence we have:

Λ(Km1,m2,...,mn) = ∑
v∈V(Km1,m2,...,mn )

λ(deg(v))

= λ(deg(v1)) + λ(deg(v2)) + · · ·+ λ(deg(vn))

= (m1 ∗ λ(m2 + m3 + · · ·+ mn)) + (m2 ∗ λ(m1 + m3 + · · ·+ mn)) + . . .

+ (mn ∗ λ(m1 + m2 + · · ·+ mn−1))

=
n

∑
i=1

(
mi ∗ λ

(
∑

j 6=i, j=1,2,...n
mj

))

=
n

∑
i=1

(
mi ∗ (−1)a1+a2+···+ak

)
where ∑

j=1,2,...n
mj = p1

a1 p2
a2 . . . pk

ak .

7. There are n− 1 vertices of degree three and we have one vertex of degree n− 1, say v1, in a wheel graph
Wn of order n, hence we have:

Λ(Wn) = ∑
v∈V(Wn)

λ(deg(v))

= λ(deg(v1)) + λ(deg(v2)) + · · ·+ λ(deg(vn))

= λ(n− 1) + (n− 1)λ(3) = (−1)a1+a2+···+ak − n− 1,

where (n− 1) = p1
a1 p2

a2 . . . pk
ak .

Proposition 2. 1. The generalized Möbius M-function of the path graph G = Pn, for n ≥ 2 vertices, is M(Pn) =

4− n.
2. The generalized Möbius M-function of the cycle graph G = Cn, for n ≥ 3 vertices, is M(Cn) = −n.
3. The generalized Möbius M-function of the complete graph G = Kn, for n ≥ 3 vertices, is

M(Kn) = nµ(n− 1) =


n if n = 2

n ∗ (−1)k if (n− 1) = p1 p2 . . . pk,

0 otherwise
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where (n− 1) = p1
a1 p2

a2 . . . pk
ak .

4. The generalized Möbius M-function of the complete bipartite graph G = Km,n, for any positive integers m, n
vertices, is

M(Km,n) = (m ∗ µ(n)) + (n ∗ µ(m))

=


m i f n = 1

m ∗ (−1)k i f n = p1 p2 . . . pk,

0 otherwise

+


n i f m = 1

n ∗ (−1)j i f m = p1 p2 . . . pj,

0 otherwise

where m = p1
a1 p2

a2 . . . pk
ak and n = q1

b1 q2
b2 . . . qj

bj .
5. The generalized Möbius M-function of the star graph G = Sn, for n ≥ 2 vertices, is

M(Sn) = (n− 1) + µ(n− 1) = (n− 1) +


1 i f n = 1

(−1)k i f (n− 1) = p1 p2 . . . pk,

0 otherwise
where (n− 1) = p1

a1 p2
a2 . . . pk

ak .
6. The generalized Möbius M-function of the k-partite graph G = Km1,m2,...,mn , for any positive integers

m1, m2, . . . , mn vertices, is

M(Km1,m2,...,mn) =
n

∑
i=1

(
mi ∗ µ

(
∑

j 6=i, j=1,2,...n
mj

))

=

m1 ∗ (−1)k i f ∑
j 6=1, j=1,2,...n

mj = p1 p2 . . . pk

0 otherwise

=

m2 ∗ (−1)t i f ∑
j 6=2, j=1,2,...n

mj = p1 p2 . . . pt

0 otherwise

+

mn ∗ (−1)r i f ∑
j 6=n, j=1,2,...n

mj = p1 p2 . . . pt

0 otherwise

where ∑
j=1,2,...n

mj = p1
a1 p2

a2 . . . pk
ak .

7. The generalized Möbius M-function of the Wheel graph G = Wn, for n ≥ 4 vertices, is

M(Wn) = (1− n) + µ(n− 1) = (1− n) +

{
(−1)k i f (n− 1) = p1, p2, . . . , pk

0 otherwise,
,

where (n− 1) = p1
a1 p2

a2 . . . pk
ak .

Proof. The proof is similar to the Proposition 1.

3. Summing up generalized the Liouville Λ-function and generalized the Möbius M-function
over the divisor d and their proofs

In this section, we give some new results of finding the sum of the generalized Liouville Λ-function and
the generalized tMöbius M-function extending over the divisor d which are the sum of the Liouville λ-function
and the Möbius µ-function of the divisor of degree of vertices of the above standard graphs.

Theorem 1. For all v ∈ V(G), deg(v) ≥ 1, and Λd refers to the generalized Liouville Λ-function over the divisor d of
deg(v), we have

1. ∑
v∈V(Pn), d|deg(v)

Λd(Pn) = ∑
v∈V(Pn)

∑
d|deg(v)

λ(d) = 2.

2. ∑
v∈V(Cn), d|deg(v)

Λd(Cn) = ∑
v∈V(Cn)

∑
d|deg(v)

λ(d) = 0.

3. ∑
v∈V(Kn), d|deg(v)

Λd(Kn) = ∑
v∈V(Kn)

∑
d|deg(v)

λ(d) =

{
n i f (n− 1) is square;

0 otherwise.
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4. ∑
v∈V(Km,n), d|deg(v)

Λd(Km,n) = ∑
v∈V(Km,n)

∑
d|deg(v)

λ(d) =



{
m + n i f n is a square

n otherwise
i f m is a square;{

m i f n is a square

0 otherwise
otherwise.

5. ∑
v∈V(Sn), d|deg(v)

Λd(Sn) = ∑
v∈V(Sn)

∑
d|deg(v)

λ(d) =

{
n i f (n− 1) is square;

(n− 1) otherwise.

6. ∑
v∈V(Wn), d|deg(v)

Λd(Wn) = ∑
v∈V(Wn)

∑
d|deg(v)

λ(d) =

{
1 i f (n− 1) is square;

0 otherwise.
7. ∑

v∈V(Km1,m2,...,mn ), d|deg(v)
Λd(Km1,m2,...,mn) = ∑

v∈V(Km1,m2,...,mn )
∑

d|deg(v)
λ(d) =

m1 i f ∑
j=1,2,...,n, j 6=1

mj is square;

m2 i f ∑
j=1,2,...,n, j 6=2

mj is square;

...

mn i f ∑
j=1,2,...,n, j 6=n

mj is square;

m1 + m2 i f ∑
j=1,2,...,n, j 6=1

mj and ∑
j=1,2,...,n, j 6=2

mj are square;

...

m1 + mn i f ∑
j=1,2,...,n, j 6=1

mj and ∑
j=1,2,...,n, j 6=n

mj are square;

m2 + m3 i f ∑
j=1,2,...,n, j 6=2

mj and ∑
j=1,2,...,n, j 6=3

mj are square;

...

mn−1 + mn i f ∑
j=1,2,...,n, j 6=n−1

mj and ∑
j=1,2,...,n, j 6=n

mj are square;

m1 + m2 + m3 i f ∑
j=1,2,...,n, j 6=1

mj, ∑
j=1,2,...,n, j 6=2

mj and ∑
j=1,2,...,n, j 6=3

mj are square;

...

m1 + m2 + mn i f ∑
j=1,2,...,n, j 6=1

mj, ∑
j=1,2,...,n, j 6=2

mj and ∑
j=1,2,...,n, j 6=n

mj are square;

m1 + m3 + m4 i f ∑
j=1,2,...,n, j 6=1

mj, ∑
j=1,2,...,n, j 6=3

mj and ∑
j=1,2,...,n, j 6=4

mj are square;

...

m1 + m3 + mn i f ∑
j=1,2,...,n, j 6=1

mj, ∑
j=1,2,...,n, j 6=3

mj and ∑
j=1,2,...,n, j 6=n

mj are square;

m2 + m3 + m4 i f ∑
j=1,2,...,n, j 6=2

mj, ∑
j=1,2,...,n, j 6=3

mj and ∑
j=1,2,...,n, j 6=4

mj are square;

...

m2 + m3 + mn i f ∑
j=1,2,...,n, j 6=2

mj, ∑
j=1,2,...,n, j 6=3

mj and ∑
j=1,2,...,n, j 6=n

mj are square;

...

m2 + mn−1 + mn i f ∑
j=1,2,...,n, j 6=2

mj, ∑
j=1,2,...,n, j 6=n−1

mj and ∑
j=1,2,...,n, j 6=n

mj are square;

...

mn−2 + mn−1 + mn i f ∑
j=1,2,...,n, j 6=n−2

mj, ∑
j=1,2,...,n, j 6=n−1

mj and ∑
j=1,2,...,n, j 6=n

mj are square;

...

m1 + m2 + · · ·+ mn i f ∑
j=1,2,...,n, j 6=1

mj, ∑
j=1,2,...,n, j 6=2

mj, . . . , ∑
j=1,2,...,n, j 6=n

mj are square;

0 otherwise.

.
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Proof. 1. There are two vertices of degree 1 and (n− 2) vertices of degree 2 in a path graph (Pn):

∑
v∈V(Pn), d|deg(v)

Λd(Pn) = ∑
v∈V(Pn)

∑
d|deg(v)

λ(d)

= 2 ∗∑
d|1

λ(d) + (n− 2) ∗∑
d|2

λ(d)

= 2 ∗ λ(1) + (n− 2) ∗ (λ(1) + λ(2)) = 2.

2. There are n vertices of degree 2 in a cycle graph (Cn):

∑
v∈V(Cn), d|deg(v)

Λd(Cn) = ∑
v∈V(Cn)

∑
d|deg(v)

λ(d)

= n ∗∑
d|2

λ(d)

= n ∗ (λ(1) + λ(2)) = 0.

3. There are n vertices of degree (n− 1) in a complete graph Kn:

∑
v∈V(Kn), d|deg(v)

Λd(Kn) = ∑
v∈V(Kn)

∑
d|deg(v)

λ(d) = n ∗ ∑
d|(n−1)

λ(d).

When (n− 1) ≥ 3 is a square and by the fact that any square number has odd number of divisors and
hence we always have the term λ(n− 1) at the end of the sum which is equal to 1 and all the others by
the definition of Liouvile λ-function are canceled. Thus

∑
v∈V(Kn), d|deg(v)

Λd(Kn) = ∑
v∈V(Kn)

∑
d|deg(v)

λ(d) = n ∗ λ(n− 1) = n.

When (n− 1) ≥ 3 is not a square. There are two cases:
Case 1: If deg(v) is a prime (p), then the divisors are only 1 and p and hence λ(1) = 1 and λ(p) = −1.
Thus

∑
v∈V(Kn), d|p

Λd(Kn) = ∑
v∈V(Kn)

∑
d|p

λ(d) = n ∗ (λ(1) + λ(p)) = 0.

Case 2: If deg(v) is not a prime, then there are always even number of divisors of deg(v) and they are
always canceled with one another by the definition of Liouvile λ-function and we obtain that

∑
v∈V(Kn), d|deg(v)

Λd(Kn) = ∑
v∈V(Kn)

∑
d|deg(v)

λ(d) = n ∗ (0) = 0.

4. There are m vertices of degree n and n vertices of degree m in a complete bipartite graph Km,n:

∑
v∈V(Km,n), d|deg(v)

Λd(Km,n) = ∑
v∈V(Km,n)

∑
d|deg(v)

λ(d)

= n ∗

∑
d|m

λ(d)

+ m ∗

∑
d|n

λ(d)

 .

We denote

(
∑

d|m
λ(d)

)
= S1 and

(
∑
d|n

λ(d)

)
= S2.

When m is square. There are two cases:
Case 1: If n is a square. By the fact that any square number has odd number of divisors and hence we
always have the term (λ(m) = 1) and (λ(n) = 1) left in S1 and S2 respectively and all the other terms in
S1 and S2 are canceled by the definition of Liouville λ-function, i.e.,

∑
v∈V(Km,n), d|deg(v)

Λd(Km,n) = ∑
v∈V(Km,n)

∑
d|deg(v)

λ(d)

= n ∗ λ(m) + m ∗ λ(n) = n + m.
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Case 2: If n is not a square, then all the terms in S2 are canceled by the definition of Liouville λ-function
because there are always even number of divisors of n in S2. Since m is a square, then (λ(m) = 1) is the
only term left in S1. Hence,

∑
v∈V(Km,n), d|deg(v)

Λd(Km,n) = ∑
v∈V(Km,n)

∑
d|deg(v)

λ(d)

= n ∗ λ(m) + 0 = n.

From the above two cases when m is a square, we obtain that

∑
v∈V(Km,n), d|deg(v)

Λd(Km,n) = ∑
v∈V(Km,n)

∑
d|deg(v)

λ(d)

=

{
m + n if n is a square;

n otherwise.
.

When m is not a square. There are also two cases:
Case 1: If n is a square, then (λ(n) = 1) is the only term left in S2. Since m is not a square, so all the terms
in S1 are canceled and thus S1 = 0. Hence,

∑
v∈V(Km,n), d|deg(v)

Λd(Km,n) = ∑
v∈V(Km,n)

∑
d|deg(v)

λ(d)

= n ∗ (0) + m ∗ (λ(n)) = m.

Case 2: If n is not a square and since m is also not a square, then all the terms in S1 and S2 are canceled
and hence S1 = S2 = 0. Thus

∑
v∈V(Km,n), d|deg(v)

Λd(Km,n) = ∑
v∈V(Km,n)

∑
d|deg(v)

λ(d)

= n ∗ (0) + m ∗ (0) = 0.

From the two cases above when m is not a square, we obtain that

∑
v∈V(Km,n), d|deg(v)

Λd(Km,n) = ∑
v∈V(Km,n)

∑
d|deg(v)

λ(d)

=

{
m if n is a square;

0 otherwise.
.

From all the above investigation for all m and n, (4) has been proved.
5. The proof follows from (4) by the fact that Sn = K1,n−1.
6. There are (n− 1) vertices of degree 3 and one vertex of degree (n− 1), say v1, then

∑
v∈V(Wn), d|deg(v)

Λd(Wn) = ∑
v∈V(Wn)

∑
d|deg(v)

λ(d)

= (n− 1) ∗∑
d|3

λ(d) + ∑
d|(n−1)

λ(d)

= (n− 1) ∗ (0) + ∑
d|(n−1)

λ(d)

= ∑
d|(n−1)

λ(d) = S.

In order to prove S, there are two cases:
Case 1: If (n− 1) is square and by the fact that any square number has odd number of divisors, the term
λ(n− 1) = 1 is always left in S, i.e.,

S = ∑
d|(n−1)

λ(d) = λ(n− 1) = 1.
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Case 2: If (n− 1) is not square, then there are always even number of divisors in S and by the definition
of the Liouville λ-function, all the terms in S are canceled with one another. Thus

S = ∑
d|(n−1)

λ(d) = 0.

From the two cases above, we obtain that

∑
v∈V(Wn), d|deg(v)

Λd(Wn) = ∑
v∈V(Wn)

∑
d|deg(v)

λ(d)

=

{
1 if (n− 1) is a square;

0 otherwise.
.

7. The proof follows from (4) as it is a special case of (7).

Theorem 2. For all v ∈ V(G), deg(v) ≥ 1, and Md refers to the generalized Möbius M-function over the divisor d of
deg(v), we have

1. ∑
v∈V(Pn), d|deg(v)

Md(Pn) = ∑
v∈V(Pn)

∑
d|deg(v)

µ(d) = 2.

2. ∑
v∈V(Cn), d|deg(v)

Md(Cn) = ∑
v∈V(Cn)

∑
d|deg(v)

µ(d) = 0.

3. ∑
v∈V(Kn), d|deg(v)

Md(Kn) = ∑
v∈V(Kn)

∑
d|deg(v)

µ(d) = 0.

4. ∑
v∈V(Km,n), d|deg(v)

Md(Km,n) = ∑
v∈V(Km,n)

∑
d|deg(v)

µ(d) =


m if n = 1;

2 if m = n = 1;

0 otherwise.

5. ∑
v∈V(Sn), d|deg(v)

Md(Sn) = ∑
v∈V(Sn)

∑
d|deg(v)

µ(d) =

{
2 if n = 2;

n− 1 otherwise.
6. ∑

v∈V(Wn), d|deg(v)
Md(Wn) = ∑

v∈V(Wn)
∑

d|deg(v)
µ(d) = 0.

7. ∑
v∈V(Km1,m2,...,mn ),d|deg(v)

Md(Km1,m2,...,mn) = ∑
v∈V(Km1,m2,...,mn )

∑
d|deg(v)

µ(d) = 0, where n ≥ 3.

Proof. The proof is similar to the Theorem 1.

4. Relationships between the generalized Liouville Λ-function and Möbius M-function

In this section, some relationships between generalized the Liouville and Möbius functions are
determined.

Theorem 3. For all v ∈ V(G), deg(v) ≥ 1, we have

Λ(G) = ∑
v∈V(G)

λ(deg(v)) = ∑
v∈V(G)

∑
d2|deg(v)

µ

(
deg(v)

d2

)
= ∑

v∈V(G)
∑

deg(v)=d2m
µ(m).

Proof. There is only one nonzero term in the sum, as µ
(

deg(v)
d2

)
= 0 except when

(
deg(v)

d2

)
is the product of

distinct primes. Let deg(v) = p1
a1 p2

a2 . . . pk
ak . If the odd a,

is as ai1 , ai2 , . . . , aij are listed. Then
(

deg(v)
d2

)
=

pi1 pi2 . . . pij is the nonzero term. When j is even, then µ(pi1 pi2 . . . pij) = 1, and when j is odd, then
µ(pi1 pi2 . . . pij) = −1. Therefore, for every v ∈ V(G), we have λ(deg(v)) = (−1)a1+a2+···+ak = (−1)j. Thus the
theorem is proved.

Theorem 4. For all v ∈ V(G), deg(v) ≥ 1, we have

M(G) = ∑
v∈V(G)

µ(deg(v)) = ∑
v∈V(G)

∑
d2|deg(v)

µ(d) ∗ λ

(
deg(v)

d2

)
= ∑

v∈V(G)
∑

deg(v)=d2m
µ(d) ∗ λ(m).
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Proof. The prove follows from the Theorem 3.

Corollary 1. For any vertices v ∈ V(G) such that deg(v) = p1 p2 . . . pk, where pi is distinct for all i = 1, 2, . . . , k,
we have λ(deg(v)) = µ(deg(v)) = µ2(deg(v))(−1)ω(deg(v)), where ω(deg(v)) is the number of distinct primes of
deg(v).

Proof. The proof is straightforward as λ and µ are multiplicative functions and deg(v) is the product of distinct
primes.
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