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ABSTRACT 
 
The toxic pollutants released from oil and gas activities typically takes years of clean-up and 
reclamation. Hence, creating the need for new nano-materials that can function as adsorbents, filter 
membranes, and coating materials, which offer a molecular level of control in separating relevant 
pollutant mixtures. The advances in graphene-family and its derivatives has proven its effectiveness 
to gradually replace conventional filter membranes, coatings, adsorbents, sensors for nano-
materials applications in the oilfield. The functionalization of graphene and graphene oxide has 
enabled such nano-graphene-composite materials to be tailored to meet the new development of 
coatings, adsorbents, filter membranes and sensors for oil and gas applications with high scalability 
potentials.  
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1. INTRODUCTION   
 
The absence of a unified internationally accepted 
regulation for the oil and gas industry has 
allowed variations in national policies and 
directives over the years. Consequently, pollution 
damages arising from oil industry activities are 
been addressed differently by national 
instruments [1]. In Nigeria for instance, the 
1990’s oil spill in (Ogoni-land) Niger Delta has 
remained unaddressed till date [2,3]. On the 
other hand, the application of unconventional 
drilling activities of horizontal and hydraulic 
fracturing in the U.S has already raised 
environmental concerns on air quality and 
groundwater chemistry due to some detected 
toxic compounds [4,5]. Conversely, in the Gulf of 
Mexico, the existing lingering spatial clusters of 
blowouts, explosions, leaks and spills are some 
potential environmental hazards yet to be 
abolished [6]. Additionally, the global climatic 
impact of gas flaring from gas production also 
remains feral and undocumented to a large 
extent [7,8]. Thus gas flaring, occasional spills 
and leaks, produced water, refinery wastes all 
contribute to environmental pollution. However, 
pollutants from refining and usage of lower grade 
oil [9] and automotive combustion emissions are 
occurrences with the harmful potential to man 
and environment [10].  
 
As a result, researchers have correlated 
increased levels of CO2 to combustion emissions 
and linked to global warming; a subject of debate 
till date [11]. Nevertheless, oil and gas pollutant 
emissions and discharge have remained an area 
of research challenge to both auto manufacturers 
and oil and gas industries. Although auto-
manufacturers have made significant progress in 
engine and exhaust catalytic designs. The 
capture and separation of CO2 from flue gases or 
exhaust emissions remain challenging to both 
industries [10,12]. Moreover, the large-scale 
corrosion damage and scaling of oil pipelines 
and platforms costing over $2.3 billion annually 
[13-17] has created the need for materials with 
high selectivity, tuneable surface chemistry, 
operating within a temperature range, stable 
within the operating conditions and performing in 
the presence of water vapour, other acid flue 
gases, and be of very low cost. Hence, research 
has sought solutions towards the investigation of 
materials like steel and their coatings when 
exposed to the different corrosive environment 
[18-20] and in corrosive substrates like produced 
water [21-23]. Thus, several corrosion inhibitors 
in the oilfield market have emerged over the 

years with some significant results [24-27]. 
Hence, the call for nano-materials that is cheaper 
and environmentally adaptable to the oilfield 
conventional applications. Such nano-materials 
would be able to perform as adsorbents for toxic 
pollutants, corrosion resistant coatings, sensor 
application for emissions in the oilfield. 
Subsequently, graphene and graphene 
derivatives have shown its robustness and 
versatility to replace traditional materials in both 
industrial and field practice.   
 

2. GRAPHENE SYNTHESES AND 
FUNCTIONALIZATION 

 
Graphene is a type of graphite material with one 
or many atomic layered graphites using SP² 
hybridized honeycomb lattice and having unusual 
two-dimensional structure. The engineering 
properties include, good sorption properties, 
larges surface area, good thermal properties and 
good mechanical strength and high electron 
transfer and can be synthesised into graphene 
oxide, nano-sheets and nano-composite 
materials [28,29]. Graphene oxide (GO) is an 
oxidized derivative of graphene possessing at its 
basal planes and edges various functional 
groups and creating intersperse carbon layers 
with oxygen molecules which have been reduced 
to separate the carbon layers into separate few-
layer graphene [30]. They can be obtained by 
exfoliating graphite oxide using mechanical 
stirring or sonication [31,32]. Graphite oxide 
(GrO) is non-stoichiometric and obtained by 
graphite oxidation that creates layered structure 
and interlayer spacing of up to 6.5 Å and re-
arrangement of hydrophobic graphite into 
hydrophilic graphite oxide [33]. The increase in 
interlayer lattice spacing moves from 0.335 nm 
for graphite to more than 0.625 nm in graphene 
oxide. Graphene oxide was first synthesized by 
Brodie in 1859 by adding KClO3 to a mixture of 
graphite in concentrated HNO3. Staudenmaier in 
1898 used concentrated H2SO4 and HNO3 and 
chlorates to produce highly-oxidized graphene 
oxide while Hummers in 1958, oxidized graphite 
by treatment with KMnO4 and NaNO3 in 
concentrated H2SO4 [34]. Hence, graphene 
functionalization confers an improvement in 
syntheses of nano-material properties required 
for adsorption of gases, storage, separation and 
sensors [30]. For instance, aminated graphene 
oxide used for CO2 adsorption increases 
polarization and are remarkably reversible 
reactions [34,35]. The functional groups 
responsible for this, create reactive sites with 
several surface-modification reactions that 



 
 
 
 

Nkwoada et al.; AJOPACS, 5(2): 1-19, 2018; Article no.AJOPACS.39683 
 
 

 
3 
 

 
 

Fig. 1. Schematic representation of graphene/graphene oxide synthesis route 
 
enable functionalized graphene oxide and nano-
graphene based materials to be tailored to  
‘specifics’. Thus varying the concentrations of 
surface functional groups and the material band 
gap, the work function of graphene oxide/nano-
graphene composites can be tuneable to offer 
reactive sites for adsorption of gaseous 
pollutants (CO, CO2, NO2, NH3), removal of 
inorganic pollutants (heavy metal ions) and 
adsorption of organic pollutants (PAH, VOCs, 
unburnt hydrocarbons and gasoline emissions) 
[29,36,37,38]. The common functionalization 
approach as reported by researches was 
expressed in Table 1 [39-64]. 
                                                                                                                                                                                                                                                          
Thus this functionalization process can be 
simplified in the sketch in Fig. 1 above. The 
graphite powder/flake in stage 1 is oxidized by 
these surface active reagents in stage 2 and 
thereafter exposed to certain temperature 
program in stage 3 for pore formation and 
creation of reactive site/functional groups. The 
oxidized surface-active material confers certain 
specific properties on the new material 
(honeycomb structure) which would then be 
characterized for specific applications. Hence 
functionalization for adsorption of pollutants, 
heavy metal removal and gas adsorption are 
achieved through several syntheses routes as 
shown in Table 1. In Table 1, it represents 
functionalization and applications of 
graphene/graphene oxide in the industry. This 
includes synthesis of nano-graphene/graphene 
oxide, adsorption of heavy metals, gas 
adsorption and water treatment. From the table, 
the common precursors were graphite flakes and 
graphite powder, while Zn, Pb, Ni, Cu and Cd are 

the common adsorbates. The use of more 
sensitive instrumentation like ICPAES/OES for 
adsorption studies were reticent. Moreover, the 
use of routine laboratory oxidizing reagents 
(NaNO3, H2SO4, KMnO4 HCl) etc were prevalent. 
Hence, the inter-conversion between 
hydrophobic graphite and hydrophilic graphene 
oxide has led researchers to pursue its 
intercalation ability when immersed in solvents 
[65,78]. Consequently, this 2D material through 
chemical vapour deposition, exfoliation, and 
hydrothermal synthesis can be tailored to meet a 
new generation of nano-materials for oil and                
gas applications [79]. The nano-material 
development lays emphases on the chosen 
graphite precursor which ultimately affects the 
performance of such materials [80]. Structural 
studies using AFM, XRD, SEM, TEM, Raman 
spectroscopy and photoluminescence 
spectroscopy have shown that by adding 
functional groups to the GO, both chemical and 
physical properties can be tuned even as 
induced defects or impurities. Thus this nano-
graphene and composite graphene materials can 
similarly be studied by first-principles calculations 
as observed in transition metal dichalcogenides 
[81-83]. Moreover, nano-graphene synthesis and 
application as selective material are enhanced              
by GO/GrO/rGO interconversion capability [66-
77].  
 
Conversely, three flaws were demonstrated 
during graphene synthesis. Surface functionality 
weakens the platelet interactions due to the 
hydrophilic nature, the use of sonication process 
through faster than mechanical stirring causes 
irregular size distribution, while oxidation 
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fragments the graphite and introduces impurity 
and structural damage. However, its scalability 
potential as mono or polydispersed layers are 
boundless [84,85] with potential nanocomposite 
material applications in the oilfield applications. 

The interpretation of Table 1 was represented in 
Fig. 2. The Fig. 2(A) showed that the reagents on 
the right are the frequently used reagents during 
synthesis and preparation of graphene/graphene 
oxide.  

 

Table 1. Methodologies of graphene preparation and synthesis 
 

Precursor Reagents Instrumentation Adsorbent Adsorbate/route Ref 
Graphite 
Powder 

NaNO3, H2SO4, 
KMnO4 HCl, 
H2O2 

UV-Visible, FT-IR-ATR, 
XRD, XPS, SEM 

Graphene Oxide Mn 39 

Graphite 
Powder 

NaNO3, H2SO4, 
KMnO4, H2O2, 
KCr 

UV-Visible, XPS, SEM, 
XRD Raman Spec, TGA 

Graphene Synthesis 40 

Graphite 
Flakes 

KMnO4, H2SO4, 

H3PO4, C2H5OH 
HCl 

FTIR-ATR, AFM, TGA, 
NMR, XRD, TEM, XPS 

Graphene Oxide Synthesis  34 

Graphite 
Flakes 

H2SO4, H3PO4, 
KMnO4, CO2-
Pressure Swing  

FTIR, XRD, SEM, TEM, Graphene Oxide Gas Adsorption 41 

Graphite 
powder 

NaNO3, H2SO4, 
KMnO4, H2O2, 
HCl  

XPS, FTIR, XRD, SEM GO/Sawdust Ni
2+

 adsorption 42 

Graphite 
Flakes 

KMnO4, H2SO4, 

Na2SO4, H2O2, 

NaNO3 

XRD, TEM, XPS,  
Raman Spec, UV-visible 

GO/Film GO coatings 43 

Graphite 
Flakes  

NaNO3, H2SO4, 

H2O2, HCl, 
KMnO4 

FTIR, SEM, FESEM, 
Raman Spec, XRD 

Graphene Oxide Synthesis 44 

Graphite 
flakes 

NaNO3, H2SO4 

H3PO4,HCl 
KMnO4, H2O2 

TEM, FT-IR, XRD, TGA, 
UV-Vis, XPS,  
Elemental analyser 

Graphene Oxide Synthesis 45 

Graphite 
Powder 

H2SO4, P2O5, 

HCl, K2S2O8, , 
KMnO4, H2O2,  

XRD, FTIR, TGA, DSC, 
TEM,  Elemental 
analyser 

GO/Amines CO2 Adsorption 46 

Graphite 
powder 

HNO3, KOH,  XPS, SEM, HRTEM, 
AFM 

Graphene Sheets Synthesis 47 

Graphite KMnO4, EDTA, 
Hydrazine, HCl, 
Ethyl alcohol 

UV-Vis, (GNS/δ-MnO2) Ni
2+

  adsorption 48 

Graphite 
Flakes 

H2SO4, NaNO3, 

KMnO4, H2O2,  
TEM, Raman Spec, XPS,  
UV-Vis, LC-MS, 
Luminescence Spec 

Graphene Oxide Synthesis 49 

Graphite 
powder 

H2SO4, K2S2O8, 

P2O5, HCl, H2O2 
FT-IR, SEM Graphite oxide GrO  Zn

2+
, Ni

2+
, Cr

2+ 
& 

Pb
2+

 
50 

Pitch-
Based 
Carbon 
Fibre (P-
CF) 

KMnO4, K2S2O8, 
P2O5, HCl 

FT-IR, Raman Spec, 
AFM, TEM, XRD, SEM, 
XPS 

Reduced GO (P-
rGO) & Pristine GO 
(p-GO) 

Synthesis 51 

Graphite 
powder 

HCl, Na2CO3, 
HNO3, NaOH, 
H2O2, NaNO3, 
KMnO4 

XRD, Elemental 
Analyzer, AAS, EDX,  

GrO Synthesis Scale 
up & purification 

52 

Graphite 
Powder 
 

PCl5, HCl, THF, 
NaNO3, DCM, 
H2SO4, KMnO4 

FT-IR, XRD, XPS, SEM 
and AFM 

Graphene Oxide Pb
2+

, Cu
2+

, Cd
2+

, 
Ni

2+
 

53 

Graphite 
Powder 

NaNO3, LiNO3, 

NaCl, KNO3 
FESEM, TEM, TG–
DSC,FT-IR 

Magnetic GO & β-Cd Cu
2+

 54 

Graphite 
Powder 

Hummers 
HNO3, KClO3, 

FAAS, FTIR-ATR GO-H2P Cu2+ 55 



 
 
 
 

Nkwoada et al.; AJOPACS, 5(2): 1-19, 2018; Article no.AJOPACS.39683 
 
 

 
5 
 

Precursor Reagents Instrumentation Adsorbent Adsorbate/route Ref 
H2SO4, COCl 
THF 

Graphite 
powder 

Hummers 
Chitosan, 

TEM, XPS, IR spec GO-CS aerogel Cu2+ 56 

Graphite 
Flakes 

NaOH, HCl, 
KMnO4, H2SO4, 
NaNO3, H2O2 

FTIR,SEM, EDX PVP-rGrO Cu
2+

 57 

Graphite 
powder 

H2SO4, HNO3, 

HCl, KCl, Oxalyl 
& Acyl Chlorides 

FAAS GO-H2NP Ni
2+

 58 

Graphite 
powder 

Hummers, 
NaBH4,  

FTIR, Raman, SEM, 
TGA, XRD, AAS. 

Reduced GrO Pb2+ 59 

Graphite 
powder 

NaNO3, KMnO4, 
H2SO4, H2O2, 
HCl 

FTIR, TGA, XRD, SEM 
AAS, Raman Spec 

GrO Pb 60 

Graphite 
Powder 

H2SO4, KMnO4, 
H2O2 

SEM, AFM, XRD, FTIR, 
XPS, AAS 

Graphene Oxide Zn 61 

GO 
purchased 

HCl, NaOH,  FTIR, AAS GO-G Zn 62 

Camphor 
& graphite 

H2SO4, HNO3, 

KClO3, 
AFM, ATM, XRD, TEM 
FTIR 

Graphene Synthesis 63 

Graphite 
Powder 

H2SO4, NaNO3, 
NaOH, KMnO4, 
H2O2, K3Fe(CN)6 

SEM, UV-Vis, FTIR, XRD Graphene Oxide Synthesis 64 

Graphite 
powder 

NaNO3, KMnO4, 
H2SO4 

Undisclosed MW-GO Pd/GO complex 65 

Graphite 
powder 

H2SO4, HNO3, 
H2O2, HCl 

XRD, FTIR, SEM GO/Fe3O4 Wastewater 
treatment 

66 

Graphite 
powder 

H2SO4, P2O5,  

H2O2, K2S2O8, 

KMnO4 

ICP-MS Fe3O4@SiO2@PANI–
GO 

REE 
determination 

67 

Graphite 
powder 

H2SO4, H3PO4, 

H2O2, KMnO4, 
XRD, FESEM, XPS, TEM Graphene sheets & 

GO-N2H4 
CO2 adsorption 68 

Graphite 
powder 

HNO3, H2SO4, 

hydrosol 
AFM, TEM, UV-Vis 
DPASV, 

3D-GO Zn, Pb, Cu, Bi, 
Cd 

69 

Natural 
graphite 
powder 

Hummers 
method 

TEM, SEM, XPS rGO Gas sensor 70 

Graphite  
powder 

H2SO4, KMnO4, 

NaNO3, H2O2 
XRD, TEM, Raman spec, Graphene sheets CO2 71 

Grape 
Extract/ 
Graphite 

H2SO4, KMnO4,  

H2O2, HCl, NH3 
FTIR, XRD, UV-Vis, TEM GO/Rgo H20 treatment 72 

Graphite 
powder 

Hummers 
method 

TGA, SEM, XRD, FTIR UiO-66/GO CO2  73 

Graphite 
Flake 

H2SO4, H2O2, 

NaNO3, 

(Mn(Ac)2·4H2O) 

TEM, EDXS, SEM, XRD, 
TGA, FTIR, Raman spec 

GMNO  CO2 74 

Graphite Undisclosed Raman Spec, FTIR, 
TEM, SEM, 

PANI-f-HEG CO2 capture 75 

Graphite Improved 
Hummers 
method 

XRD, SEM, TGA, FTIR 
HRTEM,  

Cu-BTC-GO Gas storage  76 

Graphite Hummers 
method 

Atomic deposition on PG TM-Graphene CO, NO, O2 and 
O, adsorption & 
sensing 

77 

KEYS: CD: Cyclodextrin, CS: Chitosan, Cu-BTC: copper nitrate trihydrate  & 1,3,5 benzenetricarboxylic acid, DPASV: 
Differential pulse anodic stripping voltammetry, f-HEG: functionalized hydrogen exfoliated graphene, GO: Graphene Oxide, 

GrO: Graphite oxide, GMNO: Graphene-Mn3O4, GNS: Graphene Nanosheets, GO-G: graphene oxide glycine, H2P:hydrazine 
HM: heavy metals, Mw: microwave, (Mn(Ac)2·4H2O): manganese (II) acetate hydrate, PANI: polyaniline, Pophyrin, P: Pristine, 

PG: pristine graphene, PVP-rGO: Polyvinyl-pyrrolidone-reduced graphene oxide, REE: rare earth element, rGO: Reduced 
graphene oxide, Ti: titanium, TM: transition metals, UiO-66: zirconium metal–organic framework 
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Fig. 2. Graphical representation of graphene/graphene oxide synthesis and application 

 
This may be an indication of common 
methodologies that are routinely practised 
among researchers during synthesis/preparation 
thus providing the need for research into 
alternative low cost and effective reagents. The 
Fig. 2(B) showed that material characterization 
using XRD and FTIR, SEM and TEM were 
frequently utilized by researchers in almost all 
research studies. Hence, information exists 
about the characterisation of graphene/graphene 
oxide, albeit not tailored towards oilfield 
applications. Fig. 2(C) showed that graphite 
powder was the most common form of graphite 
used. This may be due to its larger surface area 
and thus induces faster reaction kinetics. The 
application of graphene and its nano-composites 
in Fig. 2(D) showed that the study and 
application of graphene oxide as adsorbents 
almost doubled the same activity in coating, gas-
sensor and water purification applications. Thus, 
these suggest that there had been slower growth 
of the application of nano-graphene and 
graphene derivatives in sensor application, 
wastewater purification and oilfield coating 
utilization. Hence, the need for research into 
nano-graphene and its composite material 
applications in oil pollutant removal, sensor 
development, wastewater purification and other 
oilfield applications. 

3. ADSORBENTS AND SENSORS 
 

Greenhouse gases especially CO2 are known to 
cause global warming [86] with consequent 
pollution and economic losses arising from 
climatic changes. The losses are projected to be 
around 5–20% of the global gross domestic 
product, hence the need for the development of 
materials that can function as CO2 adsorbents. 
The emphases on such materials [87] are 
materials that offer a molecular level of control by 
tailoring their performance in separating relevant 
gas mixtures. The common adsorbent in Carbon 
Capture and Sequestration (CCS) for CO2 
separations is the use of microcrystalline porous 
solids known as graphene. This porous carbon 
has a well-developed pore size, excellent stability 
and tuneable surface chemistry, enabling 
synthesis of nano-graphene materials with 
defined nanostructure and morphology. They can 
recover more than 90% of flue gas with CO2 
purity higher than 90% and at a cost more 
economical than the usual amine adsorption 
process [88,89,90].  
 
Graphene oxide has the ability to successively 
regenerate and retain more than 97% of its 
intrinsic capacity [89,90]. In addition, molecular 
dynamic (MD) simulations have demonstrated 
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that porous graphene can efficiently separate 
gases according to their molecular sizes [91,92]. 
Studies from molecular dynamics and density 
functional theory also showed that when CO2 
approaches graphene surfaces functionalized 
with monodispersed metals, the force is larger 
than the initial repulsion [93,94]. Consequently, 
the CO2 molecule is dissociated in two parts: O 
and CO. The CO fraction is adsorbed on the 
material surface in such a way that the C atom is 
bonded to three metal atoms and the O atom is 
bonded to another metal atom. Such nano-
materials can equally be enhanced into carbon 
monoxide capture and separation [95,96]. 
Accordingly, researchers have suggested that 
the ideal CO2 sorbent must exhibit the following 
four properties. The material must adsorb and 
desorb CO2 within a temperature range, the 
material should exhibit durability and stability 
within the operating conditions, show high 
selectivity and must perform in the presence of 
water vapour, and other acid flue gases and be a 
low-cost material [97,98,99]. Thus, nano-
graphene and its material composites are well 
fitted into this material development research and 
application due to their excellent adsorptive 
behaviours such as large surface area, good 
thermal resistance, active surface functional 
groups and a low-cost material [100,101,102, 
103].  
 
Graphene and graphene-based derivatives can 
be synthesized into different nano-composites 
with specific sensor-adsorptive behaviour [104]. 
In the event of a gas molecule adsorbing onto 
the graphene surface, the local change in the 
carrier concentration induces a doping of the 
delocalized 2D graphene, which can be 
monitored electrically in a transistor-like 
configuration. Graphene has superior electrical 
conductivity (106 Ω-1 cm-1), nearly transparent in 
visible light (97.7%), high intrinsic carrier mobility 
(2.5×105 cm

2
 V

-1
s

-1
), high specific surface area 

(2630 m2g-1), excellent mechanical strength 
(Young’s modulus > 1 TPa), and high thermal 
conductivity (above 3000 W mK-1).   

 
These properties reduce the background noise in 
transport experiment and confers on graphene 
and its nano-composites an excellent material for 
gaseous adsorption. In addition, the above-
mentioned properties also confer on graphene, 
field effect transistor ability, electro-chemical 
mobility, fluorescence, chemiluminescence and 
colourimetric sensors ability [100,105,106,107]. 
Subsequently, when nano-graphene/graphene 
derivatives are incorporated into sensor devices, 

it displays a high ample sensitivity to detect 
parts-per-billion levels or even single molecular 
events at a rapid rate, which have been obtained 
experimentally. Remarkably, graphene sensitivity 
is not limited to chemical species, but can be 
generally applied to any phenomena capable of 
inducing a local change in the carrier 
concentration, such as the presence of magnetic 
field, mechanical deformation or external charges 
[108,109,110,111]. Additionally, graphene and its 
nano-composites interact with permanent dipole 
molecules, while the presence of polar functional 
groups on graphene surfaces leads to specific 
interactions with polar molecules, thereby 
enhancing the overall interaction potential of the 
surface as an adsorbent and sensor material 
[112,113].  
 
The effective sensor/adsorbent ability of nano-
graphene/graphene derivatives is because of the 
well-defined pores of graphene. Graphene has 
uniform pore sizes that can be tuned from 10 nm 
to over 10 µm and the possibility of stacking 
multiple layers of graphene or nano-graphene on 
the selected porous support [114-119]. Wherein 
the defects in one layer are cushioned by 
another layer. Also, the Fascination of graphene 
application in membrane separation of gases has 
remained desirable due to the low energy cost. 
Hence, low-cost materials that can adsorb CO2 
efficiently will undoubtedly enhance the 
competitiveness of adsorptive separation for CO2 
capture in flue gas applications [120]. 
Furthermore, graphene/nano-graphene 
precursors can be obtained from bio-waste and 
non-bio-waste. Such materials include: camphor 
(C10H16O), tea tree extract, sesame oil, foods like 
cookie and chocolate, waste products: (grass, 
plastic, dog faeces) insect-derived vegetation 
wastes: (wood, leaf, bagasse, and fruit wastes), 
animal wastes: (bone and cow dung), solid 
plastic waste etc [121]. Thus, the continued 
development of graphene and graphene nano-
composite materials is necessary to achieve 
adsorbents/sensors that will result in the 
decrease of overall costs and greenhouse 
emissions compared to other conventional 
materials like amine based adsorbents [122,123, 
124] through syntheses and functionalization. 
 

4. OILFIELD AND COATING 
 
One of the critical focus in nanotechnology 
applications in the oil and gas industry has been 
fluid loss control and rheology [125]. For 
instance, the additions of graphene oxide to 
bentonite and barite has shown to remarkably 
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affecting fluid loss control, thermal stability and 
loading effectiveness even at low levels of 2-5 
pounds per barrel [126]. They can then be 
tuneable for stabilization and cementing [127], 
thereby improving interfacing adhesion [128] due 
to graphene oxide hydrophilic nature. Graphene 
coatings provide water and oil resistance, hence 
a promising anti-corrosion material [129]. 
Moreover, dispersing graphene/graphene oxide 
in polymer matrices induces π–π interactions of 
the π-conjugated graphene basal planes and the 
aromatic moieties on the backbone of the 
polymer which aids passivation of metal surfaces 
[130,131]. 
       
For instance, melamine sponge coated with 
graphene has shown higher oil-absorption 
capacity up to 80 gg

−1
. [132]. On the other hand, 

lubrication is required to improve movement of 
machine parts. Subsequently, ultra-thin graphene 
prepared by exfoliation of graphite oxide focused 
on solar radiation gave significant improvements 
in frictional characteristics, anti-wear, and 
extreme properties compared to base oil [133]. 
Graphene and MoS2 dispersed in esterified bio-
oil as lubricants for steel as additives were 
observed to reduce friction coefficient and wear 
of the steel samples up to load of 300 N and the 
rotational speed of 850 rpm [134]. Furthermore, it 
can also be blended to produce nano-filter 
membranes employed to reduce membrane 
fouling and prevent blockage of the wastewater 
treatment system in refineries [135]. Also, 
graphene aerogel dispersed into crude oil 
solution after adsorption reduced concentration 
of the solution from 1 mg/mL to 0.15 mg/mL. The 
Graphene/graphene oxide adsorption capacity 
determined to be 169 mg/g [136] was placed 
under continuous vacuum regime, had an 
adsorption capacity of 28 L of oil per gram of 
aerogel [137]. Hence, the graphene aerogel               
was ascribed as cost-effective material for             
oil spill clean-up and water purification 
applications. 
 

On the other hand, the applications of physical 
and chemical processes have dominated oil 
industry for wastewater, refinery treatment and 
drilling processes. However, the emergence of 
membrane distillation, ultrafiltration, 
microfiltration, nano-filtration and reverse 
osmosis with a carbon precursor and nano-
composite materials have proven to be more 
viable than tradition techniques [138,139,140, 
141,142]. For example, research has shown that 
using Fe2O3 nano-particles and carbon nano-
tubes increased the removal of emulsified oil 

from water [143]. Also, carbon foam nano-
composites has shown promising fate in oil/water 
separation [144] as well as carbon fabrics 
designed with carbon nano-tubes [145]. 
Additionally, soil sorbents are also reported to be 
removed by biodegradable polylactic acid infused 
with reduced graphene and graphene oxide 
[146].  

 
With this in mind, it can then be observed that 
recent advances of the graphene family have 
proven its efficiency in the removal of toxic 
pollutants from wastewater [147], oil spill clean-
up [148,149], and produced water treatments 
[150]. In addition, selective gas-water-oil 
separations [151] and post-combustion CO2 
capture [152,153] have recorded similar progress 
in the oil industry using graphene/graphene oxide 
nano-composite materials. Although, 
graphene/graphene oxide advancement as 
corrosion and coating materials [154-158] has 
recorded significant progress, albeit at a slower 
pace compared to adsorption applications. 
However, the functionalization of 
graphene/graphene oxide and its nano-
composite materials provides promising cheaper 
material and efficient approach that could 
progressively replace traditional materials 
[25,40,44,67,159,160,161] in oilfield applications. 

 
5. OUTLOOK 
 
The review study conducted had already 
identified graphite powder as the most common 
precursor for nano-composite synthesis for 
graphene derivatives. Additionally, common 
synthesis/preparation methodologies were often 
taken by researchers leading to overutilization of 
common reagents and materials. These reagents 
can be seen in Figs. 1 & 2. 
 
On the other hand, more information exists about 
the characterisation of graphene/graphene oxide 
albeit not tailored towards oilfield applications. 
Graphite powder was the most common form of 
graphite used and may be limiting graphitization 
of waste materials for graphene/graphene oxide 
applications. Studies also showed that the study 
and application of graphene oxide as adsorbents 
doubled the same activity in any of coating, gas-
sensor and water purification application. Thus it 
depicted they slow growth of graphene and 
graphene oxide utilizations in sensor application, 
wastewater purification and oilfield coating 
utilizations. We, therefore, recommend the 
following. 
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5.1 Graphite 
 
Graphite is the chief material precursor for 
graphene and graphene derivatives. Research 
studies on the precursors of graphene and 
graphene oxide tailored towards sensor 
development, adsorbents and anti-corrosion 
coatings in the oilfield should be progressively 
increased. Because the potential of synthesizing 
cheap graphene precursors is enormous and 
easily achievable. 
 

5.2 Synthesis  
 
Knowledge gap exists about how the different 
concentrations of oxidizing and reducing 
reagents affect the synthesis of GO/GrO/rGO 
and its inter-conversion of graphene, graphene 
oxide and graphite oxide. More research studies 
should be conducted in this area principally 
towards oilfield applications.  
 

5.3 Functionalization  
 
Little information on studies of chemical equilibria 
of graphene in different media and how it affects 
adsorption and corrosion studies for oilfield 
applications subsists. However, limitless novel 
oilfield applications are achievable when this 
principle is well understood. In addition, 
incorporating thermal effects would be productive 
since oil platforms also exist in polar and arid 
regions. 
 

5.4 Characterization 
 
Characterization of the nanomaterial 
(graphene/graphene oxide) with cutting-edge 
nanotechnology should be performed. This will 
elucidate basal plane orientation and 
functionalization of GO/GrO/rGO for adsorption 
and coatings in oilfield applications. Such 
information will enhance material development 
for oilfield applications. 
 
5.5 Graphene/Graphene Oxide  
 
With the nature of environmental damages 
resulting from oil and gas drilling, production and 
refining, there is a need for nano-materials that 
are cheap adsorbents, sensors and coating 
materials. Graphene and graphene oxide 
materials (composites) seem a progressive 
material occupying this niche for oil spill clean-
up, produced water treatment, selective gas-
water-oil separation, post-combustion CO2/other gas 

capture, corrosion and coating materials. Thus 
we recommend the functionalization of nano-
graphene/graphene oxide in the oil and gas 
industry. 
 

6. ECONOMICS OF GRAPHENE/ 
GRAPHENE OXIDE PRODUCTION 

 
Graphene has emerged as the most promising 
nano-material and also described as the thinnest 
material on earth with just one atom thickness. At 
the atomic scale, graphene is a 2D material 
arranged in hexagonal like bonds, and its unique 
properties make it the most hyped material with 
the potential to overtake silicon as the backbone 
of electronic circuits. The growth of graphene 
market in the oil industry has been hampered by 
the absence of research into technological 
potentials of this material, as well as the 
associated cost. However, graphene has found 
large markets in key major industry players such 
as the electronic, healthcare, automotive, energy 
and power, aerospace and defence. 
 
For example, the cost of a 50x50 monolayer 
graphene thin films by Graphene Square is about 
$263 and further $819 on Cu foil and PET thin 
film, respectively. While Graphene Nanoplatelets 
(5-8 nm thick) manufactured by a company such 
as XG Sciences cost about $ 219-229/kg. This 
high cost of graphene material is a major 
obstacle to its adoption for commercial 
applications worldwide [161,162]. 
 

On the other hand, Synthesis of graphene for 
commercial usage has been classified based on 
the following. A major activity is directed towards 
the development of Chemical Vapour Deposition 
(CVD) and exfoliation techniques. Furthermore, 
exfoliation methods include (a) mechanical 
exfoliation of graphite, (b) liquid phase exfoliation 
of graphite and (c) chemical exfoliation of 
graphite oxide. Other commonly used dominant 
techniques are epitaxial growth on SiC 
substrates, chemical synthesis and unzipping of 
carbon nanotubes. All the above-mentioned 
methods have made significant discoveries with 
potential for scaled-up production of graphene at 
an affordable cost. 
 
Similarly, academic/research institutes are 
focussed on creating diverse approaches such 
as chemical synthesis, electrochemical 
exfoliation, liquid phase exfoliation, microwave-
assisted synthesis and CVD. Some of the key 
players institutes/universities making significant 
impact towards graphene research are National 
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Nanomaterials and University of Idaho (Chemical 
synthesis); Seoul National University and Korea 
Institute of Science and Technology (CVD), 
Chinese Academy of Sciences (Epitaxial growth); 
University of Ulsan, Chonnam National University 
(Exfoliation technique); Beijing Institute of 
Technology and Institute of Physics,  Stanford 
Junior University and Rice University (Unzipping 
of CNTs) etc. 
 

Finally, it is worthy of note that multinational 
corporations such as IBM, Samsung Group, 
Hitachi Ltd are following the CVD approach to 
develop high-end optoelectronic products based 
on the use of high-quality large area graphene 
thin films.  
 

While on the contrary, the start-up companies 
such as Nanotech Instruments (Angstron 
Materials), XG Sciences, Vorbeck Materials 
Corporations are directing their efforts towards 
developing further processing routes from 
exfoliation and chemical synthesis for the large-
scale production of graphene nanoplatelets used 
for low-end products. Such materials include 
battery and supercapacitor electrodes, fillers for 
plastics, sensors, conductive inks and coatings 
etc. Thus in order to meet the challenges existing 
in the oil industry, major effort need to be              
re-directed worldwide by scientific                       
community towards the development of 
innovative approaches for the production of                     
graphene specifically tailored for coatings, 
adsorbents/absorbents and sensors used in the 
oil industry. The potential and scalability               
are high due to graphene’s thermal conductivity, 
electrical conductivity, energy storage,                  
barrier strength and mechanical strength 
[161,162]. 
 

7. CONCLUSION 
 
Graphene potential in the oil industry is vast and 
ever growing. It would be evident from this article 
that this situation is about to change or may 
remain regressive due to change in energy shift. 
The article also outlined the possible                
directions for future research and it is hoped that 
future work along these lines would help in 
addressing those concerns existing in the oil 
industry, enabling them to realize 
commercialization of graphene products in the oil 
industry. 
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