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ABSTRACT 
 
The nature of input relationships has important consequences for regulatory policies since the 
impact of rate-of-return regulation depends on the extent of substitution that is offered by production 
technologies which are adopted by regulated firms. The use of classical regression analysis had 
been criticized for various reasons, such as the linearity of regression functions in predictors, the 
fixed-variance premise of the response across sample observations, the i.i.d. postulation of the 
random error terms in addition to their normal distribution, and non-complying data in real cases. 
Instead, earlier research suggested the use of Generalized Additive Models (GAMs) that don’t have 
the aforementioned problems. Nevertheless, in the presence of complex covariate effects among 
data series, the use of Generalized Additive Mixed Models (GAMMs) is recommended. A GAMM is 
a non-ad hoc generalization of a Generalized Linear Mixed Model (GLMM) except that an additive 
unknown combination of nonparametric functions of covariates and random effects replace the 
predetermined linear predictor in the GLMM. We develop a nonparametric cost function using 
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GAMMs. First, we estimate the model parameters using general spline smoothing techniques. 
Second, we apply residual deviance analysis to test the separability and complementarity between 
inputs. We use an unbalanced panel of operating data from the regulated Canadian cable television 
(CATV) firms from 1990 to 1996. This period is of particular interest to policymakers because the 
Canadian CATV was a rate- and entry-regulated industry prior to 1997.    
 

 
Keywords: Generalized additive mixed models; generalized additive models; spline smoothing; input 

separability; Canadian cable television industry.   
 
JEL Codes: C13, C14, L51. 
 
1. INTRODUCTION 
 
One of the most challenges that researchers face 
in applied microeconomics is to identify the 
nature of substitutability or complementarity 
amongst inputs used in the production process. 
For instance, in a noncompetitive market 
structure the knowledge of input substitutability 
provides sufficient incentives for producers to 
integrate with their customers [1]. However, the 
outcome of this integration will entirely depend 
on the type of market structure. For example, in a 
monopoly condition, it is unknown whether such 
integration increases the industry output or 
reduces the total production. An important 
concept in production theory is output elasticity 
which is defined as the percentage change of 
output divided by the percentage of an input 
when input prices are held constant [2]. It is 
important for researchers to know how sensitive 
total production is with respect to a change in   
the input prices. When inputs are perfect 
complements, all variable inputs are output 
elastic [3]. This means that for a given level of 
output, marginal cost will raise in a rate more 
than average cost for an increase in input prices. 
Moreover, previous studies showed that 
complementarity characteristics of factors of 
production could help downstream firms 
purchase intermediate goods from various 
wholesale markets to make their final products 
[4]. One of the industries that gain from using 
complement inputs is the information and 
communication technology sector where 
knowledge-based inputs are used in combination 
with each other. The supermarket industry is 
another example that offer bundle products to 
reduce its customers’ acquisition costs. As a 
result, testing relationships among inputs can 
have particular policy relevance for many 
industries including the CATV industry because 
the rate of return regulation can take different 
forms [5]. This challenge becomes much bigger 
when classical regression analysis is used to 
estimate parameters of the production/cost 

function in econometric models. It has been a 
general consensus among practitioners for a 
long time that classical regression analysis has 
been estimating the parameters of regression 
functions in applied studies. In spite of being 
widely used, this method of analysis is not with 
major drawbacks. Classical regression analysis 
had been criticizing for various reasons, such as 
the linearity of regression functions in predictors, 
the fixed-variance premise of the response 
across sample observations, the i.i.d. postulation 
of the random error terms in addition to their 
normal distribution, and uncomplying data in real 
cases, which might lead to lose the validity of 
these types of models [6]. Alternatively, 
precedent studies suggested the use of GAMs, 
proposed by [7] that don’t have the 
aforementioned problems. The use of GAMs is 
not recommended in the presence of complex 
covariate effects among data series. Instead, 
under these circumstances literature suggests a 
broader methodology, known as GAMMs, 
proposed by [8], which is a non-ad hoc extension 
of GLMMs except that an additive unknown 
combination of nonparametric functions of 
covariates and random effects replace the 
predetermined linear predictor in GLMM. A 
GAMM encompasses GLMMs and GAMs as 
special cases.  
 
To our knowledge no studies are available in the 
literature to examine input relationships in the 
Canadian CATV industry where the correlation 
among covariates is predicted. In this paper, we 
use the theory of GAMMs and develop a 
nonparametric cost function to test input 
separability amongst factors of production used 
in the model. First, we estimate the GAMM 
model parameters using general spline 
smoothing techniques. Second, we apply the 
residual deviance analysis [9] to test either 
substitutability or complementarity amongst the 
factors of production. To do this, we utilize an 
unbalanced panel of operating data collected 
from regulated CATV firms between 1990 and 
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1996. This period is of particular interest to 
policymakers because the Canadian CATV was 
a rate- and entry-regulated industry prior to 1997.  
 
The rest of the paper is organized as follows. 
Section 2 briefly presents a theoretical aspect of 
GAMMs and demonstrates the residual deviance 
statistic test used to examine relationships 
amongst input used in the model. Section 3 
provides the empirical results and the final 
section concludes the study and outlines 
directions for further research. 
 

2. GENERALIZED ADDITIVE MIXED 
MOELS  

 
2.1 Model Specification  
 
Generalized Additive Mixed Models (GAMMs) 
are nonparametric extensions of GLMMs of [10]. 
A GLMM is an extension of a Generalized Linear 
Model [11] in which covariate effects are 
modeled by a parametric mean function through 
inclusion of random effects to the linear predictor 
to estimate the parameters of the econometric 
model with overdispersed and correlated 
outcomes. Generalized Linear Mixed Models 
have been used widely in different fields, 
including clinical trials and disease mapping, 
longitudinal studies, survey sampling, fisheries 
and aquaculture, etc. [8,10,12,13]. The use of 
GLMM, however, is not without drawbacks. The 
shortcoming of GLMMs relates to the 
prespecified functional form of the mean 
parametric function that is used to model 
covariate effects. The knowledge of the true 
functional form is always unknown to researches, 
and, as a result, the outcome variable would be 
varied had different functional forms been 
selected. To circumvent the aforementioned 
problem, GAMMS was proposed by [8], which 
are basically nonparametric regression models 
with an unspecified nonparametric mean function 
that can be incorporated into GLMMs to provide 
more flexibility and mitigate the dependency of 
outcome variable on the covariates.  
 
A brief explanation of GAMMs is as follows [8]. 
Consider a standardized multiple regression 
function with a series of predetermined random 
or non-random m explanatory variables 
(covariates) �� = �1, ���, … , ��	
′  associated with 
fixed effects and a � × 1 vector of predictors 
�� independent variables associated with random 
effects that projects collectively variations in the 
response (dependent variable) �� with ith number 
of observations from n unit of firms. Assuming �� 

to be conditionally and independently distributed 
with the expected values of ����|�� = ��

� where c 
consists of � × 1  vector of random effects and 
variances ������|�� = ���

������
��  that follow a 

GAM of which ��∙�  shows a predetermined 
variance function, ��  is a specified weight, such 
as a binomial denominator, and �  represents a 
scale parameter. Given the above expressions, 
equation (1) specifies a GAMM:   
 
����

�� =  ° + "������ + "#���#� + ⋯ + "	���	� + ��
,
�   

(1) 
 
in which ��∙�  shows a twice differentiable 
monotonic link function, "%�∙�  represents a 
smooth function that is twice-differentiated, c, 
i.e., the random effects are assumed to be 
normally distributed with zero mean and 
variances &�∅�  where ∅  is a ( × 1 vector of 
variance components [8]. The key element of 
equation (1) is that there is no a priori on the type 
of relationship between response and the 
covariates. For instance, if it is linear, i.e., "%�∙� 
are linear functions, then equation (1) changes to 
GLMMs. Under ordinary circumstances, the 
nonparametric functions are used in equation (1) 
to express relationships amongst covariate 
effects, and correlation among the sample data 
are modeled by the random effects component of 
equation (1). According to [8] statistical inference 
in equation (1) includes (i) the estimation of the 
nonparametric functions  "%�∙� , which, in turn, 
depends upon the choice of span degree, also 
known as the smoothing parameter [6], and (ii) 
the estimation of the variance component, ∅, by 
using the marginal quasi-likelihood method. 
Interested readers can find more about different 
derivation of equation (1) in [14,15].  
 
2.2 Statistical Inference 
 
An inherent assumption in GAMMs is that 
covariates are additive separable. It was argued 
that the concept of additively separable of the 
covariates in a production process might not be 
always true [16]. When using either GAMs or 
GAMMs, it is recommended to examine additive 
separability of the covariates [6,17]. To do this, 
the use of the residual deviance analysis was 
suggested, which is simply the logarithm of the 
likelihood ratio (LR) that follows a chi-squared 
distribution [9]. Equation (2) shows how the value 
of the deviance is obtained from taking the 
differences between the restricted and 
unrestricted LR statistic tests. In particular, the 
computed value of deviance, )*    
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+,�-��; )*� = −212�); �� − 2�)	34; ��5       (2) 
 
in which 2�); ��  and 2�)	34 ; �� , respectively, 
represent the values of the unrestricted and 
restricted LR. In equation (2), +,�-��; )*�  has a 
degree of freedom approximately equal to the 
differences in the dimensions between the two 
restricted and unrestricted models, which is the 
principle of examining input separability in this 
article [7].  
 
3. EMPIRICAL ANALYSIS  
 
To examine input relationships (i.e., 
substitutability/complementarity) among factors 
of production in the econometric model, we 
utilized the same dataset used in [18], which was 
collected from the Canadian CATV industry 
between 1990 and 1996. The data were 
recorded annually by the Canadian Radio-
television Telecommunication Commission 
(CRTC); an authorized organization for 
regulating the cable television during the period 
of the study in Canada. According to [19], the 
CRTC had divided Canada into several zones, 
so-called licensed service areas (LSAs), and 
given exclusive rights to cable television firms 
throughout the entire country. The data included 
an unbalanced panel data of 1,041 observations 
related to the 242 unique undertaking 
identification (UID) codes for Canadian cable 
providers during the period of the study. Each 
UID code was allotted to only one LSA showing 
the number of individual cable operations in the 
sample. Thus, each LSA in the data was 
assumed to be one unit of CATV service 
production. Assuming that the duality premise 
holds [20], we specified a nonparametric cost 
function within a GAMM framework and used the 
statistical program, known as R (version 2.12.1.) 
to estimate the parameters of the model using 
general smoothing techniques.  

 
Table 1 shows the statistical description of the 
variables used in the model. The dependent 
variable was the total cost that was calculated 
from the summation of operating costs and the 
user cost of capital for both basic and non-basic 
services. We subtracted total expenses from 
those outlays incurred for programming to 
calculate operating expenses. The covariates of 
the model consisted of the total number of basic 
and non-basic cable subscribers as output and 
the prices of labor, capital, and materials as 
applied to the industry. The data for each of the 
covariates was separately calculated for both the 

basic and non-basic cable subscribers. The first 
group of subscribers received core channels, 
arranged by the CATV operator that local 
television stations would normally broadcast. The 
non-basic subscribers received more channels 
(e.g., movie, documentary, sports) than the first 
group did by paying extra money for each tier. 
Total payments made to all employees were 
divided by the number of employees that yielded 
the price of labor [18]. The summation of 
depreciation and financial rates was used to 
obtain the rental price of capital. Finally, the price 
of materials was obtained by computing the per 
unit expenditure on intermediate inputs. To do 
this, [18] spread total costs, excluding those 
payments made for labor and capital, over a per 
cable kilometer and per channel basis for all 
subscribers during the period of the study. To 
lessen any possible heteroskedasticity in the 
data, all variables were calculated per unit of 
output and transformed to logarithms. 
 
Given equation (1), we estimated the 
nonparametric cost function, specified in a 
GAMM, using the spline smoothing techniques. 
We labelled this specification as the restricted 
model and its estimation results were shown in 
Table 2. The computed values of the log-
likelihood and the Akaike Information Criterion 
were 211.67 and 388.67 (in absolute value), 
respectively. Among all the coefficients of the 
model (except the intercept) the price of labor 
shared in non-basic subscribers (p-value 
0.0177), the number of basic subscribers (p-
value 0.000), and the price of capital shared in 
non-basic subscribers (p-value 0.1157) were 
statistically significant. To check if equation (1) 
conformed to the inherent premise of additive 
separability of the covariates in the model we 
utilized the statistical test that was described in 
equation (2). In particular, we examined if a 
change in one of the input prices could have any 
impact on the total cost through the total 
numbers of basic and non-basic subscribers. In 
other words, we wanted to know if changes in the 
wage rates shared by basic services had any 
impact on the total cost of providing services for 
non-basic subscribers. Furthermore, we tested 
whether the total cost changed as a result of a 
change in the rental price of capital shared by 
basic services through non-basic subscribers. To 
do this, we specified two unrestricted 
nonparametric cost functions and estimated the 
parameters of these models using the same 
methodology as the restricted model was 
estimated.  

 



 
 
 
 

Haghiri et al.; BJEMT, 15(2): 1-9, 2016; Article no.BJEMT.28214 
 
 

 
5 
 

Table 1. Statistical description of the variables 
 

Variable Mean S.D. Min. Max. 
Total costs ($ 000) 6,975.3 16,533.7 30.6 222,821.3 
Price of labor 
shared in basic 
subscribers ($) 

40,388.3 16,275.1 487.6 163,872.6 

Price of labor shared in 
non- basic subscribers ($) 

30,790.8 18,458.6 90.3 177,500 

Price of capital shared in 
basic subscribers ($) 

0.3211 0.2604 0.1267 7.6618 

Price of capital  
shared in non- basic 
subscribers ($) 

0.6045 1.3354 0.1202 40.886 

Price of material shared in 
basic subscribers ($/km 
000 per channel) 

181.4 128.9 15.1 1,872.6 

Price of material shared in 
non-nasic subscribers 
($/km 000 per channel) 

161.3 143.6 10.2 1,655.9 

Number of basic 
subscribers 

28,004.0 58,747.0 91.0 586,606.0 

Number of non-basic 
subscribers 

19,581.0 51,744.0 14.0 573,420.0 

Source: Sample data. Data also used in [18] 
 

Table 2. Estimation results from GAMMs (Restricted model) 
 

Predictors Estimates Est. error t-value p-value 
Fixed effects:     
Intercept 14.642 0.0062 2347.374 0.0000 
Price of labor shared in basic 
subscribers ($) 

-7.293 10.435 -0.6989 0.4848 

Price of labor shared in non- 
basic subscribers ($) 

-0.276 0.1163 -2.3767 0.0177 

Price of capital shared in basic 
subscribers ($) 

-0.265 0.3317 -0.7996 0.4242 

Price of capital shared in non- 
basic subscribers ($) 

16.822 10.682 1.5748 0.1157 

Price of material 
shared in basic subscribers 
($/km 000 per channel) 

-6.046 15.923 -0.3797 0.7042 

Price of material shared in 
non-basic subscribers ($/km 
000 per channel) 

0.131 0.1697 0.7769 0.4374 

Number of basic subscribers 0.447 0.0908 4.9270 0.0000 
Number of non-basic  
subscribers 

-5.666 16.0348 -0.3534 0.7239 

Log-likelihood 211.6733  BIC -300.9235 
AIC -387.3466  Number of 

observations 
899 

Degrees  of freedom 18    
Source: Sample data. Data also used in [18] 
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Table 3 presents the estimation results of the first 
unrestricted model in which a new variable was 
obtained from the product of the price of labor 
shared in basic subscribers and the number of 
non-basic subscribers. We hypothesized that if 
the number of non-basic subscribers changes it 
might affect the amount of labor hired in basic 
subscribers, which in turn, might change the total 
cost of operations. The computed value of the 
log-likelihood is 214.05 and the Akaike 
Information Criterion (in absolute value) is 
388.10. The coefficient of the rental price of 
capital shared in non-basic subscribers was 
statistically different from zero (p-value 0.000) 
with 99 per cent confidence. The new variable 
(i.e., the interaction between the number of non-
basic subscribers and the wage rates shared in 
basic subscribers) was not statistically significant 
(p-value 0.276). 
 
The estimation results of the second unrestricted 
model are shown in Table 4 in which an 
interaction term was defined as the product of 
the price of rental capital shared in basic 
subscribers and the number of non-basic 

subscribers. We intended to examine if, for 
instance, the number of non-basic subscribers 
increases, the total operation costs would also be 
increased due to the changes in the amount of 
labor needed to be hired for basic subscribers. 
The calculated value of the log-likelihood is found 
to be 212.47 and the Akaike Information Criterion 
equals 384.49 in absolute value. Among all the 
coefficients of the model (except the intercept), 
the price of labor shared in non-basic subscribers 
(p-value 0.0203) and the number of basic 
subscribers (p-value 0.000) were statistically 
different from zero. The coefficient of the new 
covariate (i.e., the interaction between the 
number of non-basic subscribers and the rental 
price of capital shared in basic subscribers) was 
not statistically significant (p-value 0.285). 
 
It is a general consensus that the incorporation of 
the interaction term would add more information 
to the specified model. This implies the initial pair 
of covariate is not expected to be additive 
separable. By simply applying the likelihood ratio 
(LR) statistic test (i.e, equation 2), we examined 
the null hypothesis of separability amongst 

 
Table 3. Estimation results from GAMMs (Unrestricted model)a 

 
Predictors Estimates Est. error t-value p-value 
Fixed effects:     
Intercept 14.642 0.0061 2383.0539 0.0000 
Price of labor shared in basic 
subscribers ($) 

-4.095 10.9623 -0.3736 0.7088 

Price of labor shared in non-basic 
subscribers ($) 

-9.909 8.0792 -1.2266 0.2203 

Price of capital shared in basic 
subscribers ($) 

-0.253 0.3282 -0.7716 0.4406 

Price of capital shared in non- 
basic subscribers ($) 

13.379 11.2192 1.1925 0.2334 

Price of material shared in basic 
subscribers ($/km 000 per channel) 

-23.175 21.3500 -1.0855 0.2780 

Price of material shared in non-basic 
subscribers ($/km 000 per channel) 

0.151 0.1699 0.8940 0.3716 

Number of basic subscribers 0.437 0.0905 4.8362 0.0000 
Number of non-basic subscribers -0.606 16.854 -0.0360 0.9713 
Product of the number of non- 
basic subscribers &  price of labor in 
basic subscribers 

-21.308 19.5545 -1.0897 0.2761 

Log-likelihood 214.0513  BIC -292.0769 
AIC -388.1026  Number of 

observations 
899 

Degrees  of freedom 20    
Source: Sample data. Data also used in [18] 

a The interaction term is obtained from the product of the number of non-basic subscribers and the price of labor 
in basic subscribers 
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Table 4. Estimation results from GAMMs (Unrestricted model)b 

 

Predictors Estimates Est. error t-value p-value 
Fixed effects     
Intercept 14.642 0.0062 2347.5286 0.0000 
Price of labor shared in basic 
subscribers ($) 

-3.865 10.9229 -0.3539 0.7235 

Price of labor shared in non-basic  
subscribers ($) 

-0.271 0.1164 -2.3256 0.0203 

Price of capital shared in basic 
subscribers ($) 

8.674 8.3712 1.0362 0.3004 

Price of capital shared in non- 
basic subscribers ($) 

13.301 11.1849 1.1893 0.2347 

Price of material shared in basic 
subscribers ($/km 000 per channel) 

-21.833 21.6913 -1.0065 0.3144 

Price of material shared in non-basic 
subscribers ($/km 000 per channel) 

0.114 0.1720 0.6677 0.5045 

Number of basic subscribers 0.444 0.0908 4.8881 0.0000 
Number of non-basic subscribers -0.331 16.8042 -0.0197 0.9843 
Product of the number of non- 
basic subscribers & price of capital in 
basic subscribers 

-20.875 19.5312 -1.0688 0.2854 

Log-likelihood 212.2478  BIC -288.4700 
AIC -384.4957  Number of 

observations 
899 

Degrees  of freedom 20    
Source: Sample data. Data also used in [18] 

bThe interaction term is obtained from the product of the number of non-basic subscribers and the price of capital 
in basic subscribers 

 
Table 5. Statistical Inference from comparing the restricted and unrestricted GAMMs 

 
New predictor Degrees of freedom Deviance value p-value 
Model 1:    
Non-basic subscribers & Price of 
labor shared in basic subscribers 

20 4.7559 0.0927 

Model 2:    
Non-basic subscribers & Price of 
capital shared in basic subscribers 

20 1.1490 0.5630 

Source: Source: Sample data. Data also used in [18] 
 
additive predictors used in the model. For each 
of the unrestricted model, we conducted the LR 
test. Table 5 presents the results of statistical 
inference obtained from examining the null 
hypotheses. The computed values of deviance 
for both models were 4.7559 (model 1) and 
1.1490 (model 2), which were less than the 
critical value of the chi-squared distribution (3.84) 
with 95 per cent confidence and one degree of 
freedom. Thus, the interaction term in both 
models was not statistically different from zero 
implying that the addition of the new covariate to 
the primal nonparametric cost function (restricted 
model) would not be necessary as it added no 
more information to the model. As a result, the 
additive separability assumption between 

covariates for cost estimation in the CATV 
industry is valid. 
 
In summary, the result of this study helps 
policymakers make proper decisions for the 
industry. As it was argued, the concept of input 
separability could show how the marginal rate of 
technical substitution would be changed by any 
alterations made in other covariates through a 
third dimension [5]. For instance, if the demand 
for capital for basic CATV services changes as a 
result of a change in the number of employees 
hired for non-basic subscribers, the total 
operational costs would not be changed. 
Nevertheless, it is very important for 
stakeholders in the industry to know which one of 
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the covariates is separable from statistical 
perspective in the production process. If this 
piece of information is available then suitable 
status is provided for firms to make informed 
decisions.  

 
4. CONCLUSION AND OUTLOOK 
 
Whether an input has a substitute or 
complementarity relationship with other inputs 
used in the production process is a valuable 
knowledge for policymakers who are interested 
in understanding better such relationship 
because it affects the rate of return regulation. 
Prior to the development of nonparametric and 
semiparametric regression analyses, the most 
widely used method of estimating the parameters 
of model was the classical regression analysis. 
This type of quantitative analysis, however, has 
been undergoing criticisms for its rigidity on 
prespecified presumptions, axioms, and 
postulations. To work with a relatively non-ad hoc 
method of regression analysis, generalized 
additive models and generalized additive mixed 
models are suggested. Generalized additive 
models are not usually recommended when 
complex covariate effects among data series 
exist. Both models can be estimated using a 
series of iterating and smoothing techniques 
such as the backfitting algorithm, generalized 
spline smoothing approaches, and the locally 
weighted scatterplot smoothing [5]. This paper 
demonstrates one of the applications of the 
generalized additive mixed models in testing 
substitutability or complementarity in the 
Canadian cable television industry; a rate- and 
entry-regulated industry prior to 1997. The result 
of this study showed that the industry was 
characterized by separable factors of production 
during 1990 to 1996. The cable television 
industry in Canada is using a highly labor 
savings type of technology. In addition, the 
findings of the research help policymakers to 
have an in-depth understanding of such a 
network-based industry and its current nature of 
providing services in the country.   
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