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ABSTRACT 
 
The latest brain researches are showing the relevance of glia in cognitive processes like learning 
and memory. One of the main problems related to this type of investigations is about complexity:  
there are between 10 and 40 times more glia than neurons in the central nervous system of 
mammalians; the other main problem is about synaptic communication: glia cells (like astrocytes 
and microglia) use basically a chemical information system, therefore electrophysiological tecniques 
are not very efficient. The recent development of PALM and STORM microscopy can be a very 
powerful solution to these two main problems. This strategy can be included in a broader, 
hypothetical discipline called cognitive gliascience. 
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1. INTRODUCTION 
 
During the last years, new  empirical results have 
arised involving electrically passive glia cells in  

processes like learning and memory [1], showing 
the dominant role of glia (in particular of astroglia 
and microglia) in human cognition. Nevertheless, 
this paradigm shift is far to be widely accepted,  
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principally for the reason that  the data on glial 
cells, that represent the majority of brain cells [2] 
are largely limited compared with the neural 
ones. Empirical proofs are starting to show that 
the synaptic information system of astroglia and 
microglia is active and it is connected to the 
neural structure, producing synaptic plasticity in 
the entire brain and deeply influencing cognitive 
abilities. 
 
It is known that  synaptic dynamic behaviour  is 
considered to be the ground for learning and 
memory  in the brain; glial chemical synapses 
have probably also a relevant role in influencing 
electrical  neural synapses [3]. Notwithstanding, 
the  molecular mechanisms of glia that produce 
cognitive phenomena are not totally clear. New 
empirical data in this way are only starting to 
arise. This technical report  will examine the most 
recent researches  focusing on microscopic level 
of  glial structures, particularly in the proximity of 
chemical synapses. We will analyze some 
molecular signaling processes that could 
demonstrate that glial chemical synapses (in 
particular, astroglial and microglial ones) have a 
dominant role in the information processing 
system of the brain and that neural electrical 
synapses are deeply influenced by them. Finally, 
we will consider new technological tools like 
PALM and STORM imaging. These tools can 
analyze single molecules within the synaptic 
region: their functioning is grounded on the 
integration of a great number of particles 
positions data (via the use of points) into high 
resolution pictures (see [4,5]). These 
methodologies are compatible with the study of 
glial processes connected with cognitive abilities 
because their performance is particularly suitable  
for imaging finer or capilliform elements (like the 
molecules connected with the biochemical 
transmissions around the synaptic regions). 
Therefore, they can allow to go beyond standard 
techniques and analyze formerly inaccesible 
processes into the nanoscopic level of glial 
communication. 
 

2. GLIAL CHEMICAL SYNAPSES AND 
COGNITIVE PROCESSES 

 
Growing evidences are showing the relevant role 
of glia cells within the chemical synaptic system 
of the cerebrum; in particular astroglia and 
microglia could have a significant role in the 
cognitive processes (e.g. learning and memory) 
emerging from these synaptic mechanisms. 
 

One of the early suggestions that the contiguity 
betwixt the dynamical functioning of astroglia and 
the synapse could have a central part in the 
activity of neural excitation has been 
demonstrated by the empirical analysis that this 
type of glia possesses receptors for 
neurotransmission. Because astroglial cells 
possess receptors for a the majority of 
neurotransmitters [6,7], that are connected to the 
Ca2+ discharge from stores within cells, the 
astroglial mechanism can recognize 
neurotransmitter discharged at the synaptic 
bouton, conducting to astroglial stimulation via 
the release of their internal Ca2+ .  
 
When astroglial cells are operating, they are able 
to release a relevant number of molecules 
cabable to modulate neural synaptical activity 
like ATP, glutamate, and D-serine [8-10] and are 
able to guide neural synapse development [11]. 
This type of signaling between astroglia and 
neurons could be interpreted as new way of 
information processing within the brain where 
astroglia serve as a third dynamic part of the 
synapse together with the pre- and postsynaptic 
terminals [12].  
 
Subsequently the findings that  astroglial cells 
possess receptors for neurotransmission, it has 
been proved that astroglial glutamate has a 
central role in the modulation of actions on neural 
structures. In particular , glial glutamate has been 
proved to have a function on neural metabotropic 
glutamate receptors [13]. However, astroglia is 
largely implicated in glutamatergic processes 
because of their role in the glutamate production 
and for the glutamate-glutamine shuttle; these 
mechanisms have a causal role in the synaptic 
dynamics connected with learning and memory 
[14,15]. Glutamate delivery is carried via Na+-
dependent specific transporters [16,17] and then 
glutamate is converted to glutamine via  
glutamine synthetase (GS) by astrocytes 
themselves [18]; after that, glutamine produced 
by astroglia is carried back to neurons and 
transformed again into glutamate [19]. Therefore, 
the glutamate-glutamine shuttle shows that 
astroglial processes have a central role in 
neurotransmission. Moreover, astroglia have a 
relevant role in determing the features of 
conductance modifications produced by GABA in 
neurons by the elimination of extracellular GABA 
around the synaptic field [20]. In conclusion, it 
seems clear that astroglia have high-affinity 
uptake sites for GABA [21,22]. 
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Despite it is evident that astroglia are able to  
regulate synaptical activity, a comprehension of 
these mechanisms is still incomplete. 
 
On the other hand, recent studies are 
demonstrating that also microglia are able to 
modulate the dynamical structure of synapses 
and respond to its changes. Moreover, they  are 
revealing the central  role of these glia cells in 
synaptic plasticity. For example, “synaptic 
pruning” (the selection and elimination of 
synapses) has been always considered as 
dependent only on neuronal activity [23], but in 
the last years, new findings are showing that 
microglia have a fundamental role for this 
mechanism; for example,  in the cortex, the 
maximum amount of microglia corresponds with 
the top of synaptogenesis [24]. The activity of 
microglia is not limited to synaptic pruning but 
they have a dominant role for the adequate 
development of excitatory synaptic 
transmission. Constant transformation and 
adaptation of synaptic connections are 
considered to be one of the most important 
biological dynamics connected with cognitive 
abilities like learning and memory. Synaptic 
plasticity can be the result of either an increment 
or a reduction in synaptic activity,called 
respectively  long-term potentiation (LTP) and 
long-term depression (LTD); interestingly,  novel 
studies are showing that microglia have a central 
role as regulators of  synaptic dynamics 
[25], learning [26] and memory [27,28]. 
 
3. STORM-PALM FOR COGNITIVE 

GLIASCIENCE  
 
The great majority of contemporary studies on 
cognitive processes are still concentrated on 
electrical activity of neural synapses. As we have 
seen, the information system of glial synapses is 
mostly biochemical therefore current  
electrophysiological methodologies like EEG are 
not able to detect these fundamental 
phenomena.  
 
The main problem connected with the 
investigation of these very fine processes is old: 
we need an adequate view of them. However, 
the recent development of a couple of super-
resolution methodologies able to recognize 
single molecule such as photo-activated 
localization microscopy (PALM) and stochastic 
optical reconstruction microscopy (STORM) can 
be a novel and suitable solution for the study of 
glial biochemical synapses and the cognitive 
processes connected to them (see [29]). These 

types of microscopy need statistical excitation of 
a very tiny number of fluorescent molecules per 
imaging session; therefore, rerunning these 
sessions, it is possible to detect the dynamics of 
fluorescent molecules in the field of enquiry. 
Moreover, this methodology presents a very high 
spatial resolution that is grounded on the 
reproduction of the object, like a molecule, from 
its detected image. Emerging studies on the 
general structure of brain functions (there aren’t, 
to my knowledge, specific studies on glial 
synapses and their cognitive correlates) are 
showing new phenomena connected to the 
dissemination of pre- and postsynaptic receptors 
(see [30]). Therefore, general researches on glia-
neuron interactions using STORM demonstrated 
the validity of this methodology. 
 
A stochastic functional microscopy  methodology 
connected to PALM allows recording of single 
molecules in vivo [31]; in particular, this 
methodology enacts point-source fluorescence 
registration and therefore identification of 
particles within chemical synaptic field of glia. 
PALM analysis does not need powerful switching 
and it has been already used, in some studies, 
for the investigation of neural synapses [32]. In 
the next years, a new interest on these 
methodologies and their application to glial 
chemical synapses can improve our knowledge 
on basic mechanisms of them and their 
connections to cognitive processes like learning 
and memory. Nonetheless, use of these 
techniques to glia are very few and limitated to 
neural synapses or glia-neuron interactions. For 
example, PALM has been used to analyze the 
variety of proteins at the plasmalemma [33]. 
However, only new studies, specifically 
orientented to glial synapses and their cognitive 
correlates can allow a wider comprehension of 
the entire brain functioning. 
 
4. EPISTEMOLOGICAL CONCLUSION 
 
New data on glia cells (in particular astroglia and 
microglia) are spreading doubts on neuronal 
doctrine, which predominated the entire last 
century studies on the brain, and created the 
dogmatic belief that  brain cognitive abilities are 
grounded, only, on neural electrical synapses; as 
we have seen, new studies on glial chemical 
synapses are showing that they may have a 
central role in learning and memory. 
 
As I reported in a previous paper [34], I think that 
the concept of ‘’neuroscience’’ negatively 
influenced researches on glial mechanisms and 



 
 
 
 

Spadaro; BBJ, 13(2): 1-6, 2016; Article no.BBJ.24792 
 
 

 
4 

 

precluded the possibility to consider these 
processes as the core of human cognition; for 
this reason, I think that the foundation of a new 
discipline called cognitive gliascience could be 
useful. 
 
Otto Loewi [35] and Henry Dale [36], in their 
outstanding studies on neural chemical 
transmission, demonstrated that electrical activity 
of the brain is modulated by the neural chemical 
one but they didn’t investigate glial synapses. In 
my opinion, the reason is that they were 
influenced by a ‘’neurocentric’’ conception that it 
is still dominating. 
 
This ‘’neurocentric’’ conception is connected with 
an ‘’electrocentric’’ conception where cognitive 
processes are mainly considered as the result of 
electrical spikes. However, if we consider that, in 
the human brain the number of glia cells are 10-
40 times higher than neurons, that glial synapses 
have, de facto, a chemical nature, and that 
neural activity is not only electrical but also 
chemical, we could infer that cognitive processes 
in human brains are based on chemical (and not 
electrical) synapses. 
 
However, the great majority of ‘’neuroscientific’’ 
studies still deeply overlooks or, in a relevant 
number of cases, ignores the chemical nature of 
glial synapses and their fundamental role in 
human cognition.  
 
In conclusion, could we hypothesize that (astro, 
micro-, etc.) glial  chemical synapses, instead of 
neural electrical ones, dominate and determinate  
higher cognitive processes like learning,  
memory, and integration of information because 
of their prevailing number and complexity in the 
human brain?  
 
In my opinion, investigations using new 
methodologies like PALM and STORM can help 
us for the resolution of this question and the 
definition, as Kuhn [37] would say, of a paradigm 
shift. 
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