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Abstract 
 

Linear regression is the measure of relationship between two or more variables known as dependent and 
independent variables. Classical least squares method for estimating regression models consist of 
minimising the sum of the squared residuals. Among the assumptions of Ordinary least squares method 
(OLS) is that there is no correlations (multicollinearity) between the independent variables. Violation of 
this assumptions arises most often in regression analysis and can lead to inefficiency of the least square 
method. This study, therefore, determined the efficient estimator between Least Absolute Deviation 
(LAD) and Weighted Least Square (WLS) in multiple linear regression models at different levels of 
multicollinearity in the explanatory variables. Simulation techniques were conducted using R Statistical 
software, to investigate the performance of the two estimators under violation of assumptions of lack of 
multicollinearity. Their performances were compared at different sample sizes. Finite properties of 
estimators’ criteria namely, mean absolute error, absolute bias and mean squared error were used for 
comparing the methods. The best estimator was selected based on minimum value of these criteria at a 
specified level of multicollinearity and sample size. The results showed that, LAD was the best at 
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different levels of multicollinearity and was recommended as alternative to OLS under this condition. The 
performances of the two estimators decreased when the levels of multicollinearity was increased. 
 

 
Keywords: LAD; WLS; multicollinearity; regression; simulation. 
 

1 Introduction 
 
Linear Regression analysis is used to study the relationship between a single variable Y, called the response 
variable, and one or more explanatory variable(s), X1, X2, …, Xp. One of the assumptions of Linear 
Regression model is that of independence between the explanatory variables (i.e. no multicollinearity). 
Violation of this assumption arises most often in regression analysis. Among methods used in detecting the 
presence of multicollinearity is variance inflation factor (VIF) [1]. In the situation where the assumptions of 
the linear regression are not valid, many estimation methods have been proposed; Stein Estimator by Stein 
[2], Liu Estimator by Liu [3], and Ridge Estimator proposed by Hoerl and Kennard [4], which is more 
efficient than OLS when there is collinearity in two or more explanatory variables. The study therefore, 
determines efficient estimators among Least Absolute Deviation (LAD) and Weighted Least Square (WLS) 
Estimators in multiple linear regression models when there is a correlation in the explanatory variables 
which are referred to as multicollinearity respectively. Their performance was compared for different sample 
sizes. Naturally, one would prefer best estimators which are fully efficient. Preferably, these estimators 
should also be robust to plausible deviations from an assumed model. 

  
1.1 Problem of multicollinearity 
 
Some researchers are faced with a number of problems that arise because of the non-experimental nature of 
the discipline. Some of these problems arise because the researcher has to observe both the dependent and 
independent variables. This is in contrast to the position of the pure scientist who, in the experimental 
setting, can set the values of each of the explanatory variables and then observe their resultant effects on the 
dependent variable [5]. As long as he takes enough care at the planning stage, he would be able to estimate 
the effect of each independent variable precisely. In the social sciences situations, many of the explanatory 
variables show little variations while others show variations that are systematically related to variations in 
the other explanatory variables. This is the problem of multicollinearity. The basic regression method makes 
an explicit assumption that two or more of the explanatory variables do not have a perfect or almost perfect 
linear relationship. When this assumption breaks down then there is the problem of Multicollinearity [6].  
 
Multicollinearity can, therefore, be defined as a measure of the degree of the linear relationship between two 
or more of the explanatory variables in a regression model. Thus the question to ask is the degree of the 
relationship rather than the existence of that linear relationship. The problem of multicollinearity with 
economic series is not whether it is present or not but finding out its severity. Many techniques have been 
proposed for doing this ranging from the traditional ones to the more scientific ones. Frisch [7], as noted by 
Valentine [8], was one of the first researchers to face the problem of detecting collinearity in a set of data. 
He proposed "a bunch map analysis" to do this. This is rarely practicable because of the computational 
burden. However regressions on subsets of the explanatory variables as well as on the full set may give 
useful information. 
 
Base on simulation study, performance of Least Absolute Deviation and Weighted Least Square estimators 
have been evaluated by many researchers (Muniz and Kibria [9], Khalaf and Shukur [10] Alkhamisi et al. 
[11], Alkhamisi and Shukur [12]), on multiple linear regression especially when there is Multicollinearity. 
Additionally, they considered a number of regressors and used the MSE as the performance measure. In 
most of the studies when regression analysis was employed, observations were presumed to be equally and 
independently distributed (iid), despite that the iid assumption is much powerful in real-life contexts. 
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2 Methodology 
 
The linear regression model considered in this study is of two independent variables of the form: 
 

�� = �� + ����� + ����� + ��, � = 1, 2, … , �                 (1) 
 
where, y is dependent variable, ��	���	�� are two independent variables,  ��, � = 0, 1, 2 are parameters of 

the regression and �� is random error. 
 
For the simulation study, the parameters of the model above were fixed 	��	�� = 1, � = 0,1,2 . The 
Multicollinearity levels (ρ) are 0, 0.2, 0.4, 0.6, 0.8 and 0.99, which indicate the strength of multicollinearity 
from the lowest to highest levels are introduce into the explanatory variables. 
 
The study therefore, examined and compared the performances of two methods of parameter estimation of 
multiple linear regression model namely; Least Absolute Deviation (LAD) and Weighted Least Square 
(WLS) with a view to identify the best method(s) under the conditions stated earlier. 
 
Least Absolute Deviation: 
 
This estimator obtains a higher efficiency through minimising the sum of the absolute errors: 

 

min�	|��|

�

���

																																																																																																																																																								 (2) 

 
By considering the objective function: 
 

�(�) = �|� − ��|� 

 �(�)=∑ ��� − ∑ �����
�
��� ��

���  
 
Differentiating this objective function is a problem, since it involves absolute values However, the absolute 
value function:	�(�) = |�| 
 
is differentiable everywhere except at one point: z = 0. Furthermore, by applying the following simple 
formula for the derivative, where it exists 
 

�′(�) =
�

|�|
 

 
Using this formula to differentiate f with respect to each parameter, and setting the derivatives to zero, gives 
following equations for critical points 
 

��

���
= �

�� − ∑ �����
�
���

��� − ∑ �����
�
��� �

(−���) = 0																																			
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where r =1, 2, …., m 
 
rewrite as: 
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Let (�) denote the diagonal matrix, [13], where: 
 

��� =
1

|��|
���	� = � 

��� = 0		���� ≠ � 

 
The equation (3) in matrix notation as follows: 
 

(�′��) = �′���																																																																																																																																												(4) 
 
This equation can’t be solved for x. But let rearrange this system of equations by pre-multiplying both sides 
by	(�′��)�� 
 

�� = (�′��)���′�� 
 
This formula suggests an iterative scheme that hopefully converges to a solution. Indeed, by initialising 
�(�)  arbitrarily and then use the above formula to successively compute new approximations. By let  
�(�)  denote the approximation at the kth iteration, then the update formula can be expressed as: 
 

�����
(�)

= (�′��)���′��																																																																																																																																		(5) 
 
Mean Square Error for LAD Model: 
 

(���)��� = (��)���																																																																																																																																							(6) 
 

= ��� − ��� = �′�� − ����
′
�′��																																																																																																												(7) 

 
Mean Square Error for LAD Estimator: 
 

���(��)��� = (��)�����(�
′��)��																																																																																																												(8) 

 
Mean Absolute Error for LAD: 
 

��� =
∑ |��|

�
���

�
																																																																																																																																														 (9) 

 
Absolute Bias for LAD: 
 

��������	(����)��� = ������
���

− �����                                                                                     (10) 

 

����	��������	((����)��� =
∑ |����|�
���

�
                                                                                        (11) 

 
Weighted Least Square: 
  
When applying ordinary least squares to estimate linear regression, (naturally) minimise the mean squared 
error: 
 

���(�) =
1

�
�(�� − ���)�
�

���

																																																																																																																							(12) 
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The solution is of course 
 

����� = (�′�)���′� 
 
Could instead minimise the weighted mean squared error, 
 

����(�, ��, … ,��) =
1

�
���(�� − ���)�
�

���

 

 
This includes ordinary least squares as the special case where all the weights	�� = 1. By writing w for the 
matrix with the �� on the diagonal and zeroes everywhere else, then, 
 

���� = ���(� − �)′�(� − ��) 

=
1

�
(�′�� − �′��� − �′�′�� + �′�′���) 

 
Differentiating with respect to	�′, gives as the gradient 
 

∇����� =
2

�
(−�′�� + �′���) 

 
Setting this to zero at the optimum and solving, 
 

����� = (�′��)���′��																																																																																																																															(13) 
 
Absolute Bias for WLS: 
 

��������	(����)��� = ������
���

− ���� �                                                                                   (14) 

 

����	��������	((����)��� =
∑ |����|�
���

�
                                                                                        (15) 

 
Algorithms for Model Specification: 
  
The model considered in the simulation is equation (1), 
  

�� = �� + ����� + ����� + ��, � = 1,2… , � 
 
where, y is dependent variable, ��	���	��are two independent variables,  ��	, � = 0,1,2 are parameters of the 

regression and �� is random error. 
 
The explanatory variables used in this study were generated with specified inter-correlations (level of 
multicollinearity) as follows; 
 

�� =
�� − ��

��

⇒ �� = �� + ����																																																																																																																		(16) 

  

�� =
�����

��
⇒ �� = �� + ����.   

 

 � =
���

����
⇒ ��� = ����� 
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But to introduce correlation into the two independent variables, we assumed that the �� is linearly dependent 
on �� in the following form; 
      

�� =∝�+∝� �� + �� 
          		 

∝�=
���

��
� ⇒ ��� =∝� ��

� ⇒ �� =
∝���

�
 

 
Therefore, 
 

�� = �� +
∝���

�
��																																																																																																																																												(17)

     
Data were simulated for both exogenous variables and error terms from normal distribution with mean zero 
and variance one i.e; 
 
���~�(0,1), ���~�(0,1)	���	��	~�(0,1), � = 1,2, … , 1000	(���������). 
 
The values of explanatory variables were obtained from relations (16) and (17) at different levels of 
multicollinearity. 
 
Evaluation, Comparison and Preference of Estimators: At each scenario of specification, inter-
correlation between the two exogenous variables (multicollinearity level) and sample size, the estimators 
were examined and compared using the finite sampling properties of estimators which are absolute bias 
(AB), mean absolute error (MAE) and mean squared error (MSE) criteria. The estimator with minimum 
criteria under different scenario of simulation was taken as the best. 
 

3 Analysis and Results 
 
The effect of different levels of multicollinearity (ρ = 0, 0.2, 0.4, 0.6, 0.8, 0.99) at the sample size of 10, 20 
and 50 which represent small, moderate and large sample sizes respectively on the simulated data from the 
multiple linear regression in 1. The simulation study was carried out with 1000 iteration on each case in R 
statistical software. For each iteration, the values of the criteria for the assessment (MSE, MAE and AB) 
were computed and their average values were recorded according to sample sizes as shown in Tables 1 – 3. 
  
Table 1. Results of performance of estimators for different levels of multicollinearity (ρ) when sample 

size is 10 (Small) 
 

(ρ) OLS LAD WLS 
MSE MAE AB MSE MAE AB MSE MAE AB 

0 1.140E-03 2.300E-02 0.048E-03 1.040E-02 3.100E-02 1.048E-03 0.706 0.658 0.004 
0.2 1.823E-03 2.532E-02 0.146E-03 1.723E-02 3.132E-02 1.246E-03 0.718 0.656 0.005 
0.4 2.150E-03 2.719E-02 0.409E-03 3.150E-02 3.319E-02 1.359E-03 0.721 0.661 0.005 
0.6 2.859E-02 2.901E-02 0.818E-03 3.159E-02 2.181E-02 1.978E-03 0.725 0.662 0.006 
0.8 3.211E-02 3.295E-02 1.101E-03 3.411E-02 3.095E-02 2.342E-03 0.727 0.664 0.007 
0.99 5.821E-02 6.019E-02 2.705E-03 6.521E-02 5.119E-02 3.725E-03 0.728 0.665 0.012 

 
It was observed that OLS was the best estimators because it has the minimum values of the three criterial 
used for the assessment followed by LAD while WLS has the least performance among the three estimators. 
However the LAD compete with OLS as the level of multicollinearity was increased and even performed 
better than others from multicollinearity above 0.4 especially on the basis MAE. Furthermore, the 
performances of the three methods decreased when the level of multicollinearity was increased, i.e with 
decrease in their critical values, due to the inecrease in the strength of correlation between the two 
explanatory variables. 
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Table 2. Results of performance of estimators for different levels of multicollinearity when sample size 
is 20 (Medium) 

 
 (ρ) OLS LAD WLS 

MSE MAE AB MSE MAE AB MSE MAE AB 

0 2.814E-02 4.723E-01 2.878E-04 2.214E-02 4.173E-01 2.578E-04 0.0849 0.729 0.0011 

0.2 4.967E-02 4.990E-01 3.104E-04 4.167E-02 4.190E-01 2.944E-04 0.0851 0.730 0.0012 

0.4 5.056E-02 5.002E-01 5.689E-04 4.256E-02 4.462E-01 5.528E-04 0.0864 0.734 0.0013 

0.6 5.176E-02 5.178E-01 6.152E-04 4.976E-02 4.978E-01 5.928E-04 0.0866 0.735 0.0013 

0.8 5.863E-02 6.007E-01 8.001E-04 4.763E-02 5.877E-01 7.856E-04 0.0867 0.737 0.0014 

0.99 8.902E-02 6.929E-01 9.930E-04 8.100E-02 6.429E-01 9.432E-04 0.0871 0.740 0.0015 

 
From the Table 2, LAD was the best estimators follow by OLS while WLS has the least performance among 
the three estimators at all levels of multicollinearity and sample size of 20. However, the performances of the 
three estimators decreased when the level of multicollinearity was increased. 
 
Table 3. Results of performance of estimators at different levels of multicollinearity when sample size 

is 50 (Large) 
 

(ρ) OLS LAD WLS 
MSE MAE AB MSE MAE AB MSE MAE AB 

0 2.916E-01 1.752E-02 2.012E-05 2.416E-01 1.052E-02 1.984E-05 0.941 0.673 1.000E-04 
0.2 5.019E-01 4.993E-02 2.546E-05 4.829E-01 4.793E-02 2.046E-05 0.943 0.674 1.200E-04 
0.4 5.421E-01 5.122E-02 2.836E-05 4.893E-01 4.822E-02 2.536E-05 0.945 0.774 1.170E-04 
0.6 5.845E-01 5.209E-02 3.100E-05 4.993E-01 4.999E-02 2.945E-05 0.947 0.774 1.172E-04 
0.8 5.999E-01 5.593E-02 3.821E-05 5.399E-01 5.093E-02 3.616E-05 0.947 0.775 1.227E-04 
0.99 9.819E-01 6.801E-02 9.123E-05 9.379E-01 6.672E-02 8.877E-05 0.949 0.776 1.580E-04 

 
The average values of MSE, MAE and AB recorded in table 3 show that LAD was the best estimators follow 
by OLS while WLS has the least performance among the three at all levels of multicollinearity. The gaps 
between their performances increases relatively especially on the basis MAE to that of sample size of 20. 
However, the performances of the two estimators decreased when the level of multicollinearity was 
increased.  
 

4 Conclusion 
 
This study has revealed that the LAD was the best when the sample size were increased especially on the 
basis sample size 20 medium and 50 large while OLS was the best for small sample size (10 small), when 
there is no multicollinearity. When some levels of multicollinearity were increased in the data LAD still 
maintained the best for sample size of 20 medium and 50 large. However, the performances of the three 
estimators increased when the level of multicollinearity was decreased. Furthermore, WLS has the best when 
there is multicollinearity at sample size of 20 in some cases. 
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