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Abstract

With the detection of gravitational wave (GW) GW170817 and its associated electromagnetic (EM) counterparts
from a binary neutron star (NS) merger, the “standard siren” method for Hubble-constant measurements is
expected to play a role in the Hubble-constant tension in the next few years. One intriguing proposal put forward in
multiple studies is to use an NS merger’s optical counterpart, known as a kilonova, as a standard candle, because its
absolute magnitude can in principle be calculated from simulations. In this work, I detail the statistical framework
for performing joint standard-candle and standard-siren measurements using GWs, EM follow-up data, and
simulations of EM counterparts. I then perform an example analysis using GW170817 and its optical counterpart
AT2017gfo to illustrate the method and the method’s limitations. Crucially, the inferences using this method are
only as robust as the EM counterpart models, so significant theoretical advances are needed before this method can
be employed for precision cosmology.

Unified Astronomy Thesaurus concepts: Neutron stars (1108); Hubble constant (758); Cosmological parameters
(339); Gravitational waves (678)

1. Introduction

With tensions mounting in the cosmology community over
the value of the Hubble constant (Riess et al. 2016;
Freedman 2017; Planck Collaboration 2018), new and
independent measurements of cosmological parameters have
gained significant interest. The most provocative of these new
measurements employs gravitational waves (GWs) from
compact-object mergers and their associated electromagnetic
(EM) counterparts as “standard sirens” to estimate H0, the
Hubble constant (Schutz 1986; Holz & Hughes 2005; Del
Pozzo 2014; Abbott et al. 2017b; Chen et al. 2018; Mortlock
et al. 2019; Soares-Santos et al. 2019). These standard-siren
measurements differ from traditional distance-ladder measure-
ments in that the luminosity distance to the source can be
directly inferred from the GW signal without the need of
empirical calibration of increasingly distant sources. For
GW170817, the first GW detected from a neutron-star (NS)
merger and the first to have associated EM counterparts, Abbott
et al. (2017b) inferred = -

+H 70.00 8.0
12.0 (maximum a posteriori

with 68% credible interval), which, while exciting, was alone
not enough to significantly tip the scales on the Hubble-
constant controversy. The second reported GW of potential NS
binary origin, GW190425 (Abbott et al. 2020), did not have an
identified host galaxy (e.g., Coughlin et al. 2019a; Hosseinza-
deh et al. 2019), and therefore offered no additional H0

constraints. Nevertheless, combining the GW170817 estimate
with future standard-siren analyses is expected to yield a
competitive H0 measurement with O(100) GWs with identified
host galaxies (Chen et al. 2018). Furthermore, EM counterpart
morphology can be leveraged to infer the inclination angle of
the binary inspiral and break the well-known distance-
inclination degeneracy, leading to improved estimates of H0

(Abbott et al. 2017b; Guidorzi et al. 2017; Dhawan et al. 2020).
Until recently, no one had considered leveraging the optical

data from an NS merger to directly infer the source luminosity
distance, enabling a standard-candle measurement using an
EM counterpart. New studies in Kashyap et al. (2019) and

Coughlin et al. (2019c) have explored this possibility and
treated the prompt, thermal radiation from neutron-rich ejecta
from the merger, known as a kilonova (KN), as a standard
candle. Using simulations of NS merger ejecta, Kashyap et al.
(2019) find a clear relationship between the slope and the peak
brightness of the KN bolometric light curves under certain
assumptions, suggesting that KNe could be “standardized.”
Coughlin et al. (2019c) found similar correlations between light
curve stretch and brightness in KN simulations and use fits to
these correlations to infer H0 with GW170817 as a standard
candle. Also, they combine the H0 posteriors of the GW170817
standard-candle and standard-siren analyses to produce a joint
H0 fit. While these analyses have crucially laid the groundwork
for joint GW–EM inference of H0, neither has presented the full
Bayesian approach for performing these inferences with an
arbitrary EM counterpart.
In this Letter, I present a method for performing joint GW–

EM H0 inferences and enumerate some of the technical
subtleties that can affect the measurements. In this method, the
luminosity distance to the source is simultaneously fit using the
GW with the light curves and/or spectra of the EM counter-
parts, drawing an analogy with estimating the distance to a
lighting strike using both the brightness of the lightning and the
loudness of the thunder. (Though unlike lightning and thunder,
light and GWs travel at the same speed). This basically
amounts to including the EM counterpart likelihood in the
standard-siren calculation.1 By including this likelihood, the
luminosity distance to the source (and hence the cosmological
parameter inference) is further constrained by the observed EM
counterpart morphology.
The layout of this Letter is as follows: in Section 2, I present

the Bayesian framework for performing “thunder-and-light-
ning” inferences of H0. In Section 3 I perform an example
thunder-and-lightning H0 measurement with GW170817 and
its bolometric light curve. One essential takeaway from
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1 Note that the calculation is not a simple multiplication of EM- and GW-
based distance posteriors as claimed in Coughlin et al. (2019c).
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Section 3 is that systematic errors in the underlying EM
counterpart models can significantly affect the cosmological
inferences. It is not clear that currently available models are
sufficiently systematics-free to be employed for precision
cosmology, so I do not attempt to stack multiple simulated
events in this work, but future work could explore this. Finally,
in Sections 4 and 5, I conclude by offering some high-level
discussion on the method presented herein and future
prospects.

2. Statistical Framework

I develop a Bayesian framework for making thunder-and-
lightning inferences of the Hubble constant (and other
cosmological parameters), which incorporates both GW- and
EM-follow-up data. The framework makes use of the following
ingredients.

1. Data:
(a) GW data xGW: the strain time series in N different

detectors =h ti i
N

1{ ( )} .
(b) EM counterpart data xEM: counts or flux measure-

ments of the EM counterpart. This could be in
multiple bands and/or with multiple instruments.

(c) Host-galaxy recessional velocity v r: measured
through spectroscopy of the host galaxy.

(d) Peculiar velocity field á ñvp of the host galaxy group: a
measurement of the peculiar velocity field in the
vicinity of the host galaxy. In Abbott et al. (2017b),
this was computed through a weighted average of the
peculiar radial velocities of galaxies nearby the host.

2. Models/Assumptions:
(a) Gravitational waveform model: a model for the GW

strain as a function of intrinsic source parameters
(masses, spins, and equation of state of the compact
binary) and extrinsic parameters (e.g., luminosity
distance, sky position, inclination). Contemporary
examples include the models of Dietrich et al.
(2019) and Lackey et al. (2019).

(b) EM counterpart model: a forward model for xEM that is
a function of the compact binary parameters. This could
be a hierarchical model that predicts some EM
counterpart parameters (e.g., ejected mass or jet
opening angle) based on the binary parameters, and
then predicts xEM via the EM counterpart parameters.
For example, Coughlin et al. (2019d, 2018) and Abbott
et al. (2017c) provide state-of-the-art forward models
of KNe.

(c) Recessional velocity model: a model for the observed
recessional velocity of the host given its peculiar
velocity and a cosmology. See Abbott et al. (2017b)
for an example.

(d) Peculiar velocity field model: a model for the
measured peculiar velocity field in the vicinity of the
host galaxy given the host galaxy peculiar radial
velocity. See Abbott et al. (2017b) for an example.

With these pieces in hand, one can compute the likelihood of
the data set given the cosmological parameters qc and the
models. Following Abbott et al. (2017b) I can write the

likelihood as

ò

q
q

q

á ñ
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á ñ á ñ

 x x v v

p x x v v

p x x v v dx dx dv d v
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The denominator term depends only on qc and appropriately
renormalizes the likelihood to be the likelihood over detectable
events (Abbott et al. 2017b; Chen et al. 2018). The integral is
taken over data sets that meet some detection threshold and
represents the fraction of all possible data sets, conditioned on
qc, which would be included in this analysis.

To see the dependence of the data on the cosmological
parameters, I expand the numerator term as follows:
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dL, z, and i, and vp are the source’s luminosity distance, redshift,
inclination angle, and host-galaxy peculiar velocity, respectively,
and q is the array of remaining parameters that describe the
binary system, such as total mass, mass ratio, spins, and equation
of state. Going from the first to second line of Equation (2), I
apply Bayes’ Rule. In the third line, I split individual likelihoods
under the assumption that the GW data, EM data, and measured
velocities are independent. Then in the final line I separate the
priors on qc, dL, and i by assuming they are independent and
remove the explicit qc dependence of xEM, xGW, vr, and á ñvp

because those are fully specified by dL and z. Note that I assume
that vp negligibly affects the measured GW or EM counterpart
data. z is fully specified by dL and cosmology, so

q d= -p z d z z,L c( ∣ ) ( ˜ ) where q=z z d ,L c˜ ( ). This leaves

òq q

q
q q

á ñ =

´ á ñ
´

p x x v v p x d z i

p x d z i p v v z v

p p d p i p v d dd didv

, , , , , ,

, , , , ,

. 3

r p c L

L r p p

L p L p

GW EM GW

EM

( ∣ ) ( ∣ ˜ )
( ∣ ˜ ) ( ∣˜ )
( ) ( ) ( ) ( ) ( )

Now I turn to the second term in the integrand, which is the
likelihood of the EM follow-up data. In general, it is not
straightforward to predict the EM data directly from the binary
parameters, but a number of studies have attempted to do this
via EM counterpart ansatz parameters qEM. For example, a
number of models parameterize KN spectra in terms of the
mass, velocity, and composition of the material ejected in the
NS merger (e.g., Kasen et al. 2017; Coughlin et al. 2018;
Bulla 2019; Metzger 2019). These parameters can in turn be
predicted from the binary system parameters with the help of
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NS merger simulations. We can therefore expand the EM
likelihood as

ò
ò
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The term q qp EM( ∣ ) enables us to encode our uncertainty about
the EM counterpart parameters based on the binary parameters,
which may be helpful in cases where there is significant error or
uncertainty in the ansatz simulations. However, in principle,
qEM should be fully predicted by q, in which case

q q q=p x d z i p x d z i, , , , , ,L LEM EM EM( ∣ ˜ ˜ ) ( ∣ ( ) ˜ ˜ ). Wrapping this
all together into a final posterior distribution on the cosmological
parameters yields
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2.1. Selection Effects

The denominator term in the likelihood qb c( ) that accounts
for selection effects has been discussed in other work on these
types of measurements (Abbott et al. 2017b; Chen et al. 2018),
and it can vary in computational complexity depending on the
situation and assumptions made. In cases where the EM and
GW detection probabilities are unaffected by cosmology (e.g.,
at low redshift), the denominator term can be ignored, as was
done in Abbott et al. (2017b). In the general case though, it
must be computed, because the cosmological parameters affect
the GW signal frequency band (detector frame), the sky-map
area, and the EM counterpart brightness in the search filters,
and hence affect the probability of detection.

Before expanding qb c( ), I first make some simplifying
assumptions. I assume that detection of xEMenforces detection
of vr and á ñvp and hence combine the recessional velocity data
into the variable xEM. This is a reasonable assumption because
if an EM counterpart is pinpointed, its host galaxy redshift can
be readily measured spectroscopically. A second stipulation
that I make is that the detection of EM data is conditioned on
detection of GW data. While it is possible to do sub-threshold
searches for GW events based on serendipitous detection of
KNe (Doctor et al. 2017; Scolnic et al. 2018), gamma-ray
bursts (Harstad 2013; Abbott et al. 2017a), or other counter-
parts, the vast majority of joint GW–EM detections will come
from a GW detection triggering an EM search. With these

assumptions, qb c( ) is

ò ò
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Equations (8) and (9) are the probability of detection of the EM
counterpart given the GW data, source properties, and
cosmology, and the probability of detection of both the EM
counterpart and the GW given the source properties and
cosmology, respectively.
I will not attempt to calculate qb c( ) for arbitrary experimental

configurations here, and instead I will simply comment on what
considerations must go into computing it, if it is needed. As
noted in Abbott et al. (2017b), qb c( ) can be ignored in cases
where the GW selection effects dominate and the GW binary NS
detection horizon distance is small. The selection effect on GWs
is largely driven by the GW signal-to-noise ratio ρ, which will
not change appreciably for the slight redshifting of the GW
signal expected at such small distances (below a few hundred
Mpc). Therefore, there is no selection of the data set that is
conditioned on the cosmological parameters, and one can safely
ignore β. However, for larger GW horizon distances, substantial
redshifting of the GW signals (that depends on qc) can change
detection prospects, and qb c( ) must be explicitly calculated.
If we now consider sources that are detectable at cosmological

distances, we must estimate qb c( ). While qb c( ) could be directly
computed by, e.g.,Monte Carlo integration if the full model and
data can be simulated, it is advantageous to make some
simplifying assumptions. First, for GW detection, a signal-to-
noise ratio threshold r

*
can be used as a proxy for signal selection

threshold. For EM counterparts, there is no hope in pinpointing
the counterpart and getting its host galaxy redshift without
actively pointing a telescope at the relevant sky position. A
number of complicated factors come into whether a telescope is
pointed at the counterpart (e.g., a team’s allotted observing time,
weather conditions, camera field of view, etc.), but roughly
speaking, GW events with small localization areas are more likely
to be in an instrument’s field of view than events with large
localizations (e.g., Coughlin et al. 2019b, 2020).2 The sky

2 In some cases significant resources could be leveraged to cover large sky
areas (e.g., Coughlin et al. 2019a), but this is unlikely to be the norm if
observing resources remain constant and the detection rate of NS binaries
increases due to increased interferometer sensitivity.
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localization area of a GW signal approximately scales with r-2

for moderately large ρ (Fairhurst 2009), so we can model the
selection function on the EM counterpart as depending on ρ
rather than the full xGW, which lets us replace instances of xGW
in Equation (9) with ρ and integrate with respect to ρ on
interval r ¥,

*
[ ].

Now even if one or more telescopes are pointed at the true
sky location of the event in question, it is not guaranteed that
the EM counterpart will be detected, as the counterpart could
be either misidentified or too dim (e.g., Kyutoku et al. 2020).
This will depend sensitively on the observing strategies and
detection pipelines that EM-follow-up groups employ, which
again may be difficult to model. But for concreteness, let us
consider a simple case: there is one EM-follow-up campaign
that uses fixed exposure time and filters and a fixed detection
pipeline that has detection threshold z

*
on detection statistic ζ,

for which any observation with z z
*
would be included in

the analysis. The probability of EM detection assuming the
instrument has been pointed at the source will not depend on
the GW data or ρ, but it will depend on both the distance and
redshift (hence a cosmology dependence) to the source because
the source must at least be of significant brightness in the
relevant filters. With these assumptions and a model of ζ given
the source parameters, Equation (9) can be rewritten as

ò

ò

q q q
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The first term in the outer integral of Equation (10) is the
probability of getting EM detection statistic ζ given that the
source was in the field of view of the EM instrument. This term
depends on the specifics of the EM pipeline and the filters and
exposure times chosen. The next term rÎp FOV( ∣ ) (in the
integral in brackets) is the probability that the source was in the
instrument field of view given the GW signal-to-noise ratio.
This depends on how the EM instrument’s field of view is
pointed on the sky. In principle, Equation (10) is calculable, but
careful modeling of each term is needed if the detection
probability of sources changes across the prior range of the
cosmological parameters.

3. Example

In this section, I perform a toy thunder-and-lightning H0

inference using GW170817 and the AT2017gfo measured
bolometric optical/near-infrared light curve from integration of
the X-shooter spectra (Pian et al. 2017; Smartt et al. 2017).
Given the cornucopia of modeling uncertainties in KN light
curves and spectra, I opt to use a simple model for NS merger
mass ejection and the associated KNe. The example herein,
which is primarily for illustrative purposes, can be readily
extended to multi-band light curve or spectral fits of KNe with
more complex KN models, or even to other EM counterparts. I
emphasize that other models, data, and assumptions could be
made with respect to the following example, and that
the choices made here were established to (a) demonstrate
execution of the method and (b) demonstrate how reasonable
changes to the underlying model significantly affect
the inferences.

3.1. Data

Rather than performing full GW inference on the
GW170817 strain, I re-weight the low-spin posterior samples
from GW170817 provided by the Laser Interferometer
Gravitational-Wave Observatory (LIGO)-Virgo Collaboration
(LVC; LIGO Scientific Collaboration & Virgo Collaboration
2017).3 For the bolometric light curves, I integrate the de-
reddened, de-redshifted X-Shooter AT2017gfo optical/infrared
spectra (Pian et al. 2017; Smartt et al. 2017).4 Because the
event is at such low redshift (even assuming a wide prior range
on H0), using the de-redshifted data here introduces negligible
bias. In general though, such de-redshifted data cannot be used
because it has already assumed a cosmology.

3.2. Model

Because I use the GW170817 posterior samples, the GW
model and priors are already specified by the choices made
in the LVC low-spin-prior analysis (LIGO Scientific
Collaboration & Virgo Collaboration 2017), but other prior
choices could be made if desired. To model the KN, I make the
following assumptions, which are chosen mostly for simplicity
of this example:

1. The KN ejecta velocity and opacity are fixed to
=v c0.25 and k = 1 cm2 g−1, respectively. The ejecta

mass is calculated in two ways:
(a) Using Equation (25) of Radice et al. (2018; which is

modified to fit ejecta mass rather than disk mass):

L = +

´
L -

-M

M
max 10 , 0.0202 0.0341

tanh
538.8

439.4
11

ej 4

⎪

⎛
⎝⎜

⎞
⎠⎟

⎫⎬
⎭

( ˜ ) {

˜
( )



L̃ is the binary tidal deformability parameter (e.g., LIGO
Scientific Collaboration & Virgo Collaboration 2017)

(b) Using Equations(1) and (2) of Dietrich & Ujevic
(2017) to estimate a dynamical ejecta component and
a disk wind ejecta prescription from Coughlin et al.
(2019d) with a disk mass to ejecta mass conversion
factor of 0.3.

Here, the parameters describing the KN qEM are fully
specified by the binary parameters q, so q qp EM( ∣ ) =
d k d- -v c1 cm g 0.252

ej( ) ( ) d - LM Mej ej( ( ˜ )).
2. The KN bolometric luminosity is calculated for a single

ejecta component using Equations(1) and (2) of Kashyap
et al. (2019) and the prescriptions chosen therein.
Furthermore, I assume that the KN bolometric luminosity
has no viewing-angle dependence.5

3.3. Results

To calculate the posterior distribution on H0, I re-weight the
GW170817 posterior samples by (a) the KN light curve
likelihood, which I take to be c2 in the bolometric magnitudes
with constant s = 1 mag “modeling uncertainty” (similarly to
Coughlin et al. 2019c), and (b) á ñp v v z v, ,r p p( ∣ ˜ ) through prior

3 https://dcc.ligo.org/LIGO-P1800061/public
4 http://www.engrave-eso.org/AT2017gfo-Data-Release/
5 Models with viewing-angle dependence could be used and indeed would
help break distance-inclination degeneracy (Bulla 2019).
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samples of vp and the prescriptions used in Abbott et al.
(2017b). I use the same GW H0 likelihood and velocity
measurements as in Abbott et al. (2017b), as well as the same
priors ( ~p d dL L

2( ) , ~p H H10 0( ) , flat in component masses).
The thunder-and-lightning reweighting of the GW170817
posterior samples yields the posterior distributions on H0

shown in Figure 1. The blue and orange curves show the
thunder-and-lightning H0 inference using the Radice and
Coughlin KN ejecta prescriptions, respectively. The green
curve shows the results assuming three times the standard
Radice ejecta mass. Note that these results incorporate the GW
H0 inference (shown in the dashed red line) via the original
LVC GW samples and therefore should not be multiplied again
by the LVC canonical analysis posterior.

4. Discussion

The comparison of H0 posteriors shown in Figure 1
demonstrates the effects of different choices for the underlying
EM model. With the toy model presented herein coupled with
the Radice et al. (2018) ejecta mass prescription, the H0

posterior favors higher expansion rates than the pure standard-
siren method. This is due to the low ejecta masses predicted by
Equation (11), shown in Figure 2, which favor a small source
luminosity distance and hence a higher H0. Using the ejecta
masses from Dietrich & Ujevic (2017) and Coughlin et al.
(2019d), yields similar results, albeit less biased to large H0

since the predicted ejecta masses are larger. If the ejecta masses
from Radice et al. (2018) are arbitrarily increased by a factor of
3, the inference on H0 becomes consistent with those in the
existing literature. It is also worth noting that these results
would change if the high-spin analysis of the LVC were used
instead. The take-away from this toy example is that the model
of the KN and q qp EM( ∣ ) are crucially important to the thunder-
and-lightning H0 inference. I emphasize that the results shown
here are not meant to be new constraints on the Hubble
constant, but rather an illustration of the model dependence of
thunder-and-lightning analyses.

4.1. Systematics, Populations, and Self-consistency

Coughlin et al. (2019c) performed the first thunder-and-
lightning H0 measurement with optical light curves and state-
of-the-art models and find general agreement between their
results and existing studies. However, as I have shown here, the
underlying models used for the EM counterparts can greatly
affect the Hubble constant measurement. As such, careful
accounting of modeling uncertainties must be done to recover
unbiased H0 estimates. For KNe for example, ejecta properties
can vary from study to study (Radice et al. 2018), so H0

estimates may have large systematic errors. Also, selection
effects must be addressed when the GW detector horizon
distances extend to distances at which cosmology can affect the
joint GW–EM detection prospects.
There are two other subtleties that must be addressed as well.

First, if multiple joint GW–EM detections are brought to bear
on H0 in a combined thunder-and-lightning analysis, the
compact-object-merger populations (e.g., distribution of NS
masses) must be simultaneously fit with the cosmological
parameters to account for degeneracy between the unknown
population and the cosmology. This amounts to marginalizing
over another set of variables l, which parameterize the NS
mass and spin distributions. Without such a simultaneous fit,
error in the assumed NS distributions will bias the inferred
distances and hence the cosmology measurement.
Second, the models that go into thunder-and-lightning

analyses should not be conditioned or trained on existing
analyses or data sets that assume an underlying cosmology. For
example, many analyses of AT2017gfo used a known
cosmology to infer properties of the KN ejecta. If these
inferred properties (e.g., KN ejecta velocity profile) are
assumed in future thunder-and-lightning analyses, the results
will not be self-consistent due to existing cosmological
assumptions creeping in. Therefore, the simulations and models
used for thunder-and-lightning analyses should rely only on
general relativity, particle/nuclear theory, and fits to experi-
ments that do not involve cosmology.

5. Conclusion

In this Letter, I have expanded on the work of Kashyap et al.
(2019) and Coughlin et al. (2019c) by showing the full

Figure 1. Posterior distributions on the Hubble constant H0 for the LVC
canonical analysis (Abbott et al. 2017b, but using the low-spin prior) and for
thunder-and-lightning analyses. A thunder-and-lightning H0 posterior is shown
for the Radice et al. (2018) and Coughlin et al. (2019d) ejecta mass
calculations, and for an ad hoc increase of their Radice et al. (2018) ejecta mass
predictions of 3×.

Figure 2. Ejecta masses calculated for the GW170817 posterior samples using
prescriptions from Radice et al. (2018) and Dietrich & Ujevic (2017)/Coughlin
et al. (2019d).
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inference of cosmological parameters. Additionally, I have
described subtleties of such inferences that were not discussed
in these previous works. In particular, thunder-and-lightning
analyses must account for the following details.

1. Selection effects on the GW and EM data sets can
potentially bias cosmological parameter measurements.
These selection effects can be modeled under the right
conditions.

2. Systematic errors in EM counterpart models can
significantly bias cosmological measurements.

3. The degeneracy between the inferred underlying NS
merger population and the cosmological parameters.

4. EM counterpart models that have been trained using a
specific cosmology cannot be used as the cosmology
itself is being inferred.

In all, the thunder-and-lightning method potentially has an
exciting role to play in the ongoing cosmic controversy, but
there are significant modeling challenges that must be
overcome first.

I would like to thank the LVC for publicly releasing
posterior samples and the ENGRAVE Collaboration for
curating the X-Shooter AT2017gfo spectra. I acknowledge
Michael Coughlin and Antonella Palmese for useful conversa-
tions and for reading a draft of this Letter.
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(https://gwemlightcurves.github.io/).
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