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Abstract 
In this paper, we explore the ability of a hybrid model integrating Long 
Short-Term Memory (LSTM) networks and eXtreme Gradient Boosting 
(XGBoost) to enhance the prediction accuracy of Type II Diabetes Mellitus, 
which is caused by a combination of genetic, behavioral, and environmental 
factors. Utilizing comprehensive datasets from the Women in Data Science 
(WiDS) Datathon for the years 2020 and 2021, which provide a wide range of 
patient information required for reliable prediction. The research employs a 
novel approach by combining LSTM’s ability to analyze sequential data with 
XGBoost’s strength in handling structured datasets. To prepare this data for 
analysis, the methodology includes preparing it and implementing the hybrid 
model. The LSTM model, which excels at processing sequential data, detects 
temporal patterns and trends in patient history, while XGBoost, known for its 
classification effectiveness, converts these patterns into predictive insights. 
Our results demonstrate that the LSTM-XGBoost model can operate effec-
tively with a prediction accuracy achieving 0.99. This study not only shows 
the usefulness of the hybrid LSTM-XGBoost model in predicting diabetes but 
it also provides the path for future research. This progress in machine learn-
ing applications represents a significant step forward in healthcare, with the 
potential to alter the treatment of chronic diseases such as diabetes and lead 
to better patient outcomes. 
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1. Introduction 

Type II diabetes is a chronic disease that affects millions of individuals world-
wide. The disease can cause serious damage to the body, especially nerves and 
blood vessels, and is often preventable. Type II Diabetes Mellitus is a serious 
public health concern with significant impacts on human life and health. It af-
fects individuals’ functional capacities and quality of life, leading to significant 
morbidity and premature mortality [1]. The sudden increase in the number of 
Type II Diabetes cases has raised serious public health concerns. The multifac-
torial nature of Type II Diabetes Mellitus poses a challenge for early detection, as 
symptoms can be mild and take years to manifest. Additionally, the complexity 
of the disease and its interactions with other factors make it difficult to predict 
with high accuracy using traditional methods. Current predictive models have 
limitations in capturing complex patterns in patient data, and there are concerns 
about suboptimal control of blood glucose and other targets for many patients 
[2]. 

Type II diabetes is a prevalent and serious health condition that affects a di-
verse range of individuals globally. It is characterized by the body’s ineffective 
use of insulin, with around 90% of all diabetes diagnoses being type II. This 
chronic disease can lead to various health complications, including kidney dis-
ease, amputations, blindness, cardiovascular disease, obesity, hypertension, hy-
poglycemia, dyslipidemia, and an increased risk of heart attack or stroke. Nota-
bly, diabetes claims more lives annually than breast cancer and AIDS combined. 

The prevalence of type II diabetes is on the rise, with more young people be-
ing diagnosed. In America alone, expenditures related to diabetes healthcare 
costs have significantly increased over the years. Lifestyle factors such as obesity 
and lack of exercise contribute to the development of type II diabetes. Genetics 
also plays a significant role in increasing the risk of this condition, especially for 
individuals with close relatives who have diabetes [3]. 

Moreover, people from certain ethnic backgrounds are at a higher risk of de-
veloping type II diabetes. For instance, individuals of South Asian, Chinese, 
African-Caribbean, and black African origin are more likely to develop this con-
dition. Regular exercise and maintaining a healthy weight can significantly re-
duce the risk of developing type II diabetes by more than 50%. 

Early diagnosis and treatment are crucial in managing type II diabetes effec-
tively. Regular check-ups and blood tests are essential for early detection to pre-
vent severe complications associated with the disease. Individuals at risk or those 
with pre-diabetes need to take preventative steps to avoid the progression to type 
II diabetes. 

The importance of accurately predicting Type II Diabetes cannot be empha-
sized. Early detection and action can improve disease and reduce the risk of se-
rious consequences. However, predicting Type II Diabetes is difficult due to the 
complexity of the components involved, which include genetic, behavioral, and 
environmental influences. Traditional techniques of prediction frequently rely 
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on a custom knowledge base using graphs, frames, first-order logic, etc., which 
may not always capture the correct patterns found in patient data [4]. 

To overcome this issue, we offer a hybrid model that incorporates Long 
Short-Term Memory (LSTM) networks and Extreme Gradient Boosting (XGBoost). 
The hybrid LSTM-XGBoost model represents an advancement over traditional 
methods, offering improved accuracy in predicting Type II Diabetes Mellitus 
and its complications, thereby contributing to early intervention and better pa-
tient outcomes. 

This model tries to combine the strengths of LSTM and XGBoost to process 
and analyze complex medical data. We will discuss the LSTM model, this net-
work is a sort of recurrent neural network that is noted for its capacity to process 
sequential data, making it perfect for dealing with time-series data, which is 
common in medical records. They can detect patterns over time, providing de-
tailed insights into patient history and trends. In contrast, we will discuss the 
XGBoost, this model is a sophisticated implementation of gradient boosting 
techniques noted for its excellent efficiency, adaptability, and efficacy in classifi-
cation tasks. By combining these two methods, our approach tries to capture 
both the temporal dynamics and complex correlations in the data, enhancing 
diabetes prediction accuracy. 

The objectives of the study are to develop a hybrid model that leverages LSTM 
for temporal data analysis and XGBoost for robust classification, to validate the 
model’s effectiveness in predicting diabetes using comprehensive datasets, and 
to contribute to the field of predictive healthcare by introducing a model with 
high accuracy, precision, recall, and F1 score. This research is significant because 
it advances the field of medical data analysis and predictive healthcare. Our work 
aims to improve prediction accuracy, allowing for earlier diagnosis and more ef-
fective therapies. This has the potential to enhance patient outcomes while also 
lowering the overall strain on healthcare systems. The findings of this study are 
likely to provide useful insights into the application of advanced machine learn-
ing techniques in healthcare [5]. 

2. Related Works 

Several studies have been conducted on diabetes prediction using traditional sta-
tistical methods and machine learning algorithms. Traditional statistical me-
thods such as logistic regression, decision trees, and k-means clustering have 
been used to predict diabetes with varying degrees of accuracy. 

In recent years, many researchers have been using the concept of machine 
learning to predict Diabetes Mellitus disease. Some of the commonly used algo-
rithms include logistic regression (LR), XGBoost (XGB), gradient boosting (GB), 
decision trees (DTs), ExtraTrees, random forest (RF), and light gradient boost-
ing machines (LGBM). Each classifier has its advantages over the other classifi-
ers. 

Another recent development in machine learning is the so-called Extreme 
gradient boosting (XGBoost), which was introduced by [6]. XGBoost is an effi-
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cient implementation of gradient boosting that is based on parallel tree learning 
and efficient proposal calculation and caching for tree learning. The XGBoost 
algorithm has found a wide variety of use cases, also in the context of energy 
systems research. 

As the area evolved, researchers began to investigate more complicated algo-
rithms and various datasets, recognizing the multiple nature of diabetes and its 
data. This shift is evident in studies such as those conducted by [7], who not only 
predicted diabetes but also classified its types using a variety of machine learning 
methods such as Random Forest, Light Gradient Boosting Machine (LGBM), 
Gradient Boosting Machine, SVM, Decision Tree, and XGBoost. Their approach, 
which included data augmentation and sampling, yielded a high accuracy rate 
with the LGBM Classifier. This work represents the trend of using advanced 
methodologies and comprehensive data processing to improve forecast accuracy 
and illness knowledge. 

Here shows the evolution of research advancements in machine learning and 
healthcare for predicting diabetes. Initially, the study was to establish the viabili-
ty of applying machine learning to medical predictions. Initially simple know-
ledge base is used to predict the disease meaning predefined rules. With time, 
machine learning models replace this knowledge base because they capture the 
semantic meanings. The simple machine learning models alone are used for 
classification tasks as I have discussed in previous paragraphs. Over time, the 
emphasis shifted to increasingly sophisticated challenges, such as distinguishing 
between diabetes kinds and incorporating diverse data formats, including clini-
cal and demographic data. 

[8] and others proposed a short-term traffic flow prediction model based on 
the CNN-XGBoost hybrid model. Although this model studies the temporal and 
spatial characteristics of traffic flow, the disadvantage of the CNN prediction 
model compared to the LSTM model is that it is difficult to perform traffic flow 
multi-step prediction. The grey prediction model can predict traffic flow and 
real-time and dynamic data. 

In [9], an adaptive decomposition method is used together with an XGBoost- 
based regression model to forecast loads of industrial customers in China and 
Ireland. The authors of [10] separately forecast day-ahead loads through an 
LSTM neural network and XGBoost. Subsequently, an error-reciprocal method 
is used to combine the forecasts. However, both methods are used for a general 
load forecast, instead of focusing the XGBoost forecast on peak loads. Previous 
works like [7] have shown that XGBoost outperforms neural networks for re-
gression and classification tasks on tabular data. 

[11] proposed a Type II Diabetes Mellitus prediction model using machine 
learning techniques. Their dataset consisted of 1939 records with 11 biological 
and lifestyle parameters. Various machine learning algorithms such as Bagged De-
cision Trees, Random Forest, Extra Trees, AdaBoost, Stochastic Gradient Boosting, 
and Voting (Logistic Regression, Decision Trees, Support Vector Machine) were 
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employed. The greatest rate of accuracy among these classifiers was 99.14%, 
which was achieved by Bagged Decision Trees. 

[12] implemented a machine learning system for Type I and Type II Diabetes 
Mellitus that employs an ensemble learning technique to track glucose levels 
based on independent features. They used data from 27,050 cases and 111 
attributes gathered from patients at 10 different Slovenian healthcare facilities 
that focused on preventative medicine. For this framework, 59 variables were se-
lected after preprocessing and feature engineering. When compared to other clas-
sifiers, LightGBM achieved better results across the board. This included better 
accuracy, precision, recall, AUC, AUPRC, and RMSE. 

Using a variety of machine learning classifiers such as k-nearest neighbors, deci-
sion trees, AdaBoost, naive Bayes, XGBoost, and multi-layer perceptrons, 15 
created a solid framework for Type II Diabetes Mellitus. They used EDA to do 
tasks including outlier detection, missing value completion, data standardization, 
feature selection, and result validation. With a sensitivity of 0.789, a specificity of 
0.934, a false omission rate of 0.092, a diagnostic odds ratio of 66.234, and an 
AUC of 0.950, the ensembling classifiers AdaBoost and XGBoost performed the 
best. 

Theoretical Frameworks for Advancing Diabetes Prediction 

Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN) 
that is particularly effective for processing sequential data, such as time series 
data. Recurrent Neural Networks (RNN) are a type of neural network that is 
particularly effective for processing sequential data, such as text, speech, and 
time series data. RNNs contain loops that enable them to maintain a memory of 
past inputs, making them suitable for tasks like language translation, speech 
recognition, and predicting time series data [13]. 

LSTMs are designed to overcome the vanishing gradient problem that occurs 
in traditional RNNs, which can make it difficult to learn long-term dependencies 
in sequential data [14]. LSTMs contain memory cells that can maintain a memory 
of past inputs, making them suitable for tasks like predicting time series data. The 
LSTM model can capture time-dependent patterns in diabetes progression and 
treatment response, making it a suitable model for diabetes prediction [15]. 

Gradient Boosting is a machine learning technique that combines multiple weak 
predictive models to create a strong predictive model. It is an iterative process that 
fits each new model to the residuals of the previous model, thereby reducing the 
overall error. Gradient Boosting is particularly effective in classification tasks and 
has been used in various applications, including diabetes prediction [16]. 

The Gradient Boosting framework consists of the following steps:  
1) Start with an initial weak predictive model, such as a decision tree.  
2) Calculate the residuals, which are the differences between the actual and 

predicted values.  
3) Fit a new weak predictive model to the residuals.  
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4) Combine the new weak predictive model with the previous models to create 
an updated model.  

5) Repeat steps 2 - 4 until a stopping criterion is met, such as a maximum 
number of iterations or a minimum reduction in error.  

Gradient Boosting is effective in classification tasks because it can handle 
non-linear relationships and interactions between features, and it can be used 
with various types of weak predictive models, such as decision trees, linear re-
gression, and neural networks [6]. 

The integration of Long Short-Term Memory (LSTM) with XGBoost represents 
a novel contribution to diabetes prediction. This integration is expected to cap-
ture time-dependent patterns in diabetes progression and treatment response 
while addressing the challenges posed by high-dimensional patient data. By leve-
raging the strengths of LSTM for temporal data analysis and XGBoost for robust 
classification, the hybrid model is anticipated to significantly improve the accuracy 
of diabetes prediction, thereby enabling more effective early intervention and pa-
tient care. 

3. Methodology 

The methodology section of this study outlines the comprehensive approach 
undertaken to develop and evaluate a hybrid predictive model that synergizes 
the capabilities of Long Short-Term Memory (LSTM) networks and eXtreme 
Gradient Boosting (XGBoost) for the prediction of Type II Diabetes Mellitus. 
This innovative model leverages the sequential data processing strength of LSTM 
to capture temporal dependencies and intricate patterns within patient data, 
alongside the robust classification and predictive power of XGBoost, to effectively 
identify potential diabetes cases. This section delineates the step-by-step process, 
from data collection and preprocessing to the final evaluation of the model’s per-
formance, establishing a clear and structured pathway toward achieving the goal 
of improved diabetes prediction. 

3.1. Data Collection and Preprocessing 

The foundation of our predictive model is anchored in the meticulously curated 
datasets obtained from the Women in Data Science (WiDS) Datathons for the 
years 2020 and 2021. These datasets are integral to our research, providing a 
comprehensive array of patient information crucial for the accurate prediction 
of Type II Diabetes Mellitus. 

The 2020 and 2021 WiDS datasets encompass a broad spectrum of patient in-
formation, including but not limited to demographics, medical histories, and la-
boratory results. The 2020 dataset comprises 91,713 entries, while the 2021 dataset 
contains 130,157 entries, cumulatively offering a rich dataset of 221,870 patient 
records. This extensive collection of data points serves as a robust basis for our 
model, reflecting the multifaceted nature of diabetes onset and progression. 

Each dataset includes critical features such as patient identifiers, hospital in-
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formation, BMI, age, gender, ethnicity, blood pressure measurements, blood test 
results, and pre-existing health conditions, including diabetes mellitus status. To 
ensure the integrity and applicability of our model, we conducted a thorough 
preprocessing routine. This involved the elimination of columns with more than 
30% missing values and identifier columns, which do not contribute to the predic-
tive analysis. The resulting dataset was further refined to address residual missing 
values, with medians imputed for numerical data and modes for categorical data, 
ensuring a dataset devoid of null values. 

Feature engineering played a pivotal role in enhancing the predictive capabil-
ity of our model. This step involved the creation of new variables from existing 
data points, designed to uncover underlying patterns and relationships indica-
tive of diabetes risk. Additionally, categorical variables were encoded to facilitate 
their integration into the machine learning models, which necessitate numerical 
input. 

Figure 1 illustrates the varied distributions of selected clinical features from the 
WiDS Diabetes Prediction Dataset. Each subplot highlights the different patterns 
and ranges for features such as maximum oxygen saturation (h1_spo2_max), 
minimum noninvasive diastolic blood pressure (h1_diasbp_noninvasive_min), 
and patient age. 
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Figure 1. Distribution of clinical measurements for diabetes prediction. 
 

To address dataset imbalance where diabetes cases are fewer than non-diabetes 
cases, the study uses Random Over-Sampling. This method duplicates the di-
abetes cases to balance the dataset, which helps prevent model bias toward the 
more common non-diabetes cases. 

The final stage of preprocessing involved standardizing the dataset using a 
Standard Scaler. This procedure adjusted the data to have a mean of zero and a 
standard deviation of one, a critical step to ensure uniformity in feature contri-
bution and to foster model convergence. 

Table 1 illustrates the status before and after over-sampling:  
 

Table 1. The number of instances before and after applying Random Over-Sampling to 
balance the dataset. 

Status Before Over-sampling After Over-sampling 
Diabetes Mellitus 48,643 173,227 

Non-Diabetes 173,227 173,227 

 

 
Figure 2. Class label distribution before over-sampling. 
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Figure 2 shows the disparity between the cases with and without diabetes, in-
dicating the necessity for over-sampling.  

Figure 3 demonstrates a balanced number of cases for both classes, achieved 
by Random Over-Sampling to correct the imbalance in the dataset. 

 

 
Figure 3. Class label distribution after over-sampling. 

3.2. LSTM Model Description 

In this study, a hybrid approach based on deep learning and machine learning is 
proposed. This deep learning structure is based on the Recurrent Neural Net-
work (RNN) structure. The value to be estimated in RNN structures is not only 
analyzed based on the current value but also based on historical data. Therefore, 
RNN structures are frequently used in time series data [17]. RNN structures do 
not delete old data, such as the work of the human brain. Classical neural net-
work structures delete old data after using it in the weight adjustment [18]. This 
structure is formed by chaining the same networks. The input of each network is 
connected to the output of the previous RNN cells. Among the varieties of RNN 
structures, Long Short Term Memory (LSTM) is used in this study to create a 
hybrid algorithm for the detection of atrial fibrillation. The LSTM structure has 
begun to be widely used in estimation processes based on historical data. While 
RNN has a single-layer network structure, the LSTM structure has a four-layer 
network structure with gate mechanisms that manage the flow of information to 
the neural cell. The sigmoid function used in the neural network layer yields 
values between 0 and 1, determining the extent of the signal that is allowed to 
pass. This value, varying between 0 and 1, is used as a ratio. 

The forget gate tf  layer decides which information to discard from the cell 
state. It looks at 1−th  and tx , and outputs a number between 0 and 1 for each 
number in the cell state 1−tC . A 1 represents “completely keep this” while a 0 
represents “completely get rid of this”.  
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 [ ]( )1sigmoid ,−= +t f t t ff W h x b                      (1) 

The input gate decides which new values to store, using both sigmoid and 
tanh functions to produce the updated value and an intermediate value txC , re-
spectively:  

 [ ]( )1sigmoid ,−= +t i t t ii W h x b                      (2) 

[ ]( )1tanh ,−= +tx c t t cC W h x b                      (3) 

These values are combined to generate tC , which incorporates old data with 
new inputs:  

 1= −⋅ + ⋅t t t t txC f C i C                        (4) 

The cell output is then calculated, using the sigmoid function to decide which 
data will be output from the cell, and the tanh function to scale this output:  

 [ ]( )1sigmoid ,−= +t o t t oo W h x b                    (5) 

( )tanh= ⋅t t th o C                          (6) 

The Multivariate LSTM structure used in this study is similar to the classical 
LSTM structure but is specifically tailored for time series analysis in diabetes 
prediction. It captures the dynamic changes in health indicators over time, con-
tributing to the risk of diabetes [19]. 

 

 
Figure 4. LSTM structure diagram. 

 
In Figure 4, we illustrate the intricate architecture of the LSTM cell which is 

pivotal in the feature extraction phase of our hybrid model. This diagram depicts 
the flow of information through an LSTM cell, detailing the interaction be-
tween the cell state and the gates responsible for regulating the long-term and 
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short-term memory of the network. It is through this mechanism that the 
LSTM can retain relevant information over long sequences of data, a capability 
that is leveraged in our model to predict the progression of Type II Diabetes 
Mellitus effectively. 

3.3. XGBoost Model Description 

Extreme Gradient Boosting (XGBoost) is a machine learning framework that 
uses parallel processing to achieve high efficiency, flexibility, and portability. It is 
an advanced implementation of gradient-boosted decision trees designed for 
speed and performance. XGBoost builds upon the principles of gradient boosting 
by optimizing the objective function and employing regularization techniques to 
prevent overfitting. In our study, we utilize the XGBoost model for the classifica-
tion of diabetes mellitus [20]. 

XGBoost operates on the principle of ensemble learning, specifically boosting, 
where multiple decision trees are constructed in succession to correct the errors 
made by prior trees [21]. The addition of the “Gradient” aspect implies the use 
of gradient descent to minimize the loss when adding new models. 

3.4. Proposed Hybrid Model 

We propose a hybrid LSTM-XGBoost model, aiming to combine LSTM’s ability 
to process sequential data and capture temporal dependencies with XGBoost’s ro-
bust classification performance. This integration seeks to address the complexities 
of diabetes prediction by harnessing both models’ strengths. 

As illustrated in Figure 5, the hybrid model integration process begins with 
data preprocessing, followed by feature extraction using the LSTM network. The 
subsequent steps involve reshaping the features for compatibility with the 
XGBoost model, classification, and then the final integration of the two models’ 
predictions. This integration seeks to combine the distinct advantages of LSTM’s 
temporal pattern recognition and XGBoost’s classification accuracy. 

 

 
Figure 5. Flowchart of hybrid LSTM-XGBoost model development for diabetes prediction. 

3.4.1. Feature Extraction with LSTM 
LSTM networks are utilized for their proficiency in handling sequential data, 
enabling the extraction of meaningful temporal features from patient records. 
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This process is mathematically represented as:  

( )LSTM=F x                            (7) 

where x denotes the sequential input data, and F represents the extracted fea-
tures. 

3.4.2. Reshaping LSTM Features for XGBoost 
To ensure compatibility with XGBoost, LSTM-extracted features are reshaped:  

 ( )( )reshaped reshape , , 1= −F F m                      (8) 

This step adapts the feature set for efficient processing by the XGBoost classifier. 

3.4.3. Classification with XGBoost 
The reshaped features are then used to train the XGBoost classifier, optimized 
through parameter tuning:  

 ( ) ( ) ( )ˆObj XGB ,= + Ω∑ ∑i i kL y y f                 (9) 

where L denotes the loss function, and Ω represents the regularization compo-
nent. 

3.4.4. Hybrid Model Integration 
The final model integrates predictions from both LSTM and XGBoost, employ-
ing a weighted approach:  

 ( ) ( ) ( )hybrid reshaped= LSTM 1 XGBα α⋅ + − ⋅y x F           (10) 

where α  is a weight parameter balancing the contributions from each model. 
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The hybrid LSTM-XGBoost model merges LSTM’s feature extraction from se-
quential data with XGBoost’s classification strength, enhancing diabetes prediction 
by understanding temporal patterns and employing a robust classification frame-
work. This innovative approach aims to surpass traditional models in accuracy, 
marking a significant advancement in analyzing complex health data.  

3.5. Model Architecture and Training 

The hybrid LSTM-XGBoost model’s architecture is a critical component of our 
study, designed to harness the strengths of both LSTM for sequential data 
processing and XGBoost for robust classification. Below we detail the architec-
ture and training process: 

3.5.1. LSTM Architecture 
● The LSTM network is composed of several layers, each with a specific num-

ber of units: 256, 128, 64, 32, and 16 units respectively.  
● The LSTM layers have additional configurations like ‘return sequences’ set to 

true or false, ensuring the sequential output is passed correctly between lay-
ers.  

● Dropout layers with a rate of 0.5 are interspersed between LSTM layers to 
prevent overfitting.  

● A dense layer with a single unit is used at the output to provide the final pre-
diction.  

3.5.2. XGBoost Architecture 
● The XGBoost model employs a binary: logistic objective function for binary 

classification.  
● The learning rate is set at 0.1, with 500 estimators and a random state of 42 to 

ensure reproducibility.  
● Key hyperparameters include a learning rate of 0.01, a max depth of 12, and 

550 estimators, with a regularization term (reg alpha) of 0.001 to enhance 
model generalization.  

3.5.3. Training Process 
● The LSTM network is trained on sequential patient data, learning to capture 

temporal dependencies and extract meaningful features.  
● The extracted features are then reshaped and fed into the XGBoost model for 

classification.  
● Both models are integrated, leveraging LSTM’s feature extraction capabilities 

and XGBoost’s classification efficiency to predict diabetes mellitus effectively.  
In Figure 6, the blue line depicts the training set loss and the red line deli-

neates the loss on the validation set. This illustrates the model’s learning pro-
gression and its convergence over successive epochs. 

3.6. Evaluation Criteria 

To evaluate our machine learning model’s performance, we’ll use key metrics  
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Figure 6. Training and validation loss of the LSTM model over epochs. 
 
such as Accuracy, Precision, Recall, and the F1-Score. Additionally, the Confusion 
Matrix will provide a detailed view of the model’s classification accuracy across 
different categories.  

3.6.1. Accuracy 
This metric evaluates the total number of instances correctly predicted by the 
trained model relative to all possible instances. Accuracy is defined as the propor-
tion of images accurately classified to the total number of images provided.  

 TP TNAccuracy ,
TP TN FP FN

+
=

+ + +
                  (11) 

where TP refers to true positive, TN refers to true negative, FP refers to false 
positive, and FN refers to false negative values.  

3.6.2. Precision 
This metric measures the proportion of true positive cases among all predicted 
positive instances. For instance, it is mathematically represented as follows:  

 TPPrecision ,
TP FP

=
+

                       (12) 

where TP refers to true positive and FP refers to false positive values.  

3.6.3. Recall 
This metric assesses the model’s ability to correctly detect diabetes patients out 
of all actual cases of diabetes. Recall becomes an important measure when the 
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consequences of false negatives outweigh those of false positives. It is defined 
mathematically by the subsequent equation:  

 TPRecall ,
TP FN

=
+

                        (13) 

where TP refers to true positives and FN refers to false negative values. 

3.6.4. F1-Score 
The F1 score offers a combined metric of classification accuracy, taking into ac-
count both precision and recall. It is the harmonic mean of the two, providing a 
balance between them. The F1 score reaches its maximum value when precision 
and recall are equal. This measure effectively gauges the model’s comprehensive 
performance by integrating the results of both precision and recall.  

 2 Precision RecallF1Score
Precision Recall
× ×

=
+

                  (14) 

3.6.5. Confusion Matrix (CM) 
A confusion matrix presents algorithm performance in a tabular format. It offers 
a visual representation of key predictive metrics like recall, specificity, accuracy, 
and precision. This matrix is a table used to describe the performance of a classi-
fication model. It provides insight into the types of errors made by the model, 
showing the number of True Positives, False Positives, True Negatives, and False 
Negatives. These metrics provide a full assessment of the model’s performance. 
Together, these criteria allow for a full evaluation of the model’s ability to accu-
rately forecast diabetes, ensuring its dependability and effectiveness in real-world 
applications. 

4. Experiment and Results 

In the “Experiment Results” section, we scrutinize the efficacy of the LSTM, 
XGBoost, and hybrid LSTM-XGBoost models. Our comprehensive analysis deli-
neates the performance of each model across a range of metrics, including accura-
cy, precision, recall, and the F1 score. A comparative examination is also presented, 
elucidating their respective performances in a side-by-side assessment. 

4.1. LSTM Model Performance 

The LSTM model, designed to capture temporal dependencies within the data, 
exhibited a training accuracy of 0.8220. Its testing accuracy was slightly superior 
at 0.83, which is noteworthy considering the complexity of the sequential data 
being processed. The precision of the model stood at 0.80, while recall was re-
markably high at 0.89, suggesting the model’s proficiency in identifying true 
positive cases. The F1 score, a critical measure in medical diagnostics, was 0.84, 
reflecting a robust balance between precision and recall. 

Architecture:  
Table 2 illustrates the configuration details for both the LSTM and XGBoost 
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components within our hybrid model. The LSTM part encompasses a sequence 
of layers with “relu” activations, tuned to capture the temporal dynamics of the 
data. The “return sequences” parameter is carefully adjusted to ensure the out-
put feeds appropriately into subsequent layers. For the XGBoost classifier, a pre-
cise selection of hyperparameters balances the model’s learning complexity with 
performance, incorporating a binary: logistic objective and regularization to op-
timize classification tasks. 

 
Table 2. Model configuration for the LSTM and XGBoost components. 

Component Layer Type Configuration/Size Additional Parameters 

LSTM Part LSTM Layer 128 units, activation = “relu” return_sequences = True 

 LSTM Layer 64 units, activation = “relu” return_sequences = True 

 LSTM Layer 32 units, activation = “relu” return_sequences = False 

 RepeatVector - - 

 LSTM Layer 32 units, activation = “relu” return_sequences = True 

 LSTM Layer 64 units, activation = “relu” return_sequences = True 

 TimeDistributed Dense layer 
size equal to 

X_train_scaled.shape[2] 

XGBoost Part XGBoost Classifier binary:logistic objective colsample_bytree = 0.3 

  learning_rate = 0.1 max_depth = 12 

  n_estimators = 500 reg_alpha = 0.001 

  random_state = 42 - 

 

 
Figure 7. LSTM confusion matrix. 

 
Confusion Matrix  
Figure 7 illustrates the LSTM model’s classification performance, with the con-

fusion matrix providing a clear visual representation. Darker shades indicate 
higher numbers of correctly predicted cases, delineating the model’s true positive 
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and true negative rates. This visualization is key in evaluating the model’s ability 
to distinguish between diabetic and non-diabetic instances accurately. 

Precision 
Figure 8 reflects the model’s precision, indicating the proportion of true posi-

tive predictions out of all positive predictions. High precision relates to a low 
false positive rate, crucial for medical diagnostic tools. 

 

 
Figure 8. LSTM precision. 

 
Recall 
Figure 9 shows the model’s recall, reflecting its capability to identify all actual 

positives accurately. High recall indicates minimal false negatives, a vital factor 
in medical diagnosis, where overlooking a true condition could have significant 
consequences. 

 

 
Figure 9. LSTM recall. 

 
F1 Score  
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Figure 10 presents the F1 score, amalgamating precision and recall into a so-
litary measure that offers an equitable perspective on the LSTM model’s classifi-
cation efficacy. A high F1 score suggests a balanced classification capability. 
 

 
Figure 10. LSTM F1 score. 

4.2. XGBoost Model’s Performance 

The XGBoost model exhibited exemplary performance. It achieved a remarkable 
training accuracy of 0.98, indicative of its proficiency in learning from the train-
ing data. The test accuracy stood at 0.93, affirming the model’s generalization 
capabilities. Precision was high at 0.92, reflecting the model’s ability to identify 
positive cases correctly. At the same time, the recall was even more impressive at 
0.95, suggesting that it successfully recognized the vast majority of true positive 
instances. The F1 score, balancing precision and recall, was an excellent 0.93, 
signifying a well-rounded predictive model. 
 

Table 3. Architectural parameters of the XGBoost model with detailed descriptions, highlighting 
the model’s complexity and regularization strategies to ensure effective learning without overfitting. 

Parameter Value Description 

Objective binary: logistic The objective function for binary classification. 

colsample_bytree 0.3 Fraction of features used per tree, combating overfitting. 

Learning Rate 0.01 Shrinks feature weights to improve model robustness. 

Max Depth 12 Limits tree depth to prevent over-complex models. 

reg_alpha 0.001 L1 regularization on weights, encouraging sparsity. 

n_estimators 550 Total count of boosting trees to be constructed. 

Random State 42 Ensures reproducibility with a fixed seed. 

 
Architecture: 
Table 3 delineates the architectural parameters of the XGBoost model, detailing 
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the specific values and their functions. It sheds light on the model’s complexity 
and the implemented regularization strategies, such as feature fraction selection 
and weight penalization, which are pivotal in fostering effective learning and 
averting overfitting.  

Confusion Matrix 
Figure 11 illustrates the model’s proficiency in classifying true positives and 

true negatives, which are pivotal for appraising the performance of a binary clas-
sifier. 

 

 
Figure 11. XGBoost confusion matrix. 

 
Table 4 shows the precision, recall, and F1 score for the XGBoost model, 

showcasing its reliable performance across both classes. The scores indicate the 
model’s balanced accuracy in classifying both the negative and positive instances, 
essential for medical diagnostics.  

 
Table 4. XGBoost metrics. 

Metric Class 0 Class 1 

Precision 0.90 0.91 

Recall 0.92 0.93 

F1 Score 0.91 0.92 

4.3. Hybrid LSTM-XGBoost: Model Performance 

The hybrid model, employing LSTM for feature extraction and XGBoost for 
classification, exhibited stellar performance. It achieved an impeccable training 
accuracy of 0.99, demonstrating flawless learning and fitting to the training data. 
The model also posted a commendable test accuracy of 0.98, signifying its out-
standing generalization capabilities. With a precision of 0.98 and a recall of 0.99, 
the model showed exceptional proficiency in identifying positive cases while mi-
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nimizing false negatives. The near-perfect F1 score of 0.98 underscores an op-
timal balance between precision and recall.  

Architecture 
Table 5 details the hybrid model’s intricate architecture, showcasing a mul-

ti-layered LSTM configuration replete with regularization and dropout strategies 
to refine feature learning and mitigate overfitting, ultimately converging to a sin-
gular dense layer for binary classification output. 

 
Table 5. Hybrid architecture. 

Layer Type Size/Configuration Parameters 

LSTM 256 units activation = “relu”, return sequences = True, 

  kernel and recurrent regularizer = l1_l2 (1e−5, 1e−4) 

Batch Normalization - Normalizes the activations from the previous layer 

Dropout 0.5 Randomly sets input units to 0 at each step to prevent overfitting 

LSTM 128 units activation = “relu”, return sequences = True, 

  kernel and recurrent regularizer = l1_l2 (1e−5, 1e−4) 

Batch Normalization - - 

Dropout 0.5 - 

LSTM 64 units activation = “relu”, return sequences = True, 

  kernel and recurrent regularizer = l1_l2 (1e−5, 1e−4) 

Batch Normalization - - 

Dropout 0.5 - 

LSTM 32 units activation = “relu”, 

  kernel and recurrent regularizer = l1_l2 (1e−5, 1e−4) 

Batch Normalization - - 

Dropout 0.5 - 

Dense 16 units activation = “relu”, kernel regularizer = l1_l2 (1e−5, 1e−4) 

Batch Normalization - - 

Dropout 0.5 - 

Dense 1 unit activation = “sigmoid”, kernel regularizer = l1_l2 (1e−5, 1e−4) 

 
Confusion Matrix  
Figure 12 shows the hybrid model’s true positive and true negative rates, with 

the top left and bottom right cells displaying the counts of accurately predicted 
negative (0) and positive (1) classes, respectively. The off-diagonal cells denote 
the instances of misclassification. 

Table 6 presents a concise summary of the LSTM-XGBoost model’s perfor-
mance, detailing the precision, recall, and F1 score metrics for both classes. Pre-
cision values demonstrate the model’s accuracy in predicting positive cases, 
while recall figures reflect its effectiveness in identifying all positive samples. The 
F1 scores indicate a well-balanced harmony between precision and recall for 
both classes.  
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Figure 12. LSTM-XGBoost confusion matrix. 

 
Table 6. Summary of the LSTM-XGBoost model’s performance. 

Metric Class 0 Class 1 Comments 

Precision 0.99 0.98 Demonstrate the model’s exactness in positive predictions. 

Recall 0.98 0.99 Measure the model’s success at capturing all positive samples. 

F1 Score 0.98 0.98 Shows a harmonious balance of precision and recall. 

4.4. Comparative Analysis 

The comparative examination of these models demonstrates the advantages of 
each strategy. The XGBoost model, noted for its resilience and efficiency, has 
excellent balance across all criteria. The LSTM model, while slightly lacking in 
accuracy and precision, excels in recall, making it useful in situations where miss-
ing a positive case could be crucial. However, the hybrid model stands out in every 
aspect, combining the benefits of both LSTM and XGBoost to attain near-perfect 
scores across all metrics. This demonstrates the efficacy of integrating LSTM’s 
feature extraction capabilities with the predictive power of XGBoost. 

Table 7 compares the XGBoost, LSTM, and a hybrid model that combines the 
two models for diabetes prediction. The XGBoost model has a high level of overall 
efficacy, with a training accuracy of 0.98 and a test accuracy of 0.93, demonstrating 
that it can learn from training data and apply that knowledge to new data. Its pre-
cision of 0.92 and recall of 0.95 demonstrate its capacity to reliably and fully 
identify positive cases of diabetes. The F1 Score of 0.93 demonstrates a balanced 
approach, taking into account both precision and recall criteria. Meanwhile, the 
LSTM model, albeit somewhat lower in training (0.8220) and test accuracy 
(0.83), excels in recall (0.89), demonstrating its ability to detect the majority of 
genuine positive diabetes patients. However, its accuracy score of 0.80 indicates 
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room for growth in reliably diagnosing non-diabetic cases, while its F1 Score of 
0.84 indicates a decent but not ideal combination of precision and recall. 

 
Table 7. Comparative performance of LSTM, XGBoost, and hybrid models. 

Model Type Metric Train Accuracy Test Accuracy Precision Recall F1 Score 

LSTM - 0.8220 0.83 0.80 0.89 0.84 

XGBoost - 0.98 0.93 0.92 0.95 0.93 

Hybrid (LSTM-XGBoost) - 0.99 0.98 0.97 0.99 0.98 

 
In comparison, the hybrid model, which includes the properties of both LSTM 

and XGBoost, outperforms the separate models by scoring near-perfect on all 
criteria. It achieves an impressive training accuracy of 0.99 and a test accuracy of 
0.98, demonstrating great learning and generalization abilities. The model achieves 
a high precision score of 0.97 and a flawless recall score of 0.99, demonstrating its 
outstanding ability to reliably identify all positive diabetes cases with no false neg-
atives. The hybrid model has a considerably higher F1 Score (0.98) than the 
standalone LSTM and XGBoost models, indicating a better balance of precision 
and recall. The hybrid model’s comprehensive and high-performing nature de-
monstrates the usefulness of combining LSTM’s sequential data processing ca-
pacity with XGBoost’s powerful classification, resulting in the most robust and 
dependable model for predictive tasks in this study. 

5. Discussion 

Our study’s findings suggest that combining LSTM (Long Short-Term Memory) 
and XGBoost models, known as a hybrid model, is good at predicting diabetes. 
This hybrid model has demonstrated good levels of accuracy, precision, recall, 
and F1 scores, all of which indicate how well the model predicts diabetes. The 
rationale for this success is that LSTM excels at interpreting and processing pa-
tient data over time, whereas XGBoost excels at categorizing it (such as “has di-
abetes” or “does not have diabetes”). They work better together than they would 
individually. The LSTM detects crucial trends and patterns in the patient’s health 
data over time, and XGBoost uses these discoveries to reliably forecast whether a 
patient has diabetes. 

5.1. Advantages of the Hybrid Approach 

The main advantage of employing this hybrid strategy is that it combines the 
greatest features of two modern machine learning algorithms. LSTM excels at 
working with data that change over time, such as a patient’s health records, 
whereas XGBoost is extremely efficient and accurate at classifying data, which is 
critical for determining whether a patient has a condition like diabetes. The model 
leverages LSTM to effectively capture and analyze time-dependent features in the 
data, which are crucial for predicting the progression of Type II Diabetes Mellitus. 
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By incorporating XGBoost, the model benefits from a powerful classification algo-
rithm that improves prediction accuracy, especially on large and complex data-
sets. This combination improves the model’s ability to analyze complicated 
health data while also understanding the finer specifics of each patient’s circums-
tance. This could lead to more personalized healthcare, as the model can rec-
ommend therapies based on individuals’ distinct health patterns and demands. 

5.2. Limitations and Ethical Considerations 

This research acknowledges the inherent limitations associated with the hybrid 
LSTM-XGBoost model in predicting Type II Diabetes Mellitus. While the model 
demonstrates promising results, its reliability and interpretability in healthcare 
settings are crucial areas for further scrutiny. The opacity of machine learning 
models, especially in complex healthcare scenarios, necessitates ongoing efforts 
to enhance model transparency and understandability. 

Furthermore, ethical implications, including patient data privacy and the poten-
tial consequences of model decisions, are paramount. It is essential to continually 
evaluate the model against these factors to ensure its ethical deployment in 
real-world healthcare environments. This study underscores the need for a mul-
tidisciplinary approach, incorporating insights from healthcare professionals, 
data scientists, and ethicists, to advance the field of predictive healthcare res-
ponsibly. 

5.3. Future Work 

Our study’s technique might be improved by using more forms of data, such as 
photographs and written patient records. For example, adding images from 
medical scans (such as retinal scans) could aid in the early detection of diabetes 
problems. Including this type of information could provide us with a more ac-
curate and full picture of a patient’s health. Similarly, using modern language 
processing tools to evaluate what patients write about their symptoms and sen-
timents could help us better comprehend their diseases. This could help doctors 
diagnose diabetes more correctly and recommend treatments that are better 
suited to each patient’s individual needs. 

The idea of incorporating this type of data into our model is a promising step 
forward in healthcare. This means that we may utilize machine learning not only 
to crunch data but also to comprehend the nuances of human language and vis-
ual clues. This combination of technology and healthcare may lead to new me-
thods of predicting, diagnosing, and treating diseases such as diabetes. It’s a 
move towards healthcare that’s more in tune with each patient’s individual needs, 
potentially transforming the way we approach medical care. 

6. Conclusion 
6.1. Summary of Key Findings 

Our research finds some significant findings to predict diabetes using deep 
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learning and machine learning techniques. The key achievement was the crea-
tion and validation of a hybrid LSTM-XGBoost model, which outperformed 
standalone LSTM and XGBoost models. This model correctly predicted diabetes 
by efficiently processing patient data, particularly identifying temporal trends 
with LSTM and robust classification with XGBoost. The strong accuracy, preci-
sion, recall, and F1 scores suggest that this model has the potential to be a trust-
worthy diabetes prediction tool in healthcare. 

The hybrid approach’s effectiveness stems from its ability to combine the bene-
fits of LSTM’s sequential data processing with XGBoost’s excellent categorization 
capabilities. This synergy has proven especially useful when working with compli-
cated datasets common in healthcare, where variables are numerous and interde-
pendent. 

6.2. Future Research Directions 

Looking ahead, there are several promising areas for future research. One signif-
icant aim is to include multimodal data sources, such as medical imaging and 
textual patient records, in prediction models. This technique has the potential to 
improve the model’s diagnostic capabilities by detecting nuanced indicators of 
diabetes-related problems that would otherwise go undetected in normal clinical 
data. 

6.3. Concluding Remarks 

Finally, our findings represent a substantial advancement in the use of machine 
learning in healthcare, notably in the field of diabetes prediction. The success of 
the hybrid LSTM-XGBoost model opens up new avenues for early and accurate 
diagnosis, which is critical for effective diabetes management and treatment. 
This technique has the potential to go beyond diabetes prediction, with implica-
tions for healthcare diagnostics and tailored medicine. As we continue to re-
search and improve these technologies, we get closer to a future in which 
healthcare is more predictive, personalized, and accessible. 

7. Experimental Setup 

Our research utilized Jupyter Notebooks via Anaconda and Google Colab’s 
cloud-based platform to develop and evaluate the hybrid LSTM-XGBoost model 
for diabetes prediction. 

7.1. Software and Tools 

● Development was done in Python 3.x within Anaconda’s Jupyter Notebooks, 
utilizing TensorFlow for LSTM implementation, XGBoost for classification, 
and pandas and NumPy for data handling.  

7.2. Computational Resources 

● The project leveraged Google Colab for its GPU acceleration and up to 16GB 
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of RAM, providing a robust and accessible environment for model training 
and testing.  

7.3. Cloud Computing Advantages 

Google Colab’s cloud-based platform was instrumental in:  
● Facilitating scalable and flexible computational resources.  
● Enabling seamless collaboration and accessibility to the project from various 

locations.  
● Offering a cost-effective approach by providing free access to high-performance 

computing resources.  
This setup highlights our approach to integrating cutting-edge computational 

resources and data science tools to advance diabetes prediction methodologies. 
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