Asian Journal of Probability and Statistics

Volume 26, Issue 5, Page 1-18, 2024; Article no.AJPAS.116749 *ISSN: 2582-0230*

Almost Unbiased Estimators for Population Coefficient of Variation Using Auxiliary Information

Rajesh Singh ^a , Rohan Mishra ^a , Anamika Kumari ^a and Sunil Kumar Yadav a*

^aDepartment of Statistics, Institute of science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India.

Authors' contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJPAS/2024/v26i5614

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/116749

> *Received: 29/02/2024 Accepted: 03/05/2024 Published: 08/05/2024*

Original Research Article

Abstract

The objective of the paper is to propose an almost unbiased ratio estimator for the finite coefficient of variation (CV). In this paper, we have proposed an exponential ratio type and log ratio type estimators for estimating population coefficient of variation. Two real data sets and one simulation study is carried out in support of the theoretical results. Mean squared error and Percent relative efficiency criteria is used to assess the performance of the estimators. It has been shown that the proposed class of estimators are almost unbiased up to the first order of approximation. Also proposed estimators are better in efficiency to other estimators consider in this study.

__

Keywords: Auxiliary information; bias; mean squared error; coefficient of variation; log type estimator.

__

Asian J. Prob. Stat., vol. 26, no. 5, pp. 1-18, 2024

^{}Corresponding author: Email: ysunilkumar40@gmail.com;*

1 Introduction

Research of Cochran [1] is generally associated with the idea of incorporating auxiliary information to improve estimator's efficiency. Using auxiliary information, we can improve the accuracy or efficacy of estimators by incorporating more data with the sampled data. Researchers might be enabled to reduce variability in samples and provide more precise estimates of population parameters by utilizing auxiliary information. The basic principles for this methodology were established by Cochran [1] and it is now commonly employed in many different kinds of domains, such as survey sampling, econometrics, and statistics.

Ratio and product estimators are widely used in survey sampling and other fields where auxiliary information is available and can be utilized to improve the accuracy and efficiency of estimators. When there is a positive correlation between an auxiliary variable and the study variable of interest, Cochran [2] established the concept of ratio estimators as an approach to utilize auxiliary information. Ratio estimators calculate ratios among the study variable's sample means or totals and the auxiliary variables, taking into consideration any known population variables. Ratio estimators enable us to analyze an estimated value with other known information to estimate a value more accurately. To get more accurate estimates, they consider the correlation between various variables. For example, we may accurately estimate the total income of a neighborhood if we know the average income of that neighborhood and the population of the entire city. This can be done by using a ratio estimator. By utilizing more information, this approach increases the precision of our estimations.

On the other hand, Robson [3] and Murthy [4] proposed "the product estimator, which is another method for incorporating auxiliary information into estimation. The product estimator involves forming the product of the study variable and the auxiliary variable and then using this product as the basis for estimation". Similar to ratio estimators, the product estimator seeks to capitalize on the association between the auxiliary variable and the study variable to enhance the precision of the estimates. Number of authors, including Solanki et al. [5], Ray and Sahai [6], and Srivastava and Jhajj [7], have made significant contributions to "the utilization of auxiliary information for estimating population parameters such as the population mean, variance, standard deviation, and other related statistics". Some important works illustrating use of auxiliary information at estimation stage are Singh et al. [8], Singh and Kumar [9], Malik and Singh [10] etc.

Very less work has been done for estimating population coefficient of variation. Das and Tripathi [11] were first to suggest "an estimator for the coefficient of variation when samples were chosen using simple random sampling without replacement (SRSWOR)". Other researchers, such as Patel and Rina [12], have also explored into this area. Breunig [13] suggested "an almost unbiased estimator of the coefficient of variation". Additionally, Rajyaguru and Gupta [14] explored "estimating the coefficient of variation under different sampling methods like simple random sampling and stratified random sampling". Adejumobi and Yunusa [15] proposed "ratio estimators for finite population variance with the use of known parameters". Yunusa et al. [16] proposed "logarithmic ratio type estimator for the estimating population coefficient of variation". Audu et al. [17] proposed "three difference-cum-ratio estimators for estimating finite population coefficient of variation".

In this paper, using exponential and log type estimators we have proposed an almost unbiased estimator for estimation of population coefficient of variation utilizing information on a single auxiliary variable in SRSWOR.

Let's consider a finite population $P = (P_1, P_2, P_3, \dots, P_N)$ of size `N` and each unit are uniquely defined. Let Y and X defined as study and auxiliary variable and Y_i and X_i are the values corresponding their unit i (i = 1, 2, 3,, N).

Let us consider a SRS of size n drawn from the population of `N` units and corresponding unit Y_i and X_i .

$$
\overline{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_i
$$
 and $\overline{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$ are the population means of the study and auxiliary variables Y and X,

$$
S_y^2 = \frac{1}{(N-1)} \sum_{i=1}^N (Y_i - \overline{Y})^2
$$
 is the population variance of the study variable Y,

$$
S_x^2 = \frac{1}{(N-1)} \sum_{i=1}^{N} (X_i - \overline{X})^2
$$
 is the population variance of the auxiliary variable X,

1 $\frac{1}{\sum_{i=1}^{N} (X_i - \overline{X})(Y_i - \overline{Y})}$ $(N - 1)$ *N xy* $(N-1)$ $\sum_{i=1}^{N}$ $\sum_{i=1}^{N}$ $\sum_{i=1}^{N}$ $S_{\dots} = \xrightarrow{ } (X_i - X)(Y_i - Y_i)$ $=\frac{1}{(N-1)}\sum_{i=1}^{N}(X_i-\overline{X})(Y_i-\overline{Y})$ is the population covariance of the auxiliary and study variable Y and X,

1 1 *n* $\sum_{i=1}^{\infty}$ ^y_i $y = -\sum_{i=1}^{n} y_i$ $=\frac{1}{n}\sum_{i=1}^{n} y_i$ and $\bar{x} = \frac{1}{n}\sum_{i=1}^{n}$ 1 *n* $\sum_{i=1}^{N_i}$ $x = - \sum x$ $n_{\overline{i}}$ $=\frac{1}{n}\sum x_i$ are respectively the sample means of the study and auxiliary variables Y and X.

2 Γ Ω 1 $\frac{1}{\sqrt{n}}\sum_{i=1}^{n}(y_i-\overline{y})$ $(n-1)$ *n y* $(n-1) \sum_{i=1}^{n}$ $s_y = \frac{1}{(n-1)} \sum_{i=1}^{n} (y_i - y_i)$ $=\frac{1}{(n-1)}\sum (y_i - y)^2$ is the sample variance of the study variable y,

2 Γ Γ Γ 1 $\frac{1}{\sqrt{2}}\sum_{i=1}^{n}(x_i-x_i)$ $(n-1)$ *n x* $(n-1) \sum_{i=1}^{n}$ $s_{i} = \frac{1}{x_{i}} \sum_{i=1}^{n} x_{i} - x_{i}$ $n-1$) \overline{t} $=\frac{1}{(n-1)}\sum (x_i - x)^2$ is the sample variance of the auxiliary variable x.

Let us define sampling errors for both mean and variance of study and auxiliary variables as

$$
e_0 = \frac{\overline{y} - \overline{Y}}{\overline{Y}}, e_1 = \frac{\overline{x} - \overline{X}}{\overline{X}}, e_2 = \frac{(s_y^2 - S_y^2)}{S_y^2}, e_3 = \frac{(s_x^2 - S_x^2)}{S_x^2} \text{ such that}
$$

\n
$$
\overline{y} = \overline{Y}(1 + e_0), \overline{x} = \overline{X}(1 + e_1), s_y^2 = S_y^2(1 + e_2), s_y^2 = S_y^2(1 + e_2), s_x^2 = S_x^2(1 + e_3)
$$

\n
$$
E(e_0) = E(e_1) = E(e_2) = E(e_3) = 0,
$$

\n
$$
E(e_0^2) = \gamma C_y^2, E(e_1^2) = \gamma C_x^2, E(e_2^2) = \gamma (\lambda_{40} - 1), E(e_3^2) = \gamma (\lambda_{04} - 1),
$$

\n
$$
E(e_0 e_1) = \gamma \rho C_y C_x, E(e_0 e_2) = \gamma C_y \lambda_{30}, E(e_0 e_3) = \gamma C_y \lambda_{12},
$$

\n
$$
E(e_1 e_2) = \gamma C_x \lambda_{21}, E(e_1 e_3) = \gamma C_x \lambda_{03}, E(e_2 e_3) = \gamma (\lambda_{22} - 1).
$$

Here, $\gamma = \frac{1}{n}(1-f)$, $f = \frac{n}{N}$, *f* is known as sampling fraction, C_y and C_x are the population coefficient

of variations of study variable Y and auxiliary variable X, respectively, defined as, $C_v = \frac{v}{\sqrt{2}}$ *y S C* $=\frac{y}{\overline{Y}}$ and $C_x = \frac{y}{\overline{X}}$ $C = \frac{S}{I}$ $=\frac{1}{\overline{X}}$. ρ is the correlation coefficient between X and Y.

In general form,

$$
\mu_{rs} = \frac{\sum_{i=1}^{N} (y_i - \overline{y})^r (x_i - \overline{x})^s}{(N-1)}
$$
 and $\lambda_{rs} = \frac{\mu_{rs}}{(\mu_{20}^{r/2} \mu_{02}^{s/2})}$.

2 Existing Estimators

Usual estimator t_0 for estimating Cy is given by

Singh et al.; Asian J. Prob. Stat., vol. 26, no. 5, pp. 1-18, 2024; Article no.AJPAS.116749

$$
t_0 = \hat{C}_y = \frac{s_y}{y} \tag{1}
$$

The bias of the estimator t_0 is given by:

$$
Bias(t_0) = C_y \gamma \left(C_y^2 - \frac{1}{8} (\lambda_{40} - 1) - \frac{1}{2} C_y \lambda_{30} \right)
$$
 (2)

The Mean square error (MSE) expression of the estimator t_0 is given by:

$$
MSE(t_0) = C_y^2 \gamma (C_y^2 + \frac{1}{4} (\lambda_{40} - 1) - C_y \lambda_{30})
$$
\n(3)

Archana and Rao [18] introduced estimators t_1 and t_2 for calculating the finite population coefficient of variation as follows:

$$
t_1 = C_y \left(\frac{S_x^2}{S_x^2}\right) \tag{4}
$$

$$
t_2 = C_y \left(\frac{s_x^2}{S_x^2}\right) \tag{5}
$$

The bias of the estimators t_1 and t_2 are, respectively, given as

$$
Bias(t_1) = C_y \gamma \left(C_y^2 - \frac{1}{8} (\lambda_{40} - 1) - \frac{1}{2} C_y \lambda_{30} + C_y \lambda_{12} + (\lambda_{04} - 1) - \frac{1}{2} (\lambda_{22} - 1) \right)
$$
(6)

$$
Bias(t_2) = C_y \gamma \left(C_y^2 - \frac{1}{8} (\lambda_{40} - 1) - \frac{1}{2} C_y \lambda_{30} + \frac{1}{2} (\lambda_{22} - 1) - C_y \lambda_{12} \right)
$$
(7)

MSE of the estimators t_1 and t_2 are, respectively, given as

$$
MSE(t_1) = C_y^2 \gamma \left(C_y^2 + \frac{1}{4} (\lambda_{40} - 1) - C_y \lambda_{30} + 2C_y \lambda_{12} + (\lambda_{04} - 1) - (\lambda_{22} - 1) \right)
$$
(8)

$$
MSE(t_2) = C_y^2 \gamma \left(C_y^2 + \frac{1}{4} (\lambda_{40} - 1) - C_y \lambda_{30} - 2C_y \lambda_{12} + (\lambda_{04} - 1) + (\lambda_{22} - 1) \right)
$$
(9)

3 Proposed Almost Unbiased Estimator

Let,

$$
t_0 = C_y, t_1 = C_y \left(\frac{S_x^2}{S_x^2}\right), t_2 = C_y \left(\frac{S_x^2}{S_x^2}\right)
$$
 (10)

4

such that t_0 , t_1 , $t_2 \in L$, where L denotes the set of all possible estimators for estimating the population coefficient of variation *Cy* .

By definition, the set L is a linear variety if

$$
t_{g} = \sum_{i=0}^{2} g_{i} t_{i} \in L
$$

\n
$$
t_{g} = g_{0} C_{y} + g_{1} C_{y} \left(\frac{S_{x}^{2}}{S_{x}^{2}} \right) + g_{2} C_{y} \left(\frac{S_{x}^{2}}{S_{x}^{2}} \right)
$$

\nFor $\sum_{i=0}^{2} g_{i} = 1, g_{i} \in R$ (12)

where g_i (i = 0, 1, 2) denotes the statistical constants and R denotes the set of real numbers.

g_{0}	g ₁	g_2	Estimators
		0	Λ \sim \vee
$\boldsymbol{0}$		$\overline{0}$	\sim 2 ມ \sim \sim $S_{\rm r}^-$ $\boldsymbol{\mathcal{A}}$
$\boldsymbol{0}$			\sim α^2 Uγ C ₂ ມ \boldsymbol{x}

Table 1. Members of the proposed family t_g of estimators

To obtain the bias and MSE of the estimator t_g , we write t_g in the form of error terms as

$$
t_{g} = C_{y} (1 + e_{2})^{1/2} (1 + e_{0})^{-1} \left[g_{0} + g_{1} \left(\frac{1}{(1 + e_{3})} \right) + g_{2} (1 + e_{3}) \right]
$$
(13)

Expanding the right hand side of equation (13) and retaining terms up to second powers of e's, we have

$$
t_{g} = C_{y} \left[1 - e_{0} + e_{0}^{2} + \frac{1}{2} e_{2} - \frac{1}{2} e_{0} e_{2} - \frac{1}{8} e_{2}^{2} - (g_{1} - g_{2}) e_{3} \right] + (g_{1} - g_{2}) e_{0} e_{3} - (g_{1} - g_{2}) \frac{1}{2} e_{2} e_{3} + g_{1} e_{3}^{2} \qquad (14)
$$

Subtracting C_y and then taking expectation both sides, we get the bias of the estimator t_g , up to the first order of approximation as

$$
Bias(t_g) = C_y \gamma \left(\begin{aligned} C_y^2 - \frac{1}{8} (\lambda_{40} - 1) - \frac{1}{2} C_y \lambda_{30} + (g_1 - g_2) C_y \lambda_{12} \\ + g_1 (\lambda_{04} - 1) - (g_1 - g_2) \frac{1}{2} (\lambda_{22} - 1) \end{aligned} \right)
$$
(15)

From equation (15),

We have

$$
\left(t_g - C_y\right) \cong C_y \left[\frac{1}{2}e_2 - e_0 - (g_1 - g_2)e_3\right]
$$
\n(16)

where,

$$
(g_1 - g_2) = H. \t\t(17)
$$

Squaring both sides of equation (16) and then taking expectation, we get MSE of the estimator t_g , up to the first order of approximation, as

$$
MSE(t_g) = C_y^2 \gamma \left(C_y^2 + \frac{1}{4} (\lambda_{40} - 1) - C_y \lambda_{30} + 2HC_y \lambda_{12} + H^2 (\lambda_{04} - 1) - H (\lambda_{22} - 1) \right)
$$
(18)

Which is minimum when

$$
H = \frac{1}{2} \frac{(\lambda_{22} - 1)}{(\lambda_{04} - 1)} - \frac{C_y \lambda_{12}}{(\lambda_{04} - 1)}.
$$
\n(19)

Putting this value of $H = \frac{1}{2} \frac{(\lambda_{22} - 1)}{(\lambda_{22} - 1)}$ $(\lambda_{04}-1)$ $(\lambda_{04}-1)$ v_{12} 1) v_{12} 04 1 1 1 04 1 $(\lambda_{22} - 1)$ 2 $(\lambda_{21} - 1)$ $(\lambda_{21} - 1)$ $H = \frac{1}{2} \frac{(\lambda_{22} - 1)}{(\lambda_{22} - 1)} - \frac{C_y \lambda_1}{(\lambda_{22} - 1)}$ λ_{α} -1) (λ_{α}) $=\frac{1}{2}\frac{(\lambda_{22}-1)}{(\lambda_{24}-1)}-\frac{C_{y}\lambda_{12}}{(\lambda_{24}-1)}$ in equation (2.18) we get the Min. MSE of the estimator t_{g}

as

$$
Min.MSE(t_g) = C_y^2 \gamma \left(C_y^2 + \frac{1}{4} (\lambda_{40} - 1) - C_y \lambda_{30} + 2HC_y \lambda_{12} + H^2 (\lambda_{04} - 1) - H_{22} - 1) \right)
$$
(20)

From equation (17) and (19)

we have,

$$
(g_1 - g_2) = H = \frac{1}{2} \frac{(\lambda_{22} - 1)}{(\lambda_{04} - 1)} - \frac{C_y \lambda_{12}}{(\lambda_{04} - 1)}
$$
(21)

From equation (12) and (17), we have only two equations in three unknowns. It is not possible to find the unique values for g_i 's, $(i = 0, 1, 2)$. In order to get unique values of g_i 's, we shall impose the linear restriction.

$$
\sum_{i=0}^{2} g_i B(t_i) = 0 \tag{22}
$$

Such that

$$
g_0 B(t_0) + g_1 B(t_1) + g_2 B(t_2) = 0 \tag{23}
$$

where $B(t_i)$ denotes the bias in the i^h estimator.

Equations (2.12) , (2.17) and (2.23) can be written in the matrix form as

$$
\begin{bmatrix} 1 & 1 & 1 \ 0 & 1 & -1 \ B(t_0) & B(t_1) & B(t_2) \end{bmatrix} \begin{bmatrix} g_0 \ g_1 \ g_2 \end{bmatrix} = \begin{bmatrix} 1 \ H \ 0 \end{bmatrix}
$$
 (24)

From the system of equation (2.24), we get the unique values of g_i 's (i=0, 1, 2) as

$$
g_0 = \frac{B(t_2) + B(t_1) - HB(t_2) - HB(t_1)}{B(t_2) + B(t_1) - 2B(t_0)}
$$
\n(25)

$$
g_1 = \frac{HB(t_2) - B(t_0) - HB(t_0)}{B(t_2) + B(t_1) - 2B(t_0)}
$$
\n(26)

$$
g_2 = \frac{HB(t_0) - B(t_0) - HB(t_1)}{B(t_2) + B(t_1) - 2B(t_0)}
$$
\n(27)

such that

$$
g_0 + g_1 + g_2 = 1 \tag{28}
$$

Use of these g_i 's (i=0, 1, 2) remove the bias up to terms of order $o(n^{-1})$

3.1 Another almost unbiased estimator

In this section we propose another almost unbiased estimator t_{g1} for coefficient of variation. For this we have taken three estimators m_0 , m_1 and m_2 which are defined as

$$
m_0 = C_y = (t_0) \tag{29}
$$

The bias of the estimator m_0 is given by:

$$
Bias(m_0) = C_y \gamma \left(C_y^2 - \frac{1}{8} (\lambda_{40} - 1) - \frac{1}{2} C_y \lambda_{30} \right)
$$
 (30)

The Mean square error (MSE) expression of the estimator m_0 is given by:

$$
MSE(m_0) = C_y^2 \gamma (C_y^2 + \frac{1}{4} (\lambda_{40} - 1) - C_y \lambda_{30})
$$
\n(31)

The exponential and logarithmic estimator for estimating population coefficient of variation is given as follows-

$$
m_1 = C_y \exp\left(\frac{S_x^2 - S_x^2}{S_x^2 + S_x^2}\right)
$$
 (32)

$$
m_2 = C_y \left\{ 1 + \log \left(\frac{s_x^2}{S_x^2} \right) \right\} \tag{33}
$$

The bias of the estimators m_1 and m_2 are respectively given as

$$
Bias(m_1) = C_y \gamma \left(C_y^2 - \frac{1}{8} (\lambda_{40} - 1) - \frac{1}{2} C_y \lambda_{30} + \frac{1}{2} C_y \lambda_{12} + \frac{3}{8} (\lambda_{04} - 1) - \frac{1}{4} (\lambda_{22} - 1) \right)
$$
(34)

$$
Bias(m_2) = C_y \gamma \left(C_y^2 - \frac{1}{8} (\lambda_{40} - 1) - \frac{1}{2} C_y \lambda_{30} + \frac{1}{2} (\lambda_{22} - 1) - C_y \lambda_{12} - \frac{1}{2} (\lambda_{04} - 1) \right)
$$
(35)

MSE of the estimators m_1 and m_2 are respectively given as

$$
MSE(m_1) = C_y^2 \gamma \left(C_y^2 + \frac{1}{4} (\lambda_{40} - 1) - C_y \lambda_{30} + C_y \lambda_{12} + \frac{1}{4} (\lambda_{04} - 1) - \frac{1}{2} (\lambda_{22} - 1) \right)
$$
(36)

$$
MSE(m_2) = C_y^2 \gamma \left(C_y^2 + \frac{1}{4} (\lambda_{40} - 1) - C_y \lambda_{30} - 2C_y \lambda_{12} + (\lambda_{04} - 1) + (\lambda_{22} - 1) \right)
$$
(37)

 m_0 , m_1 and $m_2 \in L$, where L denotes the set of all possible estimators for estimating the population coefficient of variation *Cy* .

By definition, the set L is a linear variety if

$$
t_{g1} = \sum_{i=0}^{2} l_i m_i \in L \tag{38}
$$

$$
t_{g1} = l_0 m_0 + l_1 m_1 + l_2 m_2 \tag{39}
$$

$$
t_{g1} = l_0 C_y + l_1 C_y \exp\left(\frac{S_x^2 - S_x^2}{S_x^2 + S_x^2}\right) + l_2 C_y \left\{1 + \log\left(\frac{S_x^2}{S_x^2}\right)\right\}
$$

For $\sum_{i=0}^{2} l_i = 1$, $l_i \in R$ (40)

where l_i (i = 0, 1, 2) denotes the statistical constants and R denotes the set of real numbers.

Table 2. Members of the proposed family t_{g1} of estimators

To obtain the bias and MSE of the t_{g1} , we write t_{g1} in the form of error terms as

$$
t_{g1} = C_y \left(1 + e_2\right)^{1/2} \left(1 + e_0\right)^{-1} \left[l_0 + l_1 \exp\left(\frac{-e_3}{2 + e_3}\right) + l_2 \left\{1 + \log(1 + e_3)\right\}\right]
$$
(41)

Expanding the right hand side of (41) and retaining terms up to second powers of e's we have

$$
t_{g1} = C_y \left[1 - e_0 + e_0^2 + \frac{1}{2} e_2 - \frac{1}{2} e_0 e_2 - \frac{1}{8} e_2^2 - (\frac{1}{2} l_1 - l_2) e_3 + (\frac{3}{8} l_1 - \frac{1}{2} l_2) e_3^2 + (\frac{1}{2} l_1 - l_2) e_0 e_3 - (\frac{1}{4} l_1 - \frac{1}{2} l_2) e_2 e_3 \right]
$$
(42)

Subtracting C_y from both sides of equation (42) and then taking expectation, we get the bias of the estimator t_{g1} , up to the first order of approximation as

$$
Bias(t_{g1}) = C_y \gamma \left(\begin{aligned} C_y^2 - \frac{1}{8} (\lambda_{40} - 1) - \frac{1}{2} C_y \lambda_{30} + (\frac{1}{2} l_1 - l_2) C_y \lambda_{12} \\ + (\frac{3}{8} l_1 - \frac{1}{2} l_2) (\lambda_{04} - 1) - (\frac{1}{4} l_1 - \frac{1}{2} l_2) \frac{1}{2} (\lambda_{22} - 1) \end{aligned} \right) \tag{43}
$$

From (42), we have

$$
\left(t_{g1} - C_y\right) \cong C_y \left[\frac{1}{2}e_2 - e_0 - \left(\frac{1}{2}l_1 - l_2\right)e_3\right]
$$
\n(44)

where,

$$
\frac{1}{2}l_1 - l_2 = H_1 \tag{45}
$$

Squaring both sides of equation (43) and then taking expectation, we get MSE of the estimator t_{g1} , up to the first order of approximation, as

$$
MSE(t_{g1}) = C_y^2 \gamma \bigg(C_y^2 + \frac{1}{4} (\lambda_{40} - 1) - C_y \lambda_{30} + 2H_1 C_y \lambda_{12} + H_1^2 (\lambda_{04} - 1) - H_1 (\lambda_{22} - 1) \bigg)
$$
(46)

which is minimum when

$$
H_1 = \frac{1}{2} \frac{(\lambda_{22} - 1)}{(\lambda_{04} - 1)} - \frac{C_y \lambda_{12}}{(\lambda_{04} - 1)}.
$$
\n(47)

Putting the value of $H_1 = \frac{1}{2} \frac{(\lambda_{22} - 1)}{(\lambda_{22} - 1)}$ $(\lambda_{04}-1)$ $(\lambda_{04}-1)$ 22 11 V_v V_{12} 1 04 1 1 1 04 1 $(\lambda_{22} - 1)$ 2 $(\lambda_0, -1)$ $(\lambda_0, -1)$ $H_1 = \frac{1}{2} \frac{(\lambda_{22} - 1)}{(\lambda_{22} - 1)} - \frac{C_y \lambda_1}{(\lambda_{22} - 1)}$ λ_{α} -1) (λ_{α} $=\frac{1}{2}\left(\frac{\lambda_{22}-1}{\lambda_{21}-1}\right)-\frac{C_{y}\lambda_{12}}{(\lambda_{21}-1)}$ in equation (46) the minimum MSE value of the estimator t_{g1} is given by

Singh et al.; Asian J. Prob. Stat., vol. 26, no. 5, pp. 1-18, 2024; Article no.AJPAS.116749

$$
Min.MSE(t_{g1}) = C_y^2 \gamma \bigg(C_y^2 + \frac{1}{4} (\lambda_{40} - 1) - C_y \lambda_{30} + 2H_1 C_y \lambda_{12} + H_1^2 (\lambda_{04} - 1) - H_1 (\lambda_{22} - 1) \bigg)
$$
(48)

From equations (45) and (47), we have

$$
\left(\frac{1}{2}l_1 - l_2\right) = H_1 = \frac{1}{2}\frac{(\lambda_{22} - 1)}{(\lambda_{04} - 1)} - \frac{C_y \lambda_{12}}{(\lambda_{04} - 1)}
$$
\n(49)

From equation (38) and (45), we have only two equations in three unknowns. It is not possible to find the unique values for l_i 's, i = 0, 1, 2. In order to get unique values of l_i 's, we shall impose the linear restriction.

$$
\sum_{i=0}^{2} l_i B(m_i) = 0 \tag{50}
$$

such that

$$
l_0 B(m_0) + l_1 B(m_1) + l_2 B(m_2) = 0
$$
\n(51)

here $B(m_i)$ denotes the bias in the i^{th} (i=0,1,2) estimator.

Equations (40), (45) and (51) can be written in the matrix form

$$
\begin{bmatrix} 1 & 1 & 1 \ 0 & \frac{1}{2} & -1 \ B(m_0) & B(m_1) & B(m_2) \end{bmatrix} \begin{bmatrix} l_0 \ l_1 \ l_2 \end{bmatrix} = \begin{bmatrix} 1 \ H_1 \ 0 \end{bmatrix}
$$
 (52)

where,

$B(m_0)$, $B(m_1)$ and $B(m_2)$ are defined in equation (31), (34) and (35).

From the system of equation (52), we get the unique values of l_i 's (i=0, 1, 2) respectively as

$$
l_0 = \frac{\frac{1}{2}B(m_2) + B(m_1) - H_1B(m_2) + H_1B(m_1)}{\frac{1}{2}B(m_2) + B(m_1) - \frac{3}{2}B(m_0)}
$$
\n(53)

$$
l_1 = \frac{H_1 B(m_2) - B(m_0) - H_1 B(m_0)}{\frac{1}{2} B(m_2) + B(m_1) - \frac{3}{2} B(m_0)}
$$
\n(54)

$$
l_2 = \frac{H_1 B(m_0) - H_1 B(m_1) - \frac{1}{2} B(m_0)}{\frac{1}{2} B(m_2) + B(m_1) - \frac{3}{2} B(m_0)}
$$
\n(55)

10

where,

$$
l_0 + l_1 + l_2 = 1 \tag{56}
$$

Use of these l_i 's (i=0, 1, 2) remove the bias up to terms of order $o(n^{-1})$.

4 Theoretical Efficiency Comparision

In this section, efficiency conditions of t_g and t_{g_1} over sample coefficient of variation t_0 , t_1, t_2 , m_1 and m_2 are established.

4.1 Efficiency comparison for the estimators t_g

(i). t_g is more efficient than t_0

 $Min.MSE(t_{_g}) < MSE(t_{_0})$

$$
C_{y}^{2}\gamma\left(\begin{matrix}C_{y}^{2}+\frac{1}{4}(\lambda_{40}-1)-C_{y}\lambda_{30}\\\ +2HC_{y}\lambda_{12}+H^{2}(\lambda_{04}-1)-H_{22}-1\end{matrix}\right)\n(57)
$$

(ii). t_g is more efficient than t_1

 $Min.MSE(t_{_S}) < MSE(t_1)$

$$
C_{y}^{2}\gamma\left(\begin{array}{c} C_{y}^{2} + \frac{1}{4}(\lambda_{40} - 1) - C_{y}\lambda_{30} \\ + 2HC_{y}\lambda_{12} + H^{2}(\lambda_{04} - 1) - H_{22} - 1) \end{array}\right) < C_{y}^{2}\gamma\left(\begin{array}{c} C_{y}^{2} + \frac{1}{4}(\lambda_{40} - 1) - C_{y}\lambda_{30} + \\ 2C_{y}\lambda_{12} + (\lambda_{04} - 1) - (\lambda_{22} - 1) \end{array}\right)
$$
(58)

(iii). t_g is more efficient than t_2

 $Min.MSE(t_{_g}) < MSE(t_{_2})$

$$
C_{y}^{2}\gamma\left(\begin{matrix}C_{y}^{2}+\frac{1}{4}(\lambda_{40}-1)-C_{y}\lambda_{30}\\\ +2HC_{y}\lambda_{12}+H^{2}(\lambda_{04}-1)-H_{22}-1\end{matrix}\right)<\frac{C_{y}^{2}\gamma\left(C_{y}^{2}+\frac{1}{4}(\lambda_{40}-1)-C_{y}\lambda_{30}-2C_{y}\lambda_{12}\right)}{+(\lambda_{04}-1)+(\lambda_{22}-1)}
$$
(59)

(iv). t_g is more efficient than m_1

 $Min.MSE(t_{_S}) < MSE(m_{_1})$

$$
C_{y}^{2}\gamma\left(\begin{array}{c} C_{y}^{2} + \frac{1}{4}(\lambda_{40} - 1) - C_{y}\lambda_{30} \\ + 2HC_{y}\lambda_{12} + H^{2}(\lambda_{04} - 1) - H(\lambda_{22} - 1) \end{array}\right) < C_{y}^{2}\gamma\left(\begin{array}{c} C_{y}^{2} + \frac{1}{4}(\lambda_{40} - 1) - C_{y}\lambda_{30} \\ + C_{y}\lambda_{12} + \frac{1}{4}(\lambda_{04} - 1) - \frac{1}{2}(\lambda_{22} - 1) \end{array}\right)
$$
(60)

(v). t_g is more efficient than m_2

 $Min.MSE(t_{_g}) < \mathrm{MSE(m}_2)$

$$
C_{y}^{2}\gamma \left(\n\begin{array}{c}\nC_{y}^{2} + \frac{1}{4}(\lambda_{40} - 1) - C_{y}\lambda_{30} \\
+ 2HC_{y}\lambda_{12} + H^{2}(\lambda_{04} - 1) - H(\lambda_{22} - 1)\n\end{array}\n\right) \leq C_{y}^{2}\gamma \left(\n\begin{array}{c}\nC_{y}^{2} + \frac{1}{4}(\lambda_{40} - 1) - C_{y}\lambda_{30} - 2C_{y}\lambda_{12} \\
+ (\lambda_{04} - 1) + (\lambda_{22} - 1)\n\end{array}\n\right) (61)
$$

4.2 Efficiency comparison for the estimators t_{g_1}

(i). t_{g_1} is more efficient than t_0

 $Min.MSE(t_{g_1}) < MSE(t_0)$

$$
C_{y}^{2}\gamma\left(\begin{array}{c}C_{y}^{2}+\frac{1}{4}(\lambda_{40}-1)-C_{y}\lambda_{30}+2H_{1}C_{y}\lambda_{12}\\+H_{1}^{2}(\lambda_{04}-1)-H_{1}(\lambda_{22}-1)\end{array}\right)(62)
$$

(ii). t_{g_1} is more efficient than t_1

 $Min.MSE(t_{g_1}) < MSE(t_1)$

$$
C_{y}^{2}\gamma\left(\begin{array}{c} C_{y}^{2} + \frac{1}{4}(\lambda_{40} - 1) - C_{y}\lambda_{30} + 2H_{1}C_{y}\lambda_{12} \\ + H_{1}^{2}(\lambda_{04} - 1) - H_{1}(\lambda_{22} - 1) \end{array}\right) < C_{y}^{2}\gamma\left(\begin{array}{c} C_{y}^{2} + \frac{1}{4}(\lambda_{40} - 1) - C_{y}\lambda_{30} + \\ 2C_{y}\lambda_{12} + (\lambda_{04} - 1) - (\lambda_{22} - 1) \end{array}\right)
$$
(63)

(iii). t_{g_1} is more efficient than t_2

 $Min.MSE(t_{_{g_1}}) < MSE(t_{_2})$

$$
C_{y}^{2}\gamma\left(\begin{array}{c}C_{y}^{2}+\frac{1}{4}(\lambda_{40}-1)-C_{y}\lambda_{30}+2H_{1}C_{y}\lambda_{12}\\+H_{1}^{2}(\lambda_{04}-1)-H_{1}(\lambda_{22}-1)\end{array}\right)(64)
$$

(iv). t_{g_1} is more efficient than m_1

 $Min.MSE(t_{g_1}) ~ < MSE(m_1)$

$$
C_{y}^{2}\gamma\left(\begin{array}{c} C_{y}^{2} + \frac{1}{4}(\lambda_{40} - 1) - C_{y}\lambda_{30} + 2H_{1}C_{y}\lambda_{12} \\ + H_{1}^{2}(\lambda_{04} - 1) - H_{1}(\lambda_{22} - 1) \end{array}\right) < C_{y}^{2}\gamma\left(\begin{array}{c} C_{y}^{2} + \frac{1}{4}(\lambda_{40} - 1) - C_{y}\lambda_{30} \\ + C_{y}\lambda_{12} + \frac{1}{4}(\lambda_{04} - 1) - \frac{1}{2}(\lambda_{22} - 1) \end{array}\right)
$$
(65)

(v). t_{g_1} is more efficient than m_2

 $Min.MSE(t_{g_1}) \leq MSE(m_2)$

$$
C_{y}^{2}\gamma\left(\begin{array}{c} C_{y}^{2} + \frac{1}{4}(\lambda_{40} - 1) - C_{y}\lambda_{30} + 2H_{1}C_{y}\lambda_{12} \\ + H_{1}^{2}(\lambda_{04} - 1) - H_{1}(\lambda_{22} - 1) \end{array}\right) < C_{y}^{2}\gamma\left(\begin{array}{c} C_{y}^{2} + \frac{1}{4}(\lambda_{40} - 1) - C_{y}\lambda_{30} - 2C_{y}\lambda_{12} \\ + (\lambda_{04} - 1) + (\lambda_{22} - 1) \end{array}\right)
$$
(66)

5 Empirical Study

In this section, we will carry out empirical study to demonstrate the performance of the proposed estimator over existing ones using two real data sets.

Population 1: [Source: Murthy [19], p.399]

X: Area under wheat in 1963, Y: Area under wheat in 1964 $N=34$, n=15, $C_x = 0.72$,

$$
C_y = 0.75
$$
, $\rho = 0.98$, $\lambda_{21} = 1.0045$, $\lambda_{12} = 0.9406$, $\lambda_{40} = 3.6161$, $\lambda_{04} = 2.8266$, $\lambda_{30} = 1.1128$,

 $\lambda_{03} = 0.9206, \ \lambda_{22} = 3.01133, \ Y = 199.44, \ X = 208.88$

Population 2: [Source: S. Singh [20], p.1116]

X: Number of fish caught in year 1993, Y: Number of fish caught in year 1995

$$
N = 69, n = 40, C_x = 1.38, C_y = 1.35, \rho = 0.96, \lambda_{21} = 2.19, \lambda_{12} = 2.3, \lambda_{40} = 7.66, \lambda_{04} = 9.84, \lambda_{30} = 1.38, \lambda_{11} = 1.38, \lambda_{12} = 1.38, \lambda_{13} = 1.38, \lambda_{14} = 1.38, \lambda_{15} = 1.38, \lambda_{16} = 1.38, \lambda_{17} = 1.38, \lambda_{18} = 1.38, \lambda_{19} = 1.38, \lambda_{10} = 1.38, \lambda_{11} = 1.38, \lambda_{12} = 1.38, \lambda_{13} = 1.38, \lambda_{14} = 1.38, \lambda_{15} = 1.38, \lambda_{16} = 1.38, \lambda_{17} = 1.38, \lambda_{18} = 1.38, \lambda_{19} = 1.38, \lambda_{10} = 1.38, \lambda_{11} = 1.38, \lambda_{12} = 1.38, \lambda_{13} = 1.38, \lambda_{14} = 1.38, \lambda_{15} = 1.38, \lambda_{16} = 1.38, \lambda_{17} = 1.38, \lambda_{18} = 1.38, \lambda_{19} = 1.38, \lambda_{10} = 1.38, \lambda_{11} = 1.38, \lambda_{12} = 1.38, \lambda_{13} = 1.38, \lambda_{14} = 1.38, \lambda_{15} = 1.38, \lambda_{16} = 1.38, \lambda_{17} = 1.38, \lambda_{18} = 1.38, \lambda_{19} = 1.38, \lambda_{10} = 1.38, \lambda_{11} = 1.38, \lambda_{12} = 1.38, \lambda_{13} = 1.38, \lambda_{14} = 1.38, \lambda_{15} = 1.38, \lambda_{16} = 1.38, \lambda_{17} = 1.38, \lambda_{18} = 1.38, \lambda_{19} = 1.38, \lambda_{10} = 1.38, \lambda_{11}
$$

 $=$ 1.11, λ_{03} = 2.52, λ_{22} = 8.19, *Y* = 4514.89, *X* = 4591.07.

Table 3. Values of g_i , **'s** (**i**=0,1,2)

Using these values of g_i 's (i=0,1,2) given in the Table, one can reduce the bias to the order $o(n^{-1})$ in the estimator t_g

Table 4. Values of l_i **'s (** $i = 0,1,2$ **)**

Using these values of l_i 's (i=0,1,2) given in the Table, one can reduce the bias to the order $O(n^{-1})$ in the estimator t_{g_1}

Table 5. Biases of the existing estimators and proposed estimators

Table 6. The MSE and PRE of the existing and the proposed estimators

Estimators	MSE	PRE
$t_0 (= m_0)$	0.03808827	100.00
t_{1}	0.188603	20.1948
t_{2}	0.2261359	16.84297
$m_{\rm l}$	0.071025	53.62631
m ₂	0.226136	16.84309
t_{g}	0.037568	101.3844
t_{g1}	0.037568	101.3844

Table 7. The MSE and PRE of the existing and the proposed estimators

6 Simulation Study

In this section we have done simulation analysis.

The following steps have been used for the simulation:

- 1. We have generated bivariate random observations of size $N=1000$ units from a bivariate normal distribution with parameters $\mu_x = 3$, $\sigma_x = 4$, and $\mu_y = 5$, $\sigma_y = 9$ and $\rho = 0.95$.
- 2. Sample of sizes $n = 150$, 200 and 250 have been selected from this simulated population.
- 3. Sample statistics that is the sample mean, sample variance, and the values of the suggested and existing estimators of population CV are calculated for these samples.
- 4. Steps (3) and (4) are repeated m=10,000 times. $\text{(estimator)} = \frac{MSE(t_0)}{NSE(t_0)}$ *100 (estimator) $PRE(estimator) = \frac{MSE(t)}{t}$ *MSE estimator* =

Table 8. Values of Scalars by which one can reduce the bias of the estimator

Using the values of g_i 's (i=0,1,2) given in the table, one can reduce the bias to the order $o(n^{-1})$ in the estimator t_g

Table 9. Values of Scalars by which one can reduce the bias of the estimator

Similarly using the values of l_i 's (i=0,1,2) given in the table, one can reduce the bias to the order $o(n^{-1})$ in the estimator

 $t_{_{g_1}}$

Table 10. Biases of the existing estimators and proposed estimators

Estimators		$N=1000$, $n=150$	$N = 1000,$	$n = 200$		$N=1000$, $n=250$
	MSE	PRE	MSE	PRE	MSE	PRE
$t_0 (= m_0)$	0.001688	100.00	0.001355	100.00	0.000793	100.00
t_{1}	0.002342	72.08397	0.001386	97.73829	0.000992	79.97066
t ₂	0.00932	18.11233	0.007178	18.87754	0.004357	18.20195
m_{1}	0.000979	172.381	0.000639	212.0795	0.000422	187.9839
m ₂	0.00932	18.11233	0.007178	18.87754	0.004357	18.20195
t_{g}	0.000953	177.043	0.000639	212.1073	0.000417	190.3548
t_{g1}	0.000953	177.043	0.000639	212.1073	0.000417	190.3548

Table 11. MSE and PRE values of existing and proposed estimators.

7 Discussion

We have proposed two almost unbiased estimators t_g and t_{g_1} for the estimation of population coefficient of variation utilizing information on a single auxiliary variable in srswor and compared them with some existing estimators. From Table 5 we observe that in the class of estimators t_g , the estimator $t₂$ is least biased followed by the estimator t_0 and the estimator t_1 has the highest bias. Our proposed class of estimators t_g is almost unbiased for the proper choices of the constants g_i ($i = 0,1,2$). Similarly, from the Table 5 we observe that for the class of the estimators t_{g_1} , the estimator m_0 is least biased, followed by the estimator m_1 and m_2 has the highest bias. Our second proposed class of estimators t_{g_1} is almost unbiased for the proper choice of constants l_i $(i = 0, 1, 2)$. From Table 6 and Table 7, we observe that for population.1 and population.2, the proposed class of estimators t_g and t_{g_1} are having highest PRE. In the simulation study from Table 11 we observe that the proposed class of estimators t_g and t_{g_1} are having highest PRE.

8 Conclusion

In this paper we have proposed almost unbiased estimators for population coefficient of variation C_y . We have derived the bias and MSE expressions up to the first order of approximations for the estimators considered in this paper. In efficiency comparison section, we have derived the conditions under which our proposed class of estimators t_g and t_{g_1} will be better than the estimators considered in this paper.

Competing Interests

Authors have declared that no competing interests exist.

References

- [1] Cochran WG. Sampling techniques. John Wiley and Sons; 1977. Available:https://books.google.com/books?hl=en&lr=&id=xbNn41DUrNwC&oi=fnd&pg=PA1&dq=Sa mpling+Techniques+Book+by+William+Cochran&ots=TYrUiAwmkZ&sig=V1VYvy7LsjGVVBuUtFfb RsczbOo
- [2] Cochran WG. The estimation of the yields of cereal experiments by sampling for the ratio of grain to total produce. J. Agric. Sci. 1940;30(2):262–275.
- [3] Robson DS. Applications of multivariate Polykays to the theory of unbiased ratio-type estimation. J. Am. Stat. Assoc. 1957;52(280):511–522. DOI: 10.1080/01621459.1957.10501407
- [4] Murthy MN. Product method of estimation. Sankhyā Indian J. Stat. Ser. A. 1964;69–74.
- [5] Solanki RS, Singh HP, Rathour A. An alternative estimator for estimating the finite population mean using auxiliary information in sample surveys. ISRN Probab. Stat. 2012;2012:1–14. DOI: 10.5402/2012/657682
- [6] Ray SK, Sahai A. Efficient Families of Ratio and Product-Type Estimators. Biometrika; 1980.
- [7] Srivastava SK, Jhajj HS. A class of estimators of the population mean in survey sampling using auxiliary information. Biometrika; 1981
- [8] Singh R, Mishra M, Singh BP, Singh P, Adichwal NK. Improved estimators for population coefficient of variation using auxiliary variable. J. Stat. Manag. Syst. 2018;21(7):1335–1355. DOI: 10.1080/09720510.2018.1503405
- [9] Sing R, Kumar M. A note on transformations on auxiliary variable in survey sampling. Model Assist. Stat. Appl. 2011;6(1):17–19. DOI: 10.3233/MAS-2011-0154
- [10] Malik S, Singh R. An improved estimator using two auxiliary attributes. Appl. Math. Comput. 2013;219(23):10983–10986. DOI: 10.1016/j.amc.2013.05.014
- [11] Das AK, Tripathi TP. Use of auxiliary information in estimating the coefficient of variation. Alig J Stat. 1992;12:51–58.
- [12] Patel PA, Rina S. A Monte Carlo comparison of some suggested estimators of Co-efficient of variation in finite population. J. Stat. Sci. 2009;1(2):137–147.
- [13] Breunig R. An almost unbiased estimator of the coefficient of variation. Econ. Lett. 2001;70(1):15– 19. DOI: 10.1016/S0165-1765(00)00351-7
- [14] Rajyaguru A, Gupta PC. On the estimation of the coefficient of variation from finite population-II. Model Assist. Stat. Appl. 2005;1(1):57–66. DOI: 10.3233/MAS-2006-1110
- [15] Adejumobi A, Yunusa MA. Some improved class of ratio estimators for finite population variance with the use of known parameters. LC Int. J. STEM ISSN 2708-7123. 2022;3(3):35–45.
- [16] Yunusa MA, et al. Logarithmic ratio-type estimator of population coefficient of variation. Asian J. Probab. Stat. 2021;14(2):13–22.
- [17] Audu A, et al. Difference-cum-ratio estimators for estimating finite population coefficient of variation in simple random sampling. Asian J. Probab. Stat. 2021;13(3):13–29.
- [18] Archana V, Rao A. Some improved estimators of co-efficient of variation from bi-variate normal distribution: A Monte Carlo comparison. Pak. J. Stat. Oper. Res. 2014;87–105.
- [19] Murthy MN. Sampling theory and methods. Sampl. Theory Methods; 1967. Available:https://www.cabdirect.org/cabdirect/abstract/19702700466

[20] Singh S. Advanced sampling theory with applications: How Michael selected Amy. Springer Science and Business Media. 2003;2. Available:https://books.google.com/books?hl=en&lr=&id=8XGDJFotX_QC&oi=fnd&pg=PA615&dq=S INGH,+S.,+(2003).+Advanced+Sampling+Theory+With+Applications:+How+Michael+Selected+Amy+ (Vol.+2),+Springer+Science+and+Business+Media.&ots=2tdrEnZykt&sig=Fvsjf34tjMfw_pDv4mVFDyJuE0

__ *© Copyright (2024): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.*

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar) https://www.sdiarticle5.com/review-history/116749