

Volume 36, Issue 11, Page 554-574, 2024; Article no.IJPSS.127267 ISSN: 2320-7035

Phenotypic Variation in a Panel of 149 varieties of Cassava (*Manihot esculenta* Crantz): A Pre-Breeding Investigation in Togo

Gmakouba Tighankoumi ^{a,b,c++*}, Dzidzienyo K. Daniel ^{c,d}, Some Koussao ^e, Tongoona Pangirayi ^c and Asante I. Kwame ^c

^a Laboratory of Applied Agronomic and Biological Sciences (LaSABA), High Institute of Agricultural Professions (ISMA), University of Kara, BP 404, Kara, Togo. ^b Togolese Institute of Agronomic Research (ITRA), BP 2318, Lomé, Togo.

^c West Africa Centre for Crop Improvement (WACCI), University of Ghana (UG), PMB 30, Accra, Ghana.

^d Biotechnology Centre, University of Ghana (UG), P. O. Box LG 1195, Legon, Accra, Ghana. ^e Institute for Environment and Agricultural Research (INERA /CREAF-Kamboinsé), 01 BP 470 Ouagadougou 01, Burkina Faso.

Authors' contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: https://doi.org/10.9734/ijpss/2024/v36i115170

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/127267

> Received: 25/09/2024 Accepted: 27/11/2024 Published: 29/11/2024

Original Research Article

** Agronomist, Plant Breeder and Lecturer at University of Kara (Togo)

*Corresponding author: E-mail: tgmakouba@wacci.ug.edu.gh; junior.itra@gmail.com;

Cite as: Tighankoumi, Gmakouba, Dzidzienyo K. Daniel, Some Koussao, Tongoona Pangirayi, and Asante I. Kwame. 2024. "Phenotypic Variation in a Panel of 149 Varieties of Cassava (Manihot Esculenta Crantz): A Pre-Breeding Investigation in Togo". International Journal of Plant & Soil Science 36 (11):554-74. https://doi.org/10.9734/ijpss/2024/v36i115170.

ABSTRACT

Evaluating the genetic diversity within a plant species is crucial for identifying genes that control important biological functions, facilitating the rationale for developing new varieties. The genetic diversity in a panel of 149 cassava varieties was explored to assess its nature, pattern, and differentiation. The experiment was conducted at the Breeding Station of Davié in the forestsavanna transition zone characterized by a bimodal rainfall pattern. One hundred and fourty nine varieties were planted in an augmented block design, with five improved and released varieties as check genotypes. Data on sixteen phenotypic traits were collected based on cassava traits ontology. A high diversity coefficient of 0.78 was observed among varieties. Multivariate analysis revealed all assessed traits as discriminative for cassava varieties. Principal Component Analysis identified traits such as fresh root yield, plant vigour, number of roots per plant, Cassava Mosaic Disease (CMD) severity, aboveground biomass, leaf lobe dimensions, Cassava Bacterial Blight (CBB) severity, plant height, height to first branching, petiole length, harvest index as major contributors to the variability of the germplasm. Cluster and canonical analyses delineated seven significant groups, characterized by traits like CMD and CBB resistance, vigorous growth, high canopy and fresh root yield, high harvest index and root dry matter content. The findings provide a foundation for informed selection of parental lines in developing new high-yielding and CMDresistant cassava varieties.

Keywords: Phenotypic diversity; phenotypic trait; multivariate analysis; cassava varieties; Togo.

1. INTRODUCTION

Cassava (Manihot esculenta Crantz) is a crucial carbohydrate source in the tropical and subtropical regions of Africa, Latin America, and Asia. The crop plays a significant role in food security for millions of families, especially in developing areas where it is grown on a subsistence basis (Amelework & Bairu, 2022; Soro et al., 2024). Cassava constitutes a major source of raw material for the extraction of starch, finding wide applications across various industries including food, cosmetic, chemical, and pharmaceutical sectors (Ogbonna et al., 2021). The global cassava production in 2022 reached 360.16 million tons, cultivated across 32.04 million hectares, and achieved an average vield of 10.31 tons per hectare (FAO, 2022).

In Togo, cassava plantations covered 305,160 hectares in 2022, yielding 1.22 million tons of cassava roots. The average yield was 4.02 tons per hectare, which falls below the global productivity levels (FAO, 2022). Different varieties are currently grown and used across the country in Togo (Kombaté *et al.*, 2017).

Cassava is a diploid species with 36 chromosomes (2n=36) and exhibits monoecious characteristics. Its fertilization predominantly occurs through allogamous processes, rendering it highly heterozygous (Giles *et al.*, 2018) resulting in high genetic diversity, despite its vegetative propagation (Giles *et al.*, 2018). Cassava exhibits remarkable adaptability to

various edaphoclimatic conditions, including lowfertility soils and drought (Oliveira-Silva *et al.*, 2014). Given these traits, the cultivation of cassava is attractive to resource-constrained farmers. Small-scale farming is vital for preserving genetic resources used in breeding programs (Houngue *et al.*, 2018).

In traditional cassava farming in West Africa, it is typical for multiple cassava varieties to grow together in the same field or adjacent fields. This cross-pollination coexistence, enabled by between the different varieties, leads to an increase in the genetic diversity of cassava plants within fields (Agre et al., 2017). Furthermore, the regular sharing of planting materials among farmers leads to a high diversity of genotypes in the fields (Oliveira et al., 2014). As a result, accessions from different localities might share the exact name, while a single accession could be known by multiple names. Often, this leads to the occurrence of duplicate accessions gathered from various locations (Filipe Schmidt Schuh et al., 2021; Oliveira et al., 2014; Hurtado et al., 2001). Eliminating duplicates from collected germplasm is essential for effective breeding initiatives.

Landraces with different historical origins, distinct identities, values, and adaptations constitute the dominant parts of the cultivated variability exhibited by cassava in Togo. Recent studies reported the presence of moderate diversity in Togo (Kombate *et al.*, 2017). The tradition of continued domestication from the wild relatives by farmers contributes to the high level of varietal and genetic diversity. In the cassava-producing areas, farmers face many constraints (pest and disease infestation, poor soil fertility, lack of access to high yielding varieties, underdeveloped agronomic practices, etc.) that could potentially lead to severe yield losses and rapid genetic erosion. It is, therefore, wise to systematically collect and assess available cassava landrace diversity for proper maintenance and identify desirable genes and alleles of interest. Moreover, a comprehensive breeding program relies on a deep understanding of the variability existing at the genetic level within the current population. Consequently, evaluating the genetic diversity among genotypes is critical to supply breeding programs with distinct genetic resources. Characterizing and understanding the genetic variability in a germplasm, using morphological and agronomic traits, is fundamental for directing it conservation and management strategies (Ferguson et al., 2019); and to aid improvement programs to identify genotypes that are superior and well adapted to new production systems (Zago et al., 2021).

Different techniques exist for cassava genetic diversity assessment. Of these techniques, morphological markers are routinely used (Oliveira et al., 2015; Karim et al., 2020) unlike molecular markers (Elias et al., 2000; Elibariki et al., 2013; Rabbi et al., 2014; Adjebeng-danquah et al., 2020; Soro et al., 2023). Morphological descriptors, however, are highly influenced by the environment factors. In contrast, molecular markers are easily detectable, stable, and are not under the influence of environmental (Asare et al.. 2011: Rabbi et al.. 2014). Agromorphological characterization, compared to molecular characterization, is straightforward, cost-effective, and easy to use. Although plant morphology and agronomic performance are influenced by environmental factors and the measurements can be subjective, agromorphological evaluations are considered the primary indicators of agronomic value and are essential for the taxonomic classification of plants (Rabbi et al., 2015b; Soyode and Oyetundi, 2009). The use of agronomic markers is, an accurate method of identifying heterotic groups, superior and stable varieties for farmers and breeding purpose. However, and only a few agronomic data exist for the popular landraces representing a significant part of the cultivated cassava variability in Togo. Local landraces, however, harbor potential sources of genes for adaptation and quality traits. Therefore, proper

understanding of their genetic variability is crucial for the efficient use, management, and conservation of cassava landraces. Thus, the main objective of this study was to assess the genetic variability among cassava cultivars collected in Togo using key agronomic and disease traits. This pre-breeding study will provide important insights of the overall diversity in traits of interest, which is essential for creating crossing panels with diverse characteristics. Selecting and hybridizing parental lines from the identified heterotic groups will help maximize diversity and exploit population heterosis in a cassava breeding program.

2. MATERIALS AND METHODS

2.1 Plant Materials

The germplasm evaluated was composed of a set of one hundred (100) landraces; thirty-five (35) improved varieties introduced from the IITA Cassava Breeding Unit, seven (7) varieties obtained from the gene bank of the High School of Agronomy (ESA) and two improved varieties obtained from Embrapa Mandioca Fruticultura (Cruz das Almas, BA, Brazil). Five improved varieties (high yielding and CMD resistant) namely Gbazekoute, TMS 96_0409, TMS 96_0166, Sika Bankye, and Ampong bankye, released by the National Cassava breeding Unit were used as checks (Table 1).

2.2 Experimental Site

The germplasm was evaluated in one cropping season in 2018 at ITRA, Davié, Togo (latitude: 6° 23' 5" N; longitude: 1° 12' 18" E; 76 m above sea level) breeding station located in the cassava production belt. This site is representative of typical cassava-growing conditions in Togo and is characterized by a bimodal rainfall pattern. During the experimentation, a total rainfall of 1231.5 mm was recorded for 80 rainy days. July was the highest monthly rainfall with 207.8 mm for 14 rainy days, while November was the lowest monthly rainfall with 8.7 mm for 4 days rainy days. The annual average temperature was 28.5°C. The vegetation is characterized by herbaceous vegetation (Banito et al., 2010). The site's soil, suitable for cassava cultivation (Ezui, 2017) and known as 'Terres de Barre,' is characterized as sandy-clay with 70% sand, 3.8% silt, 8.1% clay, acid pH (H₂O 1:1) 5.5, 1.05% organic matter, 0.41% total nitrogen (N). 10 ppm available phosphorus (P), and cation exchange capacity (CEC) of 2.89 milliequivalents (meq)/100g of soil in the top 15 cm samples (Sogbedji et al. 2015).

N٥	Code	Variety	Туре	Origin	N٥	Code	Variety	Туре	Origin
1	GHCA_C1	Sika Bankye	Improved	Ghana	27	IITA_22	TMS 92_0326	Improved	Togo
2	GHCA_C2	Ampong Bankye	Improved	Ghana	28	IITA_23	TMS 96_1708	Improved	Togo
3	IITA_C3	TMS 95_0166	Improved	IITA	29	IITA_24	TMS 98_2132	Improved	Togo
4	IITA_C4	TMS 96_0409	Improved	IITA	30	IITA_25	TMS 99_0554	Improved	Togo
5	TGCA_C5	Gbazekoute	Landrace	Togo	31	TGCA_1	Agbede	Landrace	Togo
6	IITA_1	TMS 01_0006	Improved	Togo	32	TGCA_2	Agou	Landrace	Togo
7	IITA_2	TMS 00_0354	Improved	Togo	33	TGCA_3	Aguidagba	Landrace	Togo
8	IITA_3	TMS 00_0364	Improved	Togo	34	TGCA_4	Akaleyo	Landrace	Togo
9	IITA_4	TMS 01_0034	Improved	Togo	35	TGCA_5	Akebou	Landrace	Togo
10	IITA_5	TMS 01_0046	Improved	Togo	36	TGCA_6	Akoss	Landrace	Togo
11	IITA_6	TMS 01_0093	Improved	Togo	37	TGCA_7	Ankra atihe	Landrace	Togo
12	IITA_7	TMS 01_0098	Improved	Togo	38	TGCA_8	Akpadjin Feto	Landrace	Togo
13	IITA_8	TMS 01_0131	Improved	Togo	39	TGCA_9	Alagno	Landrace	Togo
14	IITA_9	TMS 01_0379	Improved	Togo	40	TGCA_10	Ankra 3	Landrace	Togo
15	IITA_10	TMS 01_1085	Improved	Togo	41	TGCA_11	Ankra Atiyibo	Landrace	Togo
16	IITA_11	TMS 01_1086	Improved	Togo	42	TGCA_12	Assiatoe	Landrace	Togo
17	IITA_12	TMS 01_1097	Improved	Togo	43	TGCA_13	Atidjin1	Landrace	Togo
18	IITA_13	TMS 01_1206	Improved	Togo	44	TGCA_14	Atidjin 2	Landrace	Togo
19	IITA_14	TMS 01_1224	Improved	Togo	45	TGCA_15	Atidjin Poli	Landrace	Togo
20	IITA_15	TMS 01_1368	Improved	Togo	46	TGCA_16	Atidokpo	Landrace	Togo
21	IITA_16	TMS 01_1368(2)	Improved	Togo	47	TGCA_17	Atihe1	Landrace	Togo
22	IITA_17	TMS 01_1371	Improved	Togo	48	TGCA_18	Atiyibo 1	Landrace	Togo
23	IITA_18	TMS 01_1610	Improved	Togo	49	TGCA_19	Atiyobo2	Landrace	Togo
24	IITA_19	TMS 01_1662	Improved	Togo	50	TGCA_20	Awou	Landrace	Togo
25	IITA_20	TMS 01_1797	Improved	Togo	51	TGCA_21	Awouye	Landrace	Togo

Table 1. List of the plant material used for the characterization

N٥	Code	Variety	Туре	Origin	N٥	Code	Variety	Туре	Origin
53	TGCA_23	Badjogou	Landrace	Togo	79	TGCA_48	Kanbom Bantchi	Landrace	Togo
54	TGCA_24	Bazoka	Landrace	Togo	80	TGCA_49	Kanigbeli 1	Landrace	Togo
55	TGCA_25	Bob	Landrace	Togo	81	TGCA_50	Kanigbeli 2	Landrace	Togo
56	TGCA_26	Bob Assou	Landrace	Togo	82	TGCA_51	Kataoli	Landrace	Togo
57	TGCA_27	Bob Yegue	Landrace	Togo	83	TGCA_52	Katawole	Landrace	Togo
58	BRS_1	BRS Caipira	Landrace	Brazil	84	TGCA_53	Kidirondi	Landrace	Togo
59	TGCA_28	Degaule	Landrace	Togo	85	TGCA_54	Kisseimou Koutowou	Landrace	Togo
60	TGCA_29	Djakoagni	Landrace	Togo	86	TGCA_55	Kola	Landrace	Togo
61	TGCA_30	Djeble	Landrace	Togo	87	TGCA_56	Kolaoung	Landrace	Togo
62	TGCA_31	Djolaoba	Landrace	Togo	88	TGCA_57	Kolmon kamkam	Landrace	Togo
63	TGCA_32	Djoliba	Landrace	Togo	89	TGCA_58	Kossikouma	Landrace	Togo
64	TGCA_33	Donmoyibo	Landrace	Togo	90	TGCA_59	Koutowou 2	Landrace	Togo
65	TGCA_34	Fetonegbodji	Landrace	Togo	91	TGCA_60	Kperoung Felgou	Landrace	Togo
66	TGCA_35	Flawavi	Landrace	Togo	92	TGCA_61	Kperoung Mamougue	Landrace	Togo
67	TGCA_36	Gabonvi-ESA	Landrace	Togo	93	TGCA_62	Kpla	Landrace	Togo
68	TGCA_37	Gbadovi	Landrace	Togo	94	TGCA_63	Loki	Landrace	Togo
69	TGCA_38	Gbaze- ESA	Landrace	Togo	95	TGCA_64	M'beou	Landrace	Togo
70	TGCA_39	Vivigbaze	Landrace	Togo	96	TGCA_65	MM96/5280	Improved	Togo
71	TGCA_40	Ghana spana	Landrace	Togo	97	TGCA_66	MM96/JW2	Improved	Togo
72	TGCA_41	Gnidou	Landrace	Togo	98	TGCA_67	Nigeria Fleur	Landrace	Togo
73	TGCA_42	Hogninvo 1	Landrace	Togo	99	TGCA_68	Nigeria Kikpaou	Landrace	Togo
74	TGCA_43	Hogninvo 2	Landrace	Togo	100	TGCA_69	Nigeria Kissaimon	Landrace	Togo
75	TGCA_44	Inconnu	Landrace	Togo	101	TGCA_70	N'tossou	Landrace	Togo
76	TGCA_45	IRAT- Davie	Landrace	Togo	102	TGCA_71	Ankra atihe	Landrace	Togo
77	TGCA_46	Jhonson	Landrace	Togo	103	TGCA_72	Okpoli	Landrace	Togo
78	TGCA_47	Kalba	Landrace	Togo	104	TGCA_73	Pela	Landrace	Togo

Table 1. Continued

N٥	Code	Variety	Туре	Origin	N°	Code	Variety	Туре	Origin
105	TGCA_74	Peloumkoute	Landrace	Togo	131	IITA_31	D00_126	Improved	IITA
106	TGCA_75	Penivi	Landrace	Togo	132	IITA_32	D00_54	Improved	IITA
107	TGCA_76	Sabe	Landrace	Togo	133	IITA_33	D00_166	Improved	IITA
108	TGCA_77	Sankara	Landrace	Togo	134	TGCA_94	Toma 9	Landrace	Togo
109	TGCA_78	Sassakawa	Landrace	Togo	135	TGCA_95	CVTM4	Landrace	Togo
110	TGCA_79	Sorad	Landrace	Togo	136	TGCA_96	Toma 162	Landrace	Togo
111	TGCA_80	Sawa	Landrace	Togo	137	TGCA_97	Unknown 02	Landrace	Togo
112	TGCA_81	Spana Assou	Landrace	Togo	138	IITA_34	TMS 96_1317	Improved	Togo
113	TGCA_82	Spana Yegue	Landrace	Togo	139	IITA_35	TMS 96_0304	Improved	Togo
114	BRS_2	BRS Tapioqueira	Landrace	Brazil	140	IITA_36	TMS 96_0102	Improved	Togo
115	TGCA_83	Tassiodo	Landrace	Togo	141	IITA _37	TMS 96_0869	Improved	Togo
116	TGCA_84	Tchigouevi	Landrace	Togo	142	IITA _38	TMS 96_1642	Improved	Togo
117	TGCA_85	Tetetidadjin	Landrace	Togo	143	IITA _39	TMS 96_0590	Improved	Togo
118	TGCA_86	TME 419	Improved	Togo	144	IITA _40	TMS 96_539	Improved	Togo
119	TGCA_87	TM1	Improved	Togo	145	TGCA_98	TMS 96_1565	Improved	Togo
120	TGCA_88	TME1	Improved	Togo	146	IITA _42	TMS 96_0603	Improved	Togo
121	TGCA_89	TME 696	Improved	Togo	147	IITA_43	TMS 30572	Improved	IITĀ
122	TGCA_90	Touwevi	Landrace	Togo	148	TGCA_99	KPEM_10_03	Improved	Togo
123	TGCA_91	Tuaka Atsu	Landrace	Togo	149	IITA_44	TMS 4(2) 1425	Improved	IITĀ
124	TGCA_92	Tuaka komi Mami	Landrace	Togo	129	IITA_29	D00_208	Improved	IITA
125	TGCA_93	Yabaka	Landrace	Togo	130	IITA_30	D00_14	Improved	IITA
126	IITA_26	D00_8300	Improved	IITĂ				-	
127	IITA_27	M94_0583	Improved	IITA					
128	IITA_28	D00_137	Improved	IITA					

Table 1. Continued

N°	Trait	Code	Assessment date	Method of assessment
1	Plant vigour	Vigour	1, 3 and 6 MAP	
2	Width of leaf lobe (cm)	Wid_LeaLo	6 MAP	
3	Length of leaf lobe (cm)	Len_LeaLo	6 MAP	
4	Petiole length (cm)	Pet_Len	6 MAP	
5	Ratio length/width lobe (cm)	RaLen_WidLea	6 MAP	
6	Height to first branching (cm)	HtFi_Bra	12 MAP	Guevara et al.
7	Plant height (cm)	PltHt	12 MAP	(2010)
8	Numbers of roots per plant	RtPlt	12 MAP	()
9	Above ground biomasse (kg)	AbG_Biom	12 MAP	
10	Fresh Root Yield (t.ha-1)	FRY	12 MAP	
11	Mean Root weight (kg)	MRW	12 MAP	
12	Harvest index	HI	12 MAP	
13	Dry matter content (%)	DMC	12 MAP	Guevara et al.
14	Fresh Root yield per plant (kg)	FRY_Plt	12 MAP	(2010)

Table 2. Traits evaluated in the characterization of 149 cassava varieties

MAP = Months After Planting

2.3 Experiment Establishment and Maintenance

The materials were planted using an augmented block design with 12 blocks and sixteen plants per plot. A plot consisted of four rows of four meters long. The 144 cultivars were planted as tested genotypes, while the remaining 5 improved and released varieties were planted as check genotypes within each block. A spacing of 1 m × 1 m was used between ridges and plants on ridges. Cassava cuttings, each 15-20 cm long and sourced from healthy, mature plants, were manually planted at a depth of around 10 cm. Cultivar Main 27, highly susceptible to CMD, was planted 1.5 months in advance as spreader rows around the whole experiment and in between two adjacent blocks to ensure and enhance transmission of the disease by whiteflies (Bemisia tabaci) (Soyode et al., 2008; Oyetunji et al., 2009; Avijala et al., 2015). The experiment was conducted under rainfed conditions without application of pesticides and fertilizers. Weed control was done through regular hand weeding to ensure a weed-free environment. The trial was harvested 12 months after planting (MAP).

2.4 Phenotypic Data Collection

Fourteen traits were recorded from the inner eight (8) plants within each plot according to the cassava crop ontology (Guevara *et al.*, 2010). The traits, the date and the method of assessment are summarized in Table 2. Data on the CMD were collected at 1, 3, and 6 MAP using a symptom severity scale of 1-5 (Adriko *et al.*, 2011; Peter *et al.*, 2016). CBB data were also collected at 3, 6, and 9 MAP (Banito *et al.*, 2010). The incidence of disease was measured by recording the proportion of diseased plants in each plot. At harvest, the inner 8 plants in each plot were uprooted. Agronomic data, including fresh root yield, storage roots number per plant, above-ground biomass, storage root weight, and harvest index were collected (Guevara *et al.*, 2010). The specific gravity method was used to estimate the root dry matter content (Ceballos *et al.*, 2016).

2.5 Phenotypic Data Analysis

Data collected were transformed to achieve equalization of variances and normalization of observations using the Approximate Covariance Estimation for Clustering procedure (proc aceclus) in SAS version 9.4. The square root transformation was used for counts data while the angular one was used for percentages data. The mixed model procedure (proc mixed) was employed to analyze the unbalanced dataset, enabling the calculation of means for genotypes adjusted to a common environmental effect (Federer et al., 1975; Oliveira et al., 2014; Silva et al., 2016). Analyse of variance (ANOVA) was computed based on the plot mean value following a single trial with test varieties (g) and t check varieties statistical model to test the significance of entries (tested varieties and checks taken together), the equality of check varieties, and varieties with check effects (Federer *et al.*, 1975; Sraphet *et al.*, 2011). Correlation analysis among traits was carried out using Pearson correlation analysis. The relative contribution of each trait to the diversity of the

germplasm was determined through Principal Components Analysis (PCA), which was made based on the correlation matrix. Cluster analysis which constitutes a simple and less demanding model for grouping varieties hierarchically into homogenous groups was made using Ward's method (Rabbi et al., 2015b). Based on the cubic clustering criterion (CCC), Pseudo F, and the Pseudo t² methods, the optimal number of clusters was determined. The indication of the optimal number of clusters is an innovative aspect of the Wards method compared with the Unweighted Pair-Group Mean Average method (Pereira et al., 2012). Canonical analysis was run in SAS 9.4 to identify traits that were relevant in grouping the clusters.

3. RESULTS

3.1 Variability and Correlation of Disease and Agronomic Traits

Significant variability was observed among treatments (tested varieties and checks taken together, among tested varieties, and checks vs tested varieties) for all the traits evaluated (p = 0.05). However, the coefficient of variation was moderate (between 10 and 20%) for traits such as leaf lobe length, dry matter content, and, plant height. The remaining 13 traits exhibited a high (greater than 20%) coefficient of variation (Table 3).

Pearson correlation analysis of disease and agronomic traits revealed significant correlations among some traits (Fig.1). CMD severity correlated negatively with plant vigour (r = -0.78. p = 0.01), number of roots per plant (r = -0.52, p = 0.01), fresh root yield (r = -0.68, p = 0.01), fresh root yield per plant (r = -0.46, p = 0.01), mean root weight (r = -0.37, p = 0.05), above ground biomass (r = -0.64, p = 0.01), harvest index (r = -0.53, p = 0.01); and positively with CMD incidence (r = 0.90, p = 0.01) and CBB severity (r = 0.46, p = 0.05) (Fig. 1). Fresh root yield correlated positively with plant vigour (r = 0.56, p = 0.01), number of roots per plant (r = 0.69, p = 0.01), fresh root yield per plant (r = 0.86, p = 0.01), mean root weight (r = 0.69, p =0.01) and the harvest index (r = 0.35, p = 0.05); and negatively with canopy yield (r = -0.52, p = 0.01) (Fig. 1). Mean root weight was positively correlated with plant vigour (r = 0.34, p = 0.05), fresh root yield (r = 0.69, p = 0.01), and fresh root yield per plant (r = 0.80, p = 0.01). Significant negative correlation was also found between mean root weight and canopy yield (r = -0.52, p = 0.01). Harvest index correlated negatively with

plant height (r = -0.36, p = 0.05), canopy yield (r = -0.44, p = 0.01), the width of leaf lobe (r = -0.33, p = 0.05), CMD severity (r = -0.53, p =0.05); and positively with the number of roots per plant (r = 0.30, p = 0.05), fresh root yield (r = 0.35, p = 0.05), and the dry matter content (r = 0.46, p = 0.05) in roots (Fig. 1). Plant height was correlated positively with vigour (r = 0.36, p =0.05), above ground biomass yield (r = 0.49, p =0.01), height at first branching (r = 0.41, p = 0.01), petiole length (r = 0.38, p = 0.05); but negatively correlated with harvest index (r = -0.36, p = 0.05). Roots dry matter content was correlated positively with harvest index (r = 0.46), CMD severity (r = 0.46), and CMD incidence (r =0.41) at p = 0.05. However, the correlation of roots dry matter content with fresh root yield was not significant (Fig. 1).

The first six PCAs with eigenvalues greater than one and explaining about 75.43% of the total variability were retained based on the Kaiser criterion (Table 4.). The first principal component (PC1) had an eigenvalue of 4.88, explaining 27.14% of the variability within the germplasm. Seven traits made significant contributions to PC1, including fresh root vield, number of roots per plant, plant vigor, root weight, fresh root vield per plant, CMD severity, and incidence, PC2 had an eigenvalue of 3.03, accounting for 16.83% of the variability, with the length of the leaf lobe, plant height, petiole length, harvest index, and the aboveground biomass, as the primary contributing traits. PC3 with an eigenvalue of 1.94 was mainly defined by CBB severity. PC4 with an eigenvalue of 1.39 was defined by the width of the leaf lobe. PC5 with an eigenvalue of 1.22 was correlated with height to first branching while the roots dry matter content was defined as the most important trait for PC6.

3.2 Structure of the Phenotypic Diversity Based on Disease and Agronomic Traits

The structure of the phenotypic diversity was visualized by plotting the PC scores with respect to PC1 vs PC2 axes (Fig. 2) and PC1 vs PC3 (Fig. 3). Quadrant 2 grouped the tallest cultivars with high canopy and fresh root yield, low harvest index, and tolerance to CMD. Conversely, quadrant 3 is mainly made of shortest varieties exhibiting high yield, low canopy yield, and good harvest index with a superior level of resistance to CMD. Quadrant 1 is composed of low-yielding varieties with high plant height, and highly susceptible to CMD. Varieties depicted in quadrant 4 exhibited low fresh root yield, canopy

yield and plant height, good harvest index; and were susceptible to CMD (Fig. 2).

With regards to Fig. 3, four phenotypic groups were discerned. Group 1 (G1) cultivars are highly susceptible to CMD and low vielding. Conversely, Group 2 (G2) is made of CMD resistant cultivars with a slightly higher yield and exhibited high CBB incidence and severity. Group 3 (G3) is mainly composed of highyielding, CMD, and CBB resistant varieties. Group 4 (G4) is composed of highly susceptible CMD varieties with a slightly lower yield and exhibited low CBB incidence and severity.

Cluster analysis revealed that the optimal number of clusters required was ten, with a maximum R-square value of 0.736; based on the cubic clustering, Pseudo-F, and the Pseudo-t² criteria (Table 5), Clusters 4, 8, and 10 contained only one accession each and therefore were considered as outliers. Cluster 1 was constituted of 75 varieties, cluster 2 of 14 varieties, cluster 6 had 37 varieties, cluster 7 contained 8 varieties, cluster 3 was made of 6 varieties, cluster 9 of 4 varieties, whereas cluster 5 was composed of 2 varieties (Fig. 4). The maximum likelihood cultivar assignment ranged from 0.69 to 1 (Table 6), denoting a strong phenotypic structure of the germplasm. A comparison of clusters based on the phenotypic profile plots of each cluster (Fig. 5) revealed that they seemed to be similar in plant vigour, leaves characteristics (petiole length, leaf lobe length, width of leaf lobe), height to first branching, plant height, number of roots per plant, harvest index, and roots dry matter content. However, the clusters differed in terms of fresh root yield, above-ground biomass, CMD, and CBB resistance (Fig. 5). Cluster 9 is composed of high-yielding cultivars with a low CMD incidence, high CBB incidence, and moderate canopy yield. Unlike cluster 9. cluster 6 and 7 cultivars exhibited a high CMD incidence, low canopy, and fresh root yield; but differ in CBB resistance. Cluster 1 is made of varieties with a high CBB incidence, moderate CMD incidence, and fresh root yield. Cluster 2 is constituted of varieties that exhibited a low CMD and CBB incidence, moderate canopy, and fresh root yield. Cluster 3 varieties had moderate fresh root and canopy yield, low CMD incidence, and were highly susceptible to CBB (Fig. 5).

The cophenetic distance matrix displaying the inter-cluster genetic distance values is summarized in Table 7. The highest genetic

distance was recorded between clusters 6 and 10, followed by clusters 7 and 10, clusters 4 and 7, clusters 4 and 6, clusters 7 and 9, and clusters 1 and 10; indicating wide genetic divergence among the clusters. The shortest distance was observed between Cluster 2 and Cluster 3, followed by Clusters 1 and 3, and Clusters 3 and 5.

3.3 Differentiation of Clusters Based on Disease and Agronomic Traits

test for eigenvalue significancy Bartlett's revealed that the first four canonical variables were significant and accounted for 99.61% of the divergence among the 10 phenotypic clusters delineated through cluster analysis (Table 8). The first canonical variate (CAN1) was mainly correlated with CMD severity, CMD incidence, plant vigour, and the number of roots per plant. The second canonical variate (CAN2) was positively defined by traits such as CBB severity and CBB incidence. The third canonical variate (CAN3) correlated negatively with fresh root yield, mean root weight, and fresh root yield per plant. The fourth canonical variate was correlated positively with the harvest index and negatively with the leaf lobe width and the above ground biomass (Table 8).

The Box test was also highly significant (M of Box = 38.52; F-value =1.458; p-value < 0.0001) confirming the validity of the study in terms of assignment to the clusters. variety The unidimensional test of equality of clusters means (Table 9) revealed that CMD severity, CBB severity, width of leaf lobe, dry matter content, above-ground biomass, fresh root yield, and the harvest index were key traits discriminating the clusters. The performance clusters based on discriminating traits are shown in Table 10. It was observed from the comparison of clusters revealed that clusters 7, 8, and 9 were constituted of CMD highly susceptible genotypes but differed in traits such as above-ground biomass, fresh root yield, and dry matter. In contrast, clusters 1, 4, 10, and 6 are mainly composed of CMD resistant genotypes with high fresh root yield, high canopy yield, and low dry matter, but differ in terms of harvest index. Clusters 2, 3, and 5 are made of CMD moderately susceptible varieties and differ in terms of CBB susceptibility, fresh root yield, number of roots per plant, vigour, dry matter content, and harvest index (Fig. 6).

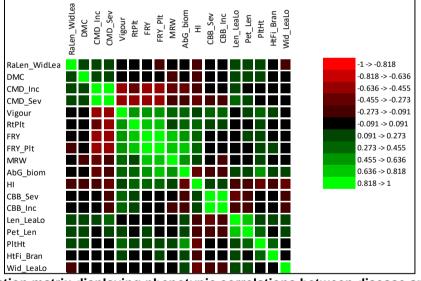
Traits		Mean So	uare			Range		
	Entries	Among	Access vs	Error				CV
	(df =148)	Accessions	Checks	(df=44)	Min	Mean	Max	(%)
		(df = 143)	(df = 1)					
CMD_Sev	2.07**	1.93**	34.07**	0.02	1.00	2.37	5.00	56.90
CBB_Sev	1.17**	1.09**	6.73*	0.15	1.00	2.64	4.75	36.30
Vigour	0.83**	0.78*	13.53	0.02	1.00	3.91	5.00	21.80
Len_LeaLo	6.61**	6.16**	80.71**	0.45	10.50	15.25	22.33	15.70
Wid_LeaLo	5.40**	4.93**	2.44**	1.67	1.93	4.60	14.67	29.20
RaLen_WidLea	0.60**	0.56**	1.33**	1.04	2.23	3.62	22.05	47.00
Pet_Len	38.24**	35.59**	461.07**	3.00	2.17	21.36	32.25	26.20
PltHt	2124.50*	2124.50*	7701.76*	644.53	1.49	2.36	3.47	18.20
HtFi_Bran	2353.36**	2203.34**	18699.89*	174.65	0.00	0.88	2.20	50.80
AbG_biom	400.35**	398.68**	1437.53**	99.13	5.00	29.61	87.00	56.60
FRY	406.87**	391.18**	2396.79**	112.57	3.36	37.75	75.00	43.60
RtPlt	8.084**	7.66**	121.68**	2.29	1.60	7.08	13.40	30.00
DMC	16.48**	15.67**	245.75**	4.39	20.36	28.67	39.95	12.90
HI	0.0132**	0.0127**	0.02	0.004	0.21	0.57	0.80	19.10
MRW	43.71*	42.83*	8.69	26.38	0.20	0.54	1.33	35.70
FRY_Plt	5495.82*	683.13*	63776.46**	4635.54	0.34	4.93	9.63	51.40

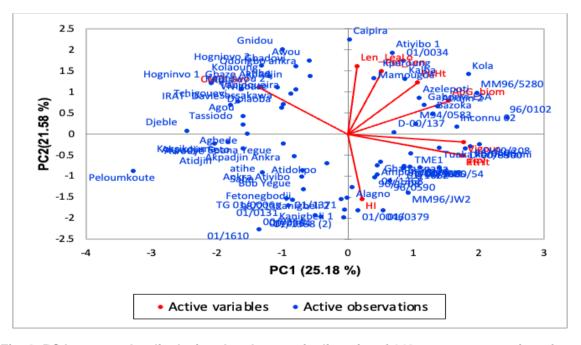
 Table 3. Mean square, range, and coefficient of variation of disease and agronomic traits

 evaluated on 149 cassava genotypes

**, * = significant at 5% and 1% probability levels, respectively; df = Degree of freedom;CV = coefficient of variation CMD_Sev = Cassava Mosaic Disease severity score, CBB_Sev = Cassava Bacterial Blight severity score, Len_LeaLo = Length of leaf lobe (cm), Wid_LeaLo = Width of leaf lobe (cm), RaLen_WidLea = Ratio of lobe length to lobe width of central leaf lobe,

Pet_Len = Petiole length (cm), PltHt = Plant height (m), HtFi_Bran = Height to first branching (cm), AbG_biom = Aboveground biomasse (t.ha¹), FRY = Fresh root yield (t.ha¹), RtPlt = Number of roots per plant, DMC = Dry matter content percentage, HI = Harvest index, MRW = Mean root weigth (kg), FRY_Plt = Fresh root yield per plant (kg)




Fig. 1. Correlation matrix displaying phenotypic correlations between disease and agronomic traits evaluated on 149 cassava cultivars

Traits shown in the matrix are: CMD_Inc = Cassava Mosaic Disease incidence, CMD_Sev= Cassava Mosaic Disease severity score, CBB_Inc= Cassava Bacterial Blight Incidence, CBB_Sev= Cassava Bacterial Blight Severity score, Len_LeaLo= Length of leaf lobe, Wid_LeaLo= Width of leaf lobe, RaLen_WidLea= Ratio of lobe length to lobe width of central leaf lobe, Pet_Len = Petiole length, HtFi_Bran= Height to first branching, PltHt= Plant height, AbG_biom= Above ground biomasse, FRY= Fresh root yield, RtPlt= Number of roots per plant, DMC= Dry matter content percentage, HI= Harvest index, MRW= Mean root weigth, FRY_Plt= Fresh root yield per plant. Colour of the boxes represents the correlation value. The scale is indicated in the bar at the right of the matrix. Black boxes indicate non-significant correlations (p=0.05)

Eigenvalue	PC1	PC2	PC3	PC4	PC5	PC6
C	4.885	3.03	1.947	1.395	1.224	1.097
Variance explained (%)	27.14	16.831	10.814	7.749	6.09	6.096
Cumulative (%)	27.14	43.971	54.785	62.534	69.336	75.432
CMD_Sev	-0.733	0.311	0.089	0.197	-0.429	0.231
CMD_Inc	-0.724	0.195	0.19	0.177	-0.436	0.214
CBB_Sev	0.156	-0.516	0.722	-0.114	-0.227	-0.092
CBB_Inc	0.095	-0.471	0.789	-0.08	-0.187	-0.073
Vigour	0.744	0.021	0.389	-0.019	0.234	-0.036
Len_LeaLo (cm)	-0.147	0.731	0.128	0.377	0.117	-0.347
Wid_LeaLo (cm)	0.044	0.494	-0.029	-0.529	-0.134	-0.286
Pet_Len (cm)	0.021	0.696	0.229	0.324	0.112	-0.41
PltHt (cm)	0.241	0.514	0.471	-0.039	0.051	0.148
AbG_biom (t.ha ⁻¹)	0.57	0.581	0.022	-0.450	-0.141	0.166
FRY (t.ha ⁻¹)	0.913	0.138	-0.106	0.183	-0.237	0.153
RtPlt	0.738	-0.016	0.15	0.138	0.121	-0.076
MRW (Kg)	0.693	0.168	-0.24	0.172	-0.377	0.183
FRY_Plt (Kg)	0.914	0.127	-0.099	0.18	-0.236	0.151
DMC (%)	-0.148	0.236	0.334	0.276	0.1	0.35
HI	0.31	-0.615	-0.192	0.56	-0.043	-0.2

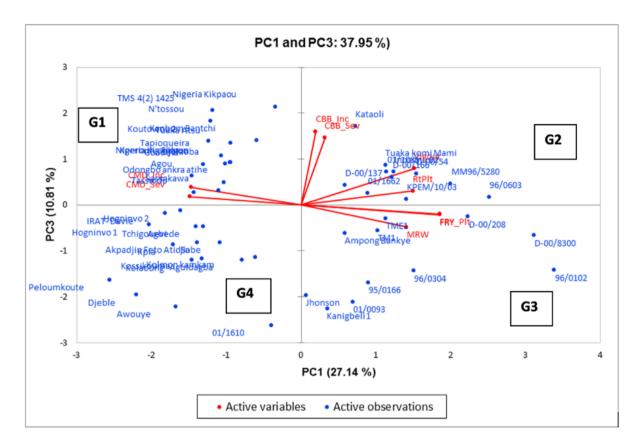


 Table 4. PCA of 16 disease and agronomic traits and their contributions to the total variability among 149 cassava cultivars

Traits that contributed most to the phenotypic variation of a particular component are in bold and underlined. CMD_Inc = Cassava Mosaic Disease incidence, CMD_Sev = Cassava Mosaic Disease severity score, CBB_Inc = Cassava Bacterial Blight incidence, CBB_Sev = Cassava Bacterial Blight severity score Len_LeaLo = Length of leaf lobe, Wid_LeaLo = Width of leaf lobe, Pet_Len = Petiole length, PltHt = Plant height, AbG_biom = Above ground biomass, FRY = Fresh root yield, FRY_Plt = Fresh root yield per plant, MRW = Mean root weight, RtPlt = Number of roots per plant, HI = Harvest index, DMC = Dry matter content percentage

Fig. 2. PCA scatter plot displaying the phenotypic diversity of 149 cassava accessions from Togo along the PC1 and PC2 axes

CMD_Sev = Cassava Mosaic Disease Severity Score, Len_LeaLo = Length of Leaf Lobe (cm), Pet_Len = Petiole Length (cm), PltHt = Plant height (cm), AbG_biom = Above ground biomass (t.ha-1), FRY = Fresh Root Yield (t.ha-1), RtPlt = Number of roots per plant, DMC = Dry matter Content Percentage, HI = Harvest index Gmakouba et al.; Int. J. Plant Soil Sci., vol. 36, no. 11, pp. 554-574, 2024; Article no.IJPSS.127267

Fig. 3. PCA scatter plot displaying the phenotypic diversity of 149 cassava accessions from Togo along the PC1 and PC3 axes

CMD_Inc = Cassava Mosaic Disease incidence, CMD_Sev = Cassava Mosaic Disease severity score, CBB_Inc = Cassava Bacterial Blight incidence, CBB_Sev = Cassava Bacterial Blight severity score, FRY = Fresh root yield (t.ha⁻¹), FRY_Plt = Fresh Root Yield Per Plant (Kg), MRW = Mean Root Weight (kg), RtPlt = Number of Roots Per Plant

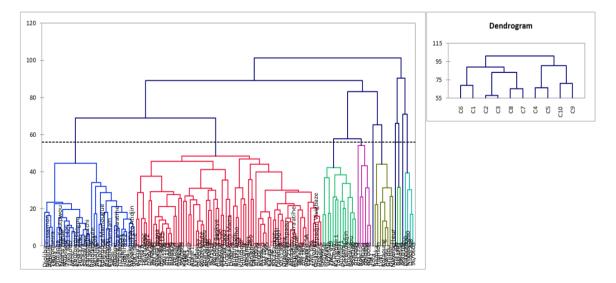


Fig. 4. Dendrogram of 149 cassava varieties from Togo revealed by the Wards method based on significant disease and agronomic traits

The legend of the figure is shown at the right on top. From left to right of the dendrogram the clusters C6, C1, C2, C3, C8, C7, C4, C5, C10 and C9 are respectively represented

Numbers of clusters	Semipartial R- square	R-square	Approximate expected R-square	Cubic clustering criterion	Pseudo F statistic	Pseudo t- squared
12	0.006	0.792	0.803	-0.950	25.371	4.623
11	0.037	0.773	0.771	-2.800	24.846	16.212
10*	0.222	0.736	0.645	-14.300*	12.014*	47.804*
9	0.026	0.729	0.743	-12.200	24.033	9.473
8	0.020	0.709	0.724	-11.950	26.851	1.682
7	0.026	0.683	0.725	-2.340	27.705	7.043
6	0.028	0.665	0.655	-10.250	29.400	7.821
5	0.061	0.593	0.676	-9.600	15.640	8.365
4	0.021	0.348	0.600	-8.400	17.100	10.123
3	0.046	0.302	0.533	-7.500	21.020	6.714
2	0.030	0.272	0.397	-4.000	36.630	5.621
1	0.271	0.000	0.000	0.000		36.642

Table 5. Number of optimal clusters formed based on disease and agronomic traits

*Values in bold correspond to the optimal number of clusters which occurs at the start of peak in the table.

Table 6. Clusters formed using the Ward-MLM method based on significant disease and agronomic traits evaluated in 149 cassava varieties

Cluster	No. of varieties	Range of assignment probability	Varieties
C1	75	0.69-1	Sika Bankye Ampong Bankye, TMS 96_0409, Gbazékouté, TMS 01_0006, TMS 00_0364, TMS 01_0034, TMS 01_0046, TMS 01_0131, TMS 01_0379, TMS 01_1085, TMS 01_1086, TMS 01_1097, TMS 01_1368, TMS 01_1368 (2), TMS 01_1371, TMS 01_1662, TMS 01_1807, TMS 96_1708, TMS 98_2132, Akaleyo, Akebou, Akoss, Akpadjin Ankra atihe, Alagno, Ankra 3, Ankra Atiyibo, Atidjin1, Atidjin Poli, Atidokpo, Atihe1, Atiyobo2, Azelepoti, Bob Yegue, Degaule, Djakoagni, Donmoyibo, Fetonegbodji, Gabonvi-ESA, Gbaze- ESA, Gbaze Akpadjin Vivigbaze, Ghana spana, Kalba, Kanigbeli 2, Kataoli, Kidirondi, MM96/JW2, Nigeria Kikpaou, Okpoli, Pela, Penivi, Sorad, Spana Assou, TME1, TME 696, Tuaka komi Mami, Yabaka, M94_0583, D-00_137 , D-00_14, D-00_126, D-00_54, D-00_166, Toma 9, CVTM4, Toma 162, Inconnu 02, TMS 96_1317, TMS 96_0869, TMS 96_1642, TMS 96_1642, TMS 96_0590, TMS 96 539, TMS 96 1565, TMS 30572, KPEM 10 03
C2	14	0.74-1	TMS 95_0166, TMS 01_0093, TMS 01_1610, TMS 92_0326, Atidjin 2, Atiyibo 1, Bob Assou, Flawavi, Inconnu, Kanigbeli 1, M'beou, Tetetidadjin, TME 419, Touwevi
C3	6	0.65-1	TMS 00_0354, TMS 01_0098, TMS 01_1224, Bob, TM1 , TMS 96_0304

Cluster	No. of varieties	Range of assignment probability	Varieties
C4	1	1	TMS 96_1206
C5	2	0.81-1	TMS 01_1797, TMS 99_0554
C6	37	0.83-1	Agbede, Agou, Aguidagba, Akpadjin Feto Atidjin, Assiatoe, Awouye, Badjogou, BRS Caipira, Djolaoba, Djoliba, Gbadovi, Hogninvo 1, Hogninvo 2, IRAT- Davie, Kanbom Bantchi, Katawole, Kisseimou Koutpwou, Kolmon kamkam, Kossikouma, Kperoung Felgou, Kperoung Mamougue, Kpla, Nigeria Kissaimon, N'tossou, Odongbo ankra atihe, Peloumkoute, sabe, Sassakawa, Sawa, Spana Yegue, BRS Tapioqueira , Tassiodo, Tchigouevi, Tuaka Atsu, TMS 4(2) 1425
C7	8	0.95-1	Awou, Bazoka, Djeble, Gnidou, Jhonson, Kolaoung, Loki, Nigeria fleur
C8	1	0.85-1	Kola
C9	4	0.96-1	MM96_5280, D-00_208, D-00_8300, TMS 96_0603
C10	1	1	TMS 96_0102

¹Centroids of each cluster are in bold

Table 7. Genetic distances between 10 optimal clusters of 149 cassava varieties

	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
C1	0									
C2	77.22	0								
C3	54.3 [*]	45.5 [*]	0							
C4	123.2**	121.3**	114.9**	0						
C5	66.9 [*]	70.3*	54.8*	67.0*	0					
C6	58.8 [*]	96.9*	99.6*	145.9**	104.0**	0				
C7	99.93 [*]	65.7*	99.9*	147.5**	112.2**	76.5**	0			
C8	106.4**	87.8*	104.8*	107.6*	98.4*	96.4*	68.6*	0		
C9	73.5 [*]	98.7*	66.2*	107.1**	75.0*	115.9*	132.2**	102.9**	0	
C10	130.8**	114.4**	100.6**	109.2**	104.8**	163.3**	148.1**	104.7**	69.1*	0

C_n: Cluster; (*, **) significant at 5% and 1% probability level, respectively

Gmakouba et al.; Int. J. Plant Soil Sci., vol. 36, no. 11, pp. 554-574, 2024; Article no.IJPSS.127267

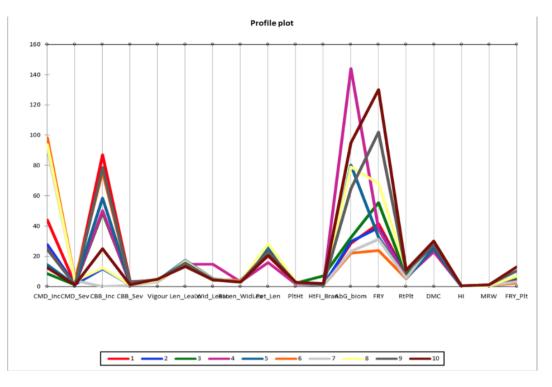


Fig. 5. Profile plot describing the 10 clusters formed using the Ward-MLM method based on disease and agronomic traits evaluated in 149 cassava varieties of Togo

CMD_Inc = Cassava Mosaic Disease incidence, CMD_Sev = Cassava Mosaic Disease severity score, CBB_Inc = Cassava Bacterial Blight Incidence, CBB_Sev = Cassava Bacterial Blight Severity score, Len_LeaLo = Length of leaf lobe, Wid_LeaLo = Width of leaf lobe, RaLen_WidLea = Ratio of lobe length to lobe width of central leaf lobe, Pet_Len = Petiole length, HtFi_Bran = Height to first branching, PltHt = Plant height, AbG_biom = Above ground biomass, FRY = Fresh root yield, RtPlt = Number of roots per plant, DMC = Dry matter content percentage, HI = Harvest index, MRW = Mean root weigth, FRY_Plt = Fresh root yield per plant

4. DISCUSSION

4.1 Phenotypic Diversity of the Germplasm

The phenotyping of plant materials based on agromorphological traits has been used to determine the phenotypic variability among genotypes and to verify the phenotypic correlation between disease and agronomic traits (Avijala et al., 2015; Agre et al., 2015; Adjebeng-Danguah & Gracen, 2017; Carine et al., 2017). In this study, high phenotypic variability was observed within the germplasm based on disease and agronomic traits. Fresh root yield, plant vigour, number of roots per plant, cassava mosaic disease severity score, aboveground biomass, leaf lobe dimensions, cassava bacterial blight severity score, plant height, height to first branching, petiole length and the harvest index were underscored by the PCA as the most relevant traits for varieties differenciation Asare et al. (2011), Adjebeng-Danquah & Gracen (2017), Agre et al. (2017) and Gmakouba et al. (2018) reported similar findings.

Substantial variation was observed for disease and agronomic traits under selection, which indicates the possibility of genetic gains through selection. Genetic variation for cassava agronomic traits has been documented in various studies across Africa (Agre *et al.*, 2015; Adjebeng-Danquah & Gracen, 2017) and in Brazil (Oliveira *et al.*, 2015).

Strong phenotypic correlations were identified among disease and agronomic traits in this study. CMD severity was negatively correlated to yield related traits, which confirms significant yield losses due to CMD across the country. This agrees with earlier studies on cassava (Ojulong *et al.*, 2010; Sing *et al.*, 2015; Adjebeng-Danguah & Gracen, 2017).

4.2 Structure of the Germplasm Phenotypic Diversity

The population structure analyses revealed that the varieties were not grouped based on the geographical origin distribution.Varieties collected from places such as Vogan, Wetrope, Akebou, Danyi, Aouda, Davie, and Assoukoko were clustered in cluster 1. Likewise, varieties from Bafilo, Assoukoko, Danyi, and Bouronde were from different regions; indicating significant genetic diversity within each collection area. Furthermore, cassava varieties collected from the same region were grouped into distinct clusters, clustered in cluster 2. Similar results were reported by Gmakouba *et al.* (2018) in characterizing 54 cassava accessions sourced from farmers fields in Bukina Faso.

Table 8. Correlations between disease and agronomic traits evaluated on 149 cassava varieties
and factors obtained from canonical analysis

Eigenvalue	CAN1	CAN2	CAN3	CAN4	CAN5
	15.406	8.279	4.013	1.532	0.509
Discrimination (%)	82.27	11.28	4.699	1.372	0.390
Cumulative (%)	82.27	93.55	98.24	99.61	100.0
Bartlett's statistic	213.23	86.431	30.254	15.811	6.373
P value	0.001	0.001	0.001	0.001	0.08
Traits	Loading	scores			
CMD_Inc (%)	0.847	0.504	-0.002	-0.073	-0.111
CMD_Sev	0.860	0.417	-0.054	-0.135	0.243
CBB_Inc (%)	-0.498	0.849	0.031	0.059	-0.024
CBB_Sev	-0.502	0.719	-0.002	0.082	-0.047
Vigour	-0.625	-0.097	-0.124	-0.072	-0.257
Len_LeaLo (cm)	0.243	-0.102	0.053	-0.102	0.159
Wid_LeaLo (cm)	-0.147	-0.119	0.284	-0.677	0.076
RaLen_WidLea	0.083	0.104	0.065	0.029	0.032
Pet_Len (cm)	0.093	-0.115	-0.028	-0.117	0.130
PltHt (cm)	-0.071	-0.052	-0.215	-0.285	-0.025
HtFi_Bran (cm)	-0.075	-0.061	0.005	0.065	0.079
AbG_biom (t.ha ⁻¹)	-0.406	-0.233	-0.143	-0.790	-0.081
FRY (t.ha ⁻¹)	-0.441	-0.248	-0.777	-0.133	-0.143
RtPlt	-0.393	-0.204	-0.392	0.164	-0.250
DMC (%)	0.214	0.152	-0.127	0.240	0.103
HI	-0.064	0.019	-0.374	0.770	-0.057
MRW (Kg)	-0.405	-0.235	-0.771	-0.234	-0.040
FRY_Plt (Kg)	-0.446	-0.248	-0.670	-0.127	-0.136

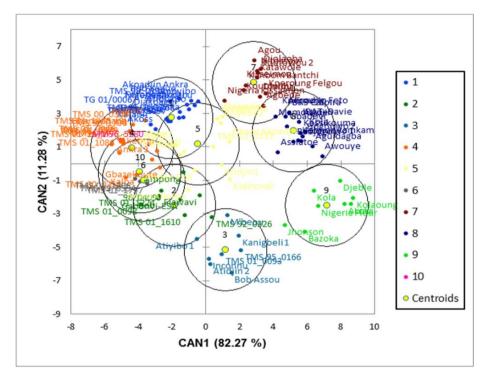

CANn = Canonical variate; Traits that contributed most to the phenotypic variation among clusters of a particular canonical variate are in bold and underlined. CMD_Sev = Cassava Mosaic Disease severity score, Wid_LeaLo = Width of leaf lobe, Len_LeaLo = Length of leaf lobe, RaLen_WidLea = Ratio of lobe length to lobe width of central leaf lobe, Pet_Len = Petiole length, HtFi_Bran = Height to first branching, PltHt = Plant height, AbG_biom = Above ground biomass, FRY = Fresh root yield, DMC = Dry matter content percentage, RtPlt = Number of roots per plant, HI = Harvest index

Table 9. Mean	performances	of 10 opt	mal clusters	s identified fro	om cluster analysis	S
---------------	--------------	-----------	--------------	------------------	---------------------	---

Cluster	CMD_Sev	CBB_Sev	Vigour	Wid_LeaLo	AbG_biom	FRY	RtPlt	DMC	HI
1	1.67	3.48	4.23	4.24	22.77	32.06	7.68	28.27	0.60
2	1.21	2.03	4.18	4.37	33.29	46.05	7.68	30.35	0.59
3	1.53	1.04	3.90	4.69	31.65	42.91	7.60	27.20	0.57
4	1.23	3.12	4.30	4.27	24.67	45.80	7.97	27.55	0.65
5	2.03	2.92	4.14	4.31	34.87	47.40	7.51	28.48	0.57
6	1.24	2.57	4.47	8.71	82.86	36.73	6.36	25.27	0.32
7	4.20	3.17	3.64	4.47	22.32	23.38	5.45	30.83	0.52
8	4.39	2.03	2.69	4.75	21.93	24.29	5.35	29.10	0.52
9	3.82	1.01	3.28	4.77	29.28	36.68	6.57	29.28	0.54
10	1.26	2.68	4.86	4.75	70.60	65.60	10.12	28.05	0.61

CMD_Sev = Cassava Mosaic Disease severity score, CBB_Sev = Cassava Bacterial Blight severity score, PltHt = Plant height, AbG_biom = Above ground biomasse, FRY = Fresh root yield, RtPlt = Number of roots per plant, DMC = Dry matter content percentage, HI = Harvest index. Similar observations were also reported by Agre *et al.* (2017) in Bénin. Furthermore, similar to the findings reported by Kombo *et al.* (2012), this study found no clear distinction or significant

structuring between local and improved varieties. The ten divergent groups identified based on disease and agronomic traits may be useful for the national cassava breeding unit.

Fig. 6. Canonical scatter plot displaying the relationship between 10 clusters of 149 cassava
varieties from Togo along the CAN1 and CAN2 axes

Traits	Lambda	F	DF1	DF2	p-value
CMD_Inc	0.091	152.798	9	148	< 0.0001
CMD_Sev	0.116	116.300	9	148	< 0.0001
CBB_Inc	0.120	111.946	9	148	< 0.0001
CBB_Sev			9	148	NS
Vigour	0.554	12.332	9	148	< 0.0001
Len_LeaLo			9	148	NS
Wid_LeaLo	0.620	9.394	9	148	< 0.0001
RaLen_WidLea			9	148	NS
Pet_Len			9	148	NS
PltHt			9	148	NS
HtFi_Bran			9	148	NS
AbG_biom	0.399	23.101	9	148	< 0.0001
FRY	0.260	43.601	9	148	< 0.0001
RtPlt	0.653	8.140	9	148	< 0.0001
DMC	0.826	3.230	9	148	0.001
HI	0.518	14.296	9	148	< 0.0001
MRW	0.394	23.589	9	148	< 0.0001
FRY_Plt			9	148	NS

Table 10. Unidimensional test of	equality of the means of 10 clusters
----------------------------------	--------------------------------------

CMD_Sev = Cassava Mosaic Disease severity score, Len_LeaLo = Length of leaf lobe (cm), Wid_LeaLo = Width of leaf lobe (cm), RaLen_WidLea = Ratio of lobe length to lobe width of central leaf lobe, Pet_Len = Petiole length (cm), HtFi_Bran = Height to first branching (cm), PltHt = Plant height (cm), AbG_biom = Above ground biomass (t.ha⁻¹), FRY= Fresh root yield (t.ha⁻¹), RtPlt = Number of roots per plant, DMC = Dry matter content percentage, HI = Harvest index. NS = non significant

From this study, a high amount of heterotic expression is expected from crosses involving parents selected from clusters 5 and 7 followed by clusters 4 and 7. However, to make the best use of these clusters, the breeder needs to specify his breeding objectives based on farmers' varietal preferences.

5. CONCLUSIONS

The study revealed that the germplasm exhibited substantial genetic diversity. High phenotypic variations were observed for traits such as CMD resistance, root dry matter content, fresh root yield, above-ground biomass and harvest index. Hierarchical clustering methods classified the cassava varieties from Togo into ten distinct phenotypic groups. The clusters differed in terms of CMD resistance, root dry matter content, canopy yield, fresh root yield, and harvest index. The wide phenotypic variability observed among the cassava landraces implied that these could serve as valuable sources of novel genes for cassava breeding and variety development. The superior farmers' landraces identified with good attributes could be exploited for genetic improvement in the national cassava breeding program. This will translate into new, improved cassava varieties with huge food security implications in Togo. However, identifying heterotic groups requires a combined analysis of genotypic and phenotypic data.

DISCLAIMER (ARTIFICIAL INTELLIGENCE)

Author(s) hereby declare that NO generative AI technologies such as Large Language Models (ChatGPT, COPILOT, etc.) and text-to-image generators have been used during the writing or editing of this manuscript.

ACKNOWLEDGEMENTS

The authors are thankful to WACCI, DAAD, ECONET FOUNDATION and to the Togolese Agricultural Research Institute for their financial and logistical support.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

Adjebeng-danquah, J., Manu-aduening, J., & Kwadwo, I. (2020). Genetic diversity and population structure analysis of Ghanaian and exotic cassava accessions using simple sequence repeat markers. *Heliyon*, 6(1).

https://doi.org/10.1016/j.heliyon.2019.e031 54

Adjebeng-danquah, J., & Gracen, V. (2017). Agronomic performance and genotypic diversity for morphological traits among cassava genotypes in the Guinea Savannah Ecology *J. Crop Sci. Biotech., 19* (1) : 99 -108. https://doi.org/10.1007/s12892-015-0095-8a

- Agre, A. P., Bhattacharjee, R., Dansi, A., Becerra Lopez-Lavalle, L. A., Dansi, M., & Sanni, A. (2017). Assessment of cassava (*Manihot esculenta* Crantz) diversity, loss of landraces and farmers preference criteria in southern Benin using farmers' participatory approach. *Genetic Resources and Crop Evolution*, *64*(2), 307–320. https://doi.org/10.1007/s10722-015-0352-1
- Agre, A. P., Bhattacharjee, R., Rabbi, I. Y., Alaba, O. A., Unachukwu, N. N., Ayenan, M. A. T., Loko, Y. L., Bauchet, G. J., & Dansi, A. (2017). Classification of elite cassava varieties (*Manihot esculenta* Crantz) cultivated in Benin Republic using farmers ' knowledge , morphological traits and simple Classification of elite cassava varieties. *Genetic Resources and Crop Evolution*, 1-13.
 - https://doi.org/10.1007/s10722-017-0550-0
- Amelework, A. B., & Bairu, M. W. (2022). Advances in Genetic Analysis and Breeding of Cassava. *Plants*, *11*(1617), 1– 19.

https://doi.org/ 10.3390/plants11121617

- Asare, P. A., Galyuon, I. K. A., Sarfo, J. K., & Tetteh, J. P. (2011). Morphological and molecular based diversity studies of some cassava (*Manihot esculenta* crantz) germplasm in Ghana. *10* (63). https://doi.org/10.5897/AJB11.929
- Avijala, M. F., Bhering, L. L., Peixoto, L. D. A., Cruz, D., Crescêncio, P., Carneiro, S., Cuambe, C. E., & Zacarias, A. (2015). Evaluation of cassava (Manihot esculenta Crantz) genotypes reveals great genetic variability and potential selection gain. 9 (10), 940–947.

URL:http://www.cropj.com/peixoto_9_10_2 015_940_947.pdf

Banito, A., Kpémoua, K. E., & Wydra, K. (2010). Screening of cassava genotypes for resistance to bacterial blight using strain x genotype interactions. *Journal of Plant Pathology*,92(1).

https://doi.org/10.4454/jpp.v92i1.28

Ceballos, H., Pérez, J. C., Barandica, O. J., Lenis, J. I., Morante, N., Calle, F., Pino, L., & Hershey, C. H. (2016). Cassava Breeding I: The Value of Breeding Value. 7, 1–12.

https://doi.org/10.3389/fpls.2016.01227

Elias, M., Panaud, O., & Robert, T. (2000). Assessment of genetic variability in a traditional cassava (Manihot esculenta Crantz) farming system, using AFLP markers. *Heredity*, *85*(3), 219– 230.

https://doi.org/10.1046/j.1365-2540.2000. 00749.x

- Elibariki, G., Njahira, M., Wanjala, B., Hosea, K., & Ndunguru, J. (2013). Genetic diversity and identification of duplicates in selected Tanzanian farmer- preferred cassava landraces using simple sequence repeat (SSR) markers. *Int. Journal of Research in Plant Science, 3*(4): 2249-9717.
- Federer, W. T., Hall, W., Reynolds, M., & Crossa, J. (1975). Analyses for multi-site experiments using augmented designs. 30–31.
- Ferguson, M. E., Shah, T., Kulakow, P., & Ceballos, H. (2019). A global overview of cassava genetic diversity. *PLoS ONE*, *14* (11), 1–16.

https://doi.org/10.1371/journal.pone.02247 63

Filipe Schmidt Schuh, Pedro Soares Vidigal Filho, Maria Celeste Gonçalves-Vidigal, Mariana Vaz Bisneta, Giselly Figueiredo Lacanallo, & Danielle Caroline Manenti. (2021). Population structure and genetic diversity in sweet cassava accessions from South of Brazil. *World Journal of Advanced Research and Reviews*, 12 (3), 368– 380.

https://doi.org/10.30574/wjarr.2021.12.3.06 99

- Giles, J. A.D., Rodrigues, W. P., Oliosi, G., Partelli, F. L., Vieira, H. D., & Da Silva Santos, V. (2018). Genetic diversity as tool to identify standard leaf nutrients in cassava genotypes. *Genetics and Molecular Research*, *17* (1). https://doi.org/10.4238/gmr16039862
- Giles, João Antonio D., Oliosi, G., Rodrigues, W. P., Braun, H., Ribeiro-Barros, A. I., & Partelli, F. Á. B. I. O. L. (2018). Agronomic performance and genetic divergence

between genotypes of *Manihot esculenta*. *Anais Da Academia Brasileira de Ciencias*, 90 (4), 3639–3648. <u>https://doi.org/10.1590/0001-3765201820</u> 180099

Gmakouba, T., Koussao, S., Traore, E. R., & Essotina, K. (2018). Agromorphological diversity study of a cassava collection (*Manihot esculenta Crantz*) from Burkina Faso. *12*(1), 402–421. DOI:https://dx.doi.org/10.4314/ijbcs.v12i1.3 2

- Guevara, C. L., Kawuki, R., & Ferguson, M. E. (2010). Selected morphological and agronomic descriptors for the characterization of cassava. International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria. 19 pp.
- Houngue, J. A., Pita, J. S., Cacaï, G. H. T., Zandjanakou-Tachin, M., Abidjo, E. A. E., & Ahanhanzo, C. (2018). Survey of farmers' knowledge of cassava mosaic disease and their preferences for cassava cultivars in three agro-ecological zones in Benin. *Journal of Ethnobiology and Ethnomedicine*, 14(1), 29.
- https://doi.org/10.1186/s13002-018-0228-5
- Hurtado, P., Marin, J., Ospina, C., Buitrago, C., Castelblanco, W., Correa, A. M., Barrera, E., Gutierrez, J. P., Santos, L. G., Vicente, C. De, Hearne, S., Ferguson, M., Alves, A., Ferreria, C., & Fregene, M. (2001). An Assessment of the Diversity in Global Cassava (*Manihot esculenta* Crantz) Genetic Resources based on Simple Sequence Repeat (SSR) Markers. Centro Internacional de Agricultura Tropical (CIAT), Cali, CO. 1 p.
- Kombate, K., Dansi, A., Dossou-Aminon, I., Adjatin, A., Kpemoua, K., Dansi, M., Akpagana, K., Sanni, A. (2017). Diversity of Cassava (Manihot esculenta Crantz) Cultivars in the Traditional Agriculture of Togo. International Journal of Current Research in Biosciences and Plant Biology, 4(6), 98–113. https://doi.org/10.20546/ijcrbp.2017.406.01
- 2 Karim, K. Y., Ifie, B., Dzidzienyo, D., Danquah, E. Y., Blay, E. T., Whyte, J. B. A., Kulakow, P., Rabbi, I., Parkes, E., Omoigui, L., Norman, P. E., & Iluebbey, P. (2020). Genetic characterization of cassava (*Manihot esculenta* Crantz) genotypes using agro-morphological and single nucleotide polymorphism markers.

Physiology and Molecular Biology of Plants, 26(2), 317–330. https://doi.org/10.1007/s12298-019-00740x

- Kombo, G. R., Dansi, A., Loko, L. Y., Assogba,
 P., Orkwor, G. C., Vodouhe, R., &
 Magema, J. M. (2012). Diversity of cassava (Manihot esculenta Crantz) cultivars and its management in the department of Bouenza in the Republic of Congo. Genet. Resour. Crop. Evol, 59(8): .1789-1803
- https://doi.org/10.1007/s10722-012-9803-0 Ogbonna, A. C., Braatz de Andrade, L. R., Mueller, L. A., de Oliveira, E. J., & Bauchet, G. J. (2021). Comprehensive genotyping of a Brazilian cassava (Manihot esculenta Crantz) germplasm bank: diversification insights into and Theoretical and Applied domestication. Genetics. 134(5). 1343-1362. https://doi.org/10.1007/s00122-021-03775-5
- Ojulong, H. F., Labuschagne, M. T., Herselman, L., & Fregene, M. (2010). Yield traits as selection indices in seedling populations of cassava. *Crop Breeding and Applied Biotechnology*, *10*(3), 191–196. <u>https://doi.org/10.1590/s1984-</u> <u>70332010000 300002</u>
- Oliveira-Silva, A. M., Silva, G. F., Dias, M. C., Clement, C. R., & Sousa, N. R. (2014). Inter-retrotransposon-amplified polymorphism markers for germplasm characterization in *Manihot esculenta* (Euphorbiaceae). *Genetics and Molecular Research*, *13*(2), 3800–3804. https://doi.org/10.4238/2014.May.16.3
- Oliveira, E. J., Ferreira, C. F., Santos, V. S., & Oliveira, G. a F. (2014). Development of a cassava core collection based on single nucleotide polymorphism markers. *Genetics and Molecular Research*, 13(3): 6472-6485.

DOI:10.4238/2014.August.25.11

- Oliveira, E. J., Filho, O. S. O., & Santos, V. S. (2015). Classification of cassava genotypes based on qualitative and quantitative data. *Genetics and Molecular Research*, 14(1), 906–924. https://doi.org/10.4238/2015
- Pereira, V. M., Borges, C. V., Brandão, L. P., & Oliveira, L. S. (2012). Genetic diversity between improved banana diploids using canonical variables and the Ward - MLM method. *Pesquisa Agropecuária Brasileira* 47(10):1480-1488.

DOI:10.1590/S0100-204X2012001000010

- Rabbi, I., Hamblin, M., Gedil, M., Kulakow, P., Ferguson, M., Ikpan, A. S., Ly, D., & Jannink, J.-L. (2014). Genetic Mapping Using Genotyping-by-Sequencing in the Clonally Propagated Cassava. *Crop Science*, *54*(4). https://doi.org/10.2135/cropsci2013.07.048 2
- Rabbi, I. Y., Kulakow, P. A., Manu-Aduening, J. A., Dankyi, A. A., Asibuo, J. Y., Parkes, E. Y., Abdoulaye, T., Girma, G., Gedil, M. A., Ramu, P., Reyes, B., & Maredia, M. K. (2015a). Tracking crop varieties using genotyping-by-sequencing markers: a case study using cassava (*Manihot esculenta* Crantz). *BMC genetics*, *16*(1).
 - https://doi.org/10.1186/s12863-015-0273-1
- Silva, R. D. S., Moura, E. F., Tomé, J., Neto, D. F., & Sampaio, J. E. (2016). Genetic parameters and agronomic evaluation of cassava genotypes. *1*, 834–841. <u>https://doi.org/10.1590/S0100-204X2016</u> 000700006
- Sing, G., Ateka, E., Miano, D., Githiri, S., & Munga, T. (2015). Assessment of the responses of cassava (*Manihot esculenta*) breeder's germplasm to cassava mosaic virus (CMD) infection in Kenya.*Int. Journal of Agronomy and Agricultural Research*, 6(4), 120–129.
- Siqueira, M. V. B. M., Borges, A., Valle, T. L., & Veasey, E. A. (2011). A comparative genetic diversity assessment of industrial and household Brazilian cassava varieties using SSR markers. *Bragantia Campinas*, *70*(4), 745-752. https://doi.org/10.1590/S00068705201100 5000019
- Sogbedji, J. M., Agboyi, L. K., Detchinli, K. S., Atchoglo, R., & Mazinagou, M. (2015). Sustaining Improved Cassava Production on West African Ferralsols Through Appropriate Varieties and Optimal Potassium Fertilization Schemes. *3*(3), 117–122.

https://doi.org/10.11648/j.jps.20150303.12

Soro, M., Pita, J. S., Somé, K., Otron, D. H., Yéo, E., Mutuku, J. M., Néya, J. B., Tiendrébéogo, F., & Koné, D. (2023).
Genomic analysis and identification of potential duplicate accessions in Burkina Faso cassava germplasm based on single nucleotide polymorphism. *Frontiers in Sustainable Food Systems*, 7, 1–15. https://doi.org/10.3389/fsufs.2023.1202015 Soro, M., Zida, S. M. F. W. P., Somé, K., Tiendrébéogo, F., Otron, D. H., Pita, J. S., Néya, J. B., & Koné, D. (2024). Estimation of Genetic Diversity and Number of Unique Genotypes of Cassava Germplasm from Burkina Faso Using Microsatellite Markers. *Genes*, 15(1).

https://doi.org/10.3390/genes15010073

- Soyode, F. O., Oyetunji, O. J., & Programme, C. I. (2009). Use of morphological characters to identify cassava mosaic disease and cassava bacterial blight resistance. *African Crop Science Journal*,17 (1), 25– 39.
- You, F. M., Song, Q., Jia, G., Cheng, Y., Duguid, S., Booker, H., & Cloutier, S. (2016).

Estimation of genetic parameters and their sampling variances for quantitative traits in the type 2 modified augmented desig*n*. The Crop Journal, 4, 107-118.

https://doi.org/10.1016/j.cj.2016.01.003

Zago, B. W., Barelli, M. A. A., Silva, V. P. Da, Felipin-Azevedo, R., Corrêa, C. L., Neves, L. G., & Hoogerheide, E. S. S. (2021). Genetic diversity among cassava genotypes (*Manihot esculenta* crantz) collected in the south-central mesoregion of the state of Mato Grosso- Brazil. *Bioscience Journal*, 37, 1– 10. https://doi.org/10.14393/BJ-v37n0a2021-54068

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of the publisher and/or the editor(s). This publisher and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

© Copyright (2024): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/127267