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Abstract: The aim of this study is to predict and map winter wheat yield in the Parvomay munici-
pality, situated in the Upper Thracian Lowland of Bulgaria, utilizing satellite data from Sentinel-2. 
The main crops grown in the research area are winter wheat, rapeseed, sunflower, and maize. To 
distinguish winter wheat fields accurately, we evaluated classification methods such as Support 
Vector Machines (SVM) and Random Forest (RF). These methods were applied to satellite multi-
spectral data acquired by the Sentinel-2 satellites during the growing season of 2020–2021. In ac-
cordance with their development cycles, temporal image composites were developed to identify 
suitable moments when each crop is most accurately distinguished from others. Ground truth data 
obtained from the integrated administration and control system (IACS) were used for training the 
classifiers and assessing the accuracy of the final maps. Winter wheat fields were masked using the 
crop mask created from the best-performing classification algorithm. Yields were predicted with 
regression models calibrated with in situ data collected in the Parvomay study area. Both SVM and 
RF algorithms performed well in classifying winter wheat fields, with SVM slightly outperforming 
RF. The produced crop maps enable the application of crop-specific yield models on a regional 
scale. The best predictor of yield was the green NDVI index (GNDVI) from the April monthly 
composite image. 

Keywords: Sentinel-2; crop mapping; machine learning; yield prediction; vegetation indices;  
winter wheat 
 

1. Introduction 
The agricultural sector is one of the economic sectors with the greatest impact on 

land use worldwide, with around 1.2–1.5 billion hectares currently occupied by agricul-
tural crops [1]. To meet the projected human population growth and increasing food 
demand, the historical rates of increase in production must continue [2]. However, the 
increase in agricultural production must be accompanied by a sustainable management 
of agricultural areas, which will stop or at least slow down the negative environmental 
impacts on water and soil resources, greenhouse gas emissions and biodiversity losses 
[3]. It is worth noting that agriculture is among the main drivers of climate change and 
environmental pollution, but it is also the most vulnerable economic sector to climate 
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change itself [4]. Since the end of the last century, with the development of earth obser-
vation and information technology, methods for obtaining and evaluating crop growth 
information based on remote sensing, geographic information system (GIS), and crop 
growth models have become increasingly popular in scientific studies and are useful in 
the decision-making process in agriculture [5–7]. Agricultural fields can be identified and 
monitored using crop-specific spectral, temporal and spatial features derived from satel-
lite imagery [7,8]. 

The necessity for crop type mapping and yield prediction is paramount in the con-
text of global food security and sustainable agricultural practices. These tasks play a 
crucial role in several areas: (1) Food security: Accurate and timely crop yield predictions 
are essential for ensuring food security. They allow for effective planning of food pro-
duction, distribution, and consumption, and enable proactive measures against potential 
food shortages [9]. (2) Agricultural management: Crop type mapping and yield predic-
tion inform decision making in the agricultural sector, from choosing which crops to 
grow for maximum yield considering factors like temperature, rainfall, and area, to 
managing resources efficiently [10]. (3) Environmental sustainability: these tasks con-
tribute to sustainable agricultural practices by enabling the monitoring of crop health and 
growth, which can lead to the optimization of resource use and minimization of envi-
ronmental impact [11]. 

Satellite imaging has proven to be a highly effective tool for crop type mapping and 
yield prediction. Recent studies have demonstrated the value of this technology in these 
areas: (1) Wide coverage: satellite images provide extensive geographical coverage and 
high temporal frequency, making them a convenient choice for monitoring and fore-
casting at both national and regional scales [12]. (2) Advanced techniques: the use of deep 
learning techniques with remote sensing data has shown remarkable success in crop 
mapping and yield estimation [11]. (3) High accuracy: studies have shown that satellite 
imagery, combined with machine learning algorithms, can predict crop yields with high 
accuracy [13,14]. (4) Time-series analysis: satellite imagery allows for time-series analysis, 
which is robust regarding irregular imaging intervals and can substantially help yield 
prediction at large scales [14]. 

GIS has the function of processing and analyzing geographic data and is widely 
applied in many fields, including agriculture [7,15,16]. Crop growth models provide an 
important means of quantifying agricultural production. They can simulate physiological 
processes such as crop growth stage, organ formation, biomass accumulation, yield, and 
the relationship between physiological processes and the environment [7,17]. Land cover 
and land use analysis has been identified as a key component in global climate change 
research, as well as in various environmental and agricultural research applications [18]. 
The extraction of such information increasingly relies on satellite-borne remote sensing, 
primarily because it offers a cost-effective means of surveying vast land areas with var-
ying spatial and temporal resolutions to meet specific research requirements. One of the 
primary approaches for extracting such information via remote sensing is the classifica-
tion of multispectral satellite images. In recent decades, satellite image classification, es-
pecially non-parametric approaches (machine-learning-based algorithms), has gained 
increasing importance in remote-sensing-based applications [19]. Classifiers using neural 
networks also represent a non-parametric approach and avoid some of the problems 
faced by the parametric methods. Another non-parametric approach is Support Vector 
Machines (SVM). The theoretical basis and mathematical formulation of the method can 
be found in Vapnik [20]. It has shown its effectiveness for land cover classification tasks 
with high accuracy. A non-technical overview of SVM and an in-depth review of its re-
mote sensing applications are provided in the work of Mountrakis et al. [21]. The Ran-
dom Forest (RF) classification algorithm is a non-parametric machine learning algorithm 
widely used in remote sensing in recent years [22]. The RF method is an ensemble clas-
sifier that uses a set of classification trees to make a prediction [23]. Depending on the 
number of variables used at each stage, there are univariate and multivariate decision 
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trees. One-dimensional decision trees have been used to develop global-scale land cover 
classifications [24]. Although multidimensional decision trees are often more compact 
and can be more accurate than unidimensional decision trees, they involve more complex 
algorithms and, as a result, are affected by a range of algorithm-related factors [24]. In 
recent decades, the integration of remote sensing observations and crop growth models 
has been recognized as a promising approach for crop growth monitoring and yield es-
timation [25]. The use of accurate and timely information to monitor crop growth and to 
predict yield through earth observation helps farmers to adapt farm operations and op-
timize work processes, thus reducing the risk of crop loss and production costs [26,27]. 
Timely information on yields and production is critical for optimizing agricultural pro-
cesses. Due to its large coverage and temporal resolution, Sentinel-2 satellite images have 
been a source of valuable information for forecasting and yield assessment at national 
and regional scales. Sentinel-2 enables data acquisition every 3–5 days [28,29], therefore 
providing good capability for timely spatial and temporal assessments of different crop 
variables, being essential for effective and precise crop management [30]. For example, 
vegetation indices derived from Sentinel-2 imagery allowed for the development of sev-
eral winter wheat yield assessment/forecast models with good accuracy [31]. 

Crop type mapping and yield prediction, while seemingly distinct, are intrinsically 
linked and mutually informative in the context of precision agriculture. Crop type map-
ping provides essential information about the spatial distribution of different crops 
within a field or region [32]. This information is crucial for yield prediction as different 
crops have different growth patterns, resource needs, and yield potentials [33]. On the 
other hand, yield prediction models often rely on crop-specific parameters that are de-
rived from crop type mapping. For instance, the spectral signatures of different crops 
captured in satellite images, which are used for crop type mapping, can also indicate crop 
health and growth stage, which are key inputs for yield prediction [32,33]. Therefore, 
combining these two tasks can lead to more accurate and comprehensive insights for ag-
ricultural management [11,32,33]. 

The aim of this study is to predict and map the winter wheat yield in the Parvomay 
municipality, located in the Upper Thracian Lowland, utilizing satellite data from Sen-
tinel-2. This yield map will be further used as input data for the calculation and analysis 
of the water productivity on a regional level. In order to create a yield map, the following 
research stages were carried out: 
1. Classifying and mapping the main crop types in the study area. For that purpose, 

different classification algorithms were built, and their performance was compared 
over different crop growth seasons. 

2. Modeling and mapping winter wheat yields in the study area. The winter wheat 
fields were identified using the crop mask created from the best-performing classi-
fication algorithm. Yields were predicted with regression models calibrated with in 
situ data collected in the Parvomay study area. 

2. Materials and Methods 
2.1. Study Area 

The municipality of Parvomay is situated in the southern part of Bulgaria (Figure 1). 
The area falls within the catchment basin of the Maritsa River, which crosses the northern 
part of the municipality. In this part of its course, the Maritsa River flows through the 
Upper Thracian Lowland. Most of the study area is characterized by low relief and an 
altitude of 120–300 m above sea level. The elevation increases to 800 m above sea level 
towards the Rhodope Mountains in the south of the study area. The municipality of 
Parvomay falls into the transitional continental climate subzone of the temperate climate 
zone. The average annual temperature is 12.7 °С, with positive values even in the coldest 
month of January. The annual rainfall is averaged around 518 mm. The greatest share of 
rainfall is in the spring–summer period, followed by rainfall periods in the autumn 
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months. The major soil types observed in the territory according to the WRBSR 2002 soil 
classification are Fluvisols, Planosols, Vertisols, Chromic Luvisols, and Salic soils. The 
territory of the municipality has a surface of 534 km2 and more than two thirds are occu-
pied by agricultural fields. Agricultural vegetation is dominated by winter wheat, sun-
flower, alfalfa, grasslands and maize. Other crops, such as vegetables, industrial crops, 
perennial crops, and vineyards, occupy smaller surfaces and contribute to the diversity of 
the agricultural landscape. 

 
Figure 1. (A) Study area location, Parvomay municipality, in Bulgaria. (B) Sentinel-2 April 2021 
composite image over Parvomay municipality (band combination = B11, B5, B4). (C) 
High-resolution image (from Bing Maps) of the winter wheat field where yield data were collected 
showing the locations of the sampling plots. 

2.2. Crop Type Identification 
2.2.1. Crops Reference Dataset 

Reference data for the crops sown in the study area in 2021 were obtained from the 
Integrated Administration and Control System (IACS) and its Land Parcel Identification 
System (LPIS). The IACS/LPIS dataset is an annually updated crop layer generated by the 
Bulgarian Ministry of Agriculture, Food, and Forestry. It is a vector dataset containing 
the borders of agricultural parcels (arable fields, grasslands, and permanent crops) ac-
companied by attributive information about the crop/land cover type in each parcel ac-
cording to the declarations submitted by farmers. 
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2.2.2. Satellite Imagery Dataset and Pre-Processing 
In this study, for the purpose of crop type identification, the Sentinel-2 surface re-

flectance (Level-2A) dataset was used. This dataset is available in Google Earth Engine 
(GEE) platform [34] and it includes images that have been corrected for atmospheric 
effects using the Sen2Cor Version 2.10 atmospheric correction software [35]. Two tem-
poral composites were created for the months of April and June 2021, covering the Par-
vomay municipality. Additionally, a single multitemporal image was generated by 
stacking these composites together. These time periods were set because of the image 
availability and because of the crop phenology in the transitional continental climate 
subzone, where winter wheat and rapeseed are the first crops to emerge among other 
crops in March–April. Sunflower and maize are developing later in May–June, respec-
tively; the April composite targets the identification of winter crops and the June com-
posite targets the summer crops’ identification. 

Images with a cloud cover of less than 10% were chosen for the analysis and creation 
of image composites. Clouds, cloud shadows, and saturated or defective pixels were 
masked using the information from the scene classification map (band ‘SCL’ of the GEE 
dataset). The 20 m resolution SCL band was available following the Sen2Cor Level-2A 
pre-processing. Pixels classified as vegetation, bare soils, water, or dark areas in the ‘SCL’ 
band were selected for subsequent processing. The spectral bands ‘B2’, ‘B3’, ‘B4’, ‘B5’, 
‘B6’, ‘B7’, ‘B8’, ‘B11’, and ‘B12’ were retained for further analysis, with their original res-
olutions of either 10 or 20 m. To create a cloud-free and data-gap-free image mosaic over 
the defined area, the median of available observations within each pixel was calculated 
for each one-month period. This compositing approach was widely applied in recent re-
search [36–40]. These two 9-band monthly composite images were then exported in 16-bit 
unsigned integer GeoTIFF format with a 10 m resolution and an “EPSG:32635” reference 
system. A single 18-band multitemporal image was generated by stacking these two 
composites together. 

2.2.3. Classification Procedure 
Three classification scenarios were investigated to analyze the potential for mapping 

crops in different phonological periods during the growing season and to examine the 
utility of multitemporal satellite data. These scenarios were numbered 1 to 3 according to 
the input dataset for classification, namely the monthly composites of April, and June, as 
well as the stacked 18-band multitemporal composite image. The classification schemes 
for the three scenarios are shown in Table 1. The classes in each scheme differ because of 
the different crops present in the field at different times during the growing season. 

Table 1. Lists of the classes considered for each of the three classification scenarios and the corre-
sponding numbers of pixels used for training of the classifiers (see the text for details regarding the 
generation of the training samples). 

Scenario 1—April 2021 Scenario 2—June 2021 Scenario 3—Multitemporal  
(April and June 2021) 

Class Pixels Class Pixels Class Pixels 
Winter wheat 1000 Sunflower 1000 Winter wheat 1000 

Alfalfa 1000 Alfalfa 669 Sunflower 1000 
Pastures/meadows 415 Pastures/meadows 400 Alfalfa 1000 

Winter rapeseed 835 Maize 1000 Pastures/meadows 532 
Other crops 1000 Other crops 1000 Maize 1000 

    Winter rapeseed 1000 
    Other crops 1000 

In Scenario 1, the classification was focused on the main winter crops in the study 
area, ‘winter wheat’ and ‘winter rapeseed’, as well as two grassland classes, ‘alfalfa’ and 
‘pastures/meadows’. These classes represented the main agricultural land covers in April 
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when all other fields, which have to be sown with summer crops, were still in bare soil 
conditions with minimum vegetation cover. The ‘alfalfa’ and ‘pastures/meadows’ were 
considered permanent land covers through the growing season, similarly to the other 
two scenarios. 

The analysis conducted under Scenario 2 involves employing the monthly compo-
site of June as input. It adopts a similar legend to that used previously, with a shift in 
focus from winter crops to the primary summer crops, such as ‘sunflower’ and ‘maize’. 
Since winter crops are not harvested in June and their canopies have typically matured 
and dried by this time, distinguishing between different types of winter crops based on 
spectral information becomes challenging. Consequently, a broader class labeled as 
‘other crops’ was introduced to encompass all types of winter crops. 

Finally, the analysis under Scenario 3 explored the feasibility of mapping both win-
ter and summer crops in a unified classification process by integrating spectral data from 
both April and June. The multitemporal classification approach, where two or more im-
ages registered during the growing season are classified as a single dataset, has been uti-
lized before [41,42], yielding good results due to the ability of such data to capture phe-
nological variations of crops. The same reasoning was applied to Scenario 3, but we 
tested the possibility of using monthly composite images rather than single images. Table 
1 provides details on the classes considered for each of the three classification scenarios, 
along with the corresponding numbers of pixels used for training the classifiers (see the 
text for details regarding the generation of the training samples). 

For each scenario, training and validation datasets were prepared based on the 
IACS/LPIS database. The procedure for each case involved the following steps. Initially, 
utilizing the existing attributive information from LPIS for crops, each polygon was 
re-labeled according to the legend specified in the respective classification scenario. 
Subsequently, the polygons were randomly split into equal portions for training and 
validation purposes. To eliminate mixed pixels at field boundaries, a 20 m inward buffer 
was applied to the training polygons. Random points within the training polygons were 
generated using QGIS software version 3.47, with a minimum distance of 20 m between 
each point, and a target of 1000 points per class was set. In most instances, the desired 
number of points was achieved; however, in a few cases, particularly due to the small 
area of training polygons, this target could not be met. The actual numbers of training 
points utilized for each scenario and class are detailed in Table 1. Finally, the vector files 
containing the training dataset (comprising points) and the validation dataset (compris-
ing polygons) were rasterized with the same geo-referencing system. A raster, aligned 
with the satellite imagery, was acquired, maintaining a resolution of 10 m and matching 
the projection, extent, and coordinates of the origin vector point. Likewise, a validation 
raster was created by rasterizing the validation polygons. 

The classifications were conducted using EnMap-Box v3.5. [43,44]. Two supervised 
machine learning algorithms were applied, namely Random Forest (RF) and Support 
Vector Machine (SVM). Both methods are supervised machine learning algorithms which 
can deal with both regression and classification problems [20,45]. They were extensively 
reported in recent years for classification of land cover/land use in the context of remote 
sensing [21–23,46]. The machine learning python package Scikit-learn was used to per-
form the classifications [47]. The following settings were used for the SVM classifications: 
the kernel type was radial basis function (‘rbf’); and the values of kernel coefficient 
Gamma and the regularization parameter C were optimized using a grid search 5-fold 
cross validation with the following tested values C [0.01, 0.1, 1, 10, 100, 1000, 10,000] and 
Gamma [0.0001, 0.001, 0.01, 0.1, 1, 10, 100]. Five folds were selected for the cross valida-
tion, as this value was recommended by James et al. [48]. 

The default parameter values were used for parameterization of the RF except for 
the number of trees, which was set to 500 [23]. We did not tune the number of trees pa-
rameter because a study by Kwak and Park [49] has shown that the error rate stabilizes 
far before the value of 500. In addition, the RF classifier does not overfit as more trees are 
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added [45]. During the classification process, the IACS/LPIS dataset served as a mask to 
restrict the analysis solely to areas representing agricultural fields. The accuracy assess-
ment was also performed based on the information from all the pixels within the ran-
domly selected validation polygons. A confusion matrix was produced expressing the 
number of pixels assigned to a particular class by the classifier relative to the actual class 
as indicated by the validation raster [50]. Overall accuracy (OA) was used as a measure of 
the general classification performance. The F1 score was used to indicate the accuracy of 
individual classes, 

F1 = 2 × UA × PA
UA + PA

,  

Where UA is the user’s accuracy and PA is producer’s accuracy for a specific class. Details 
about the calculation of OA, UA, and PA based on the confusion matrix can be found in 
Congalton’s work [50], among others. 

2.3. Winter Wheat Yield Modeling 
2.3.1. Yield Data 

Yield data collection was performed on 25 June 2021, when the winter wheat was in 
technological maturing stage BBCH 99 [51]. Field samples were collected from 12 plots in 
an industrial agricultural field in the borders of the study area, according to the method-
ology of Shanin [52]. The sample locations are chosen after a preliminary visual exami-
nation of the field, using NDVI images to distinguish the within-field variation. In each 
test plot, plants were cut from a 0.5 × 0.5 m area. The plants in each sample were counted. 
The following indicators were recorded for 25 randomly selected plants: plant height 
(cm); spike length (cm); grains in the class (number); mass of the grain in the class (g); 
and physical properties of grain. Using the measurements from the sampled plants, the 
biological yield (t/ha) was calculated. The mass of 1000 grains (g) was determined ac-
cording to the ISO [53]. 

2.3.2. Vegetation Indices and Yield Modeling 
To address one of the research objectives in this study, specifically the generation of 

a prediction model for winter wheat yield, a simple regression modeling approach was 
adopted. For that purpose, vegetation indices (VI) were utilized as a predictor variable. 
The VIs were calculated from Sentinel-2 images registered at the following dates: 26 
March, 31 March, 10 April, 30 April, 10 May, 25 May, 9 June, and the monthly composite 
for April. These images were selected because of the absence (or only minimal presence) 
of clouds over the study area. A systematic shift in one-pixel was observed over the 
winter wheat field in the original image from 10th of May in GEE. Therefore, this image 
(subset) was exported and corrected using the ‘gdal_translate’ program [54] before ex-
tracting the band data. To find an optimal predictor, we tested a set of VIs (Table 2) gen-
erated from Sentinel-2 imagery.  

Table 2. Vegetation indices used for yield prediction in this study. 

Vegetation Index Formula Reference 
NDVI (B8 − B4)/(B8 + B4) Rouse et al. [55] 
OSAVI (1 + 0.16) × (B8 − B4)/(B8 + B4 + 0.16) Rondeaux et al. [56] 

EVI 2.5 × (B8 − B4)/(B8 + 6 × B4 − 7.5 × B2 + 1) Huete et al. [57] 
EVI2 2.5 × (B8 − B4)/(B8 + 2.4 × B4 + 1) Daughtry еt al. [58] 
GDVI B8 − B3 Gitelson et al. [59] 

CIrededge B7/B5 − 1 Gitelson et al. [60] 
CIgreen B7/B3 − 1 Gitelson et al. [60] 

reNDVI (B8 − B6)/(B8 + B6) 
Gitelson and Merzlyak 

[61] 
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greenNDVI (B8 − B3)/(B8 + B3) Gitelson et al. [62] 

NDRE (B6 − B5)/(B6 + B5) 
Gitelson and Merzlyak 

[61] 

The reflectance values of the spectral bands were extracted from the imagery at each 
of the 12 sample plots together with the corresponding yield measurements based on the 
GPS coordinates recorded on the field. This was performed in GEE using the ‘sampleRe-
gions’ method, with the ‘scale’ argument set to 10 m (thus, all bands are resampled to 10 
m before sampling). The spectral band data were then exported and analyzed in a 
spreadsheet, where the VIs and their correlation with field data for crop yield were 
computed. 

The combination of image registration date and VI (Table 2) producing the highest 
Pearson’s correlation coefficient with yield was selected as a predictor and used to fit a 
linear regression model. Due to the small-yield dataset, the model was validated through 
a leave-one-out cross-validation (LOOCV). The LOOCV Root Mean Square Error 
(RMSEcv) was calculated as follows: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑛𝑛
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1 ,  

where 𝑦𝑦𝑖𝑖  and 𝑦𝑦�𝑖𝑖 are the true and predicted yield for the i-th observation, respectively, 
and n is the number of observations. The predicted value for each observation 𝑦𝑦�𝑖𝑖 was 
obtained by applying a model fit to the remaining n − 1 observations. Therefore, a total of 
n models are generated each using n − 1 observations for training and the remaining ob-
servation for validation [48]. A relative error, rRMSEcv, was calculated as the percent of 
RMSEcv relative to the mean yield measured in the field plots. 

3. Results and Discussion 
3.1. Crop Type Identification 

The optimal values of the parameters C and Gamma of the SVM classifier were de-
termined by searching among pre-defined sets of values. The results of the grid search 
procedure are shown in Figure 2, which presents the classification accuracy (F1 score) for 
different combinations of parameter values. The accuracy was estimated through a 5-fold 
cross validation on the training data. The best combination of Gamma and C was the 
same for Scenario 1 and Scenario 3 and differed slightly for Scenario 2. The variation in 
the model parameters strongly affected classification performance in all scenarios. Over-
all, the accuracy varied between 0.04 and 0.91. The optimal parameter search was there-
fore critically important for the SVM classifier, which was also demonstrated by Kwak 
and Park [49]. 

 
Figure 2. Results of the grid search procedure for selection of the best combination of the SVM pa-
rameters, C and Gamma. The combination with the best accuracy is underlined: (a) Scenario 
1—April 2021; (b) Scenario 2—June 2021; and (c) Scenario 3—Multitemporal (April and June 2021). 
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Both classification methods, SVM and RF, performed well in the identification of 
major crop types, achieving an overall accuracy over 80% in all three scenarios. Slightly 
higher accuracy was achieved by SVM, which outperformed RF with up to 3.1% in Sce-
nario 3. The class-wise accuracies (F1 scores) were also higher for SVM in the general 
case. Accordingly, the results from the SVM classifications are discussed. 

The crop type classification based on the April composite (Scenario 1) is shown in 
Figure 3. The two main winter crops in the study area, wheat and rapeseed, were 
mapped with high accuracy (F1 = 91.4% and 98.3%, respectively, Table 3), which indicates 
that April is a suitable time to distinguish between these crops. 

 
Figure 3. Crop type map of Parvomay municipality produced using the Support Vector Machines 
method and an April 2021 composite image from Sentinel-2. 
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Table 3. Accuracy measures of the Scenario 1 classification (April 2021). Accuracies reported are for 
the validation set. 

 SVM RF 
F1 Accuracy (%) 
Winter wheat 91.4 90.4 
Alfalfa 44.7 44.0 
Pastures and meadows 74.3 70.2 
Winter rapeseed 98.3 98.2 
Other crops 83.2 84.4 
Overall Accuracy (%) 
 82.4 82.1 

As shown in Figure 1B, winter rapeseed has a distinct spectral appearance in the 
April composite (the bright green fields at the center of the image) due to the flowering of 
the crop. This phenological feature explains the good separability between the two crops 
at this time of the growing season. The low accuracy of the ‘alfalfa’ class (F1 score of 
44.7%), was led by an overestimation of the crop area at the expense of the class ‘other 
crops’ as indicated by the error matrix (Table 4). A further investigation in the IACS/LPIS 
dataset showed that most of the land, wrongly classified as alfalfa, was actually covered 
by еinkorn wheat, winter peas, vineyards, and orchards. The ‘pastures/meadows’ class is 
also partially misclassified as class ‘other crops’ but to a lesser extent, leading to a mod-
erate F1 score of 74.3%. 

Table 4. Error matrix of the SVM classification for Scenario 1 (April 2021) composed using the 
validation set. 

 Reference      

Classification Winter Wheat Alfalfa Pastures and 
Meadows 

Winter Rapeseed Other Crops UA (%) 

Winter wheat 432,227 3013 1069 8 51,876 88.5 
Alfalfa 11,958 49,807 15,559 168 79,069 31.8 

Pastures and meadows 2434 2425 60,625 19 19,420 71.4 
Winter rapeseed 84 10 2 13,918 19 99.2 

Other crops 11,065 11,039 1056 170 429,650 94.8 
PA (%) 94.4 75.1 77.4 97.4 74.1  

OA (%) 82.4      

Figure 4 illustrates the crop type classification according to Scenario 2, using the 
monthly composite of June. Sunflower, which is the most important summer crop in the 
study area, was classified with fair accuracy (F1 score of 88.9%, Table 5). The accuracy for 
maize, the other main summer crop, was lower (F1 score of 72.3%). This crop was over-
estimated at the expense of class ‘other crops’ (Table 6). Summer crop mapping seemed to 
be a more difficult task than winter crop mapping using a single monthly composite, 
especially when a single June composite was used. Most of the area, misclassified as 
maize, represented vineyards and orchards, but also other crops such as vegetables, 
cotton, and tobacco. Similarly to Scenario 1, the classes ‘alfalfa’ and ‘pastures/meadows’ 
represented a major challenge to the classification. The first is overestimated at the ex-
pense of class ‘other crops’. Part of the pastures and meadows are incorrectly classified as 
‘alfalfa’ and vice versa (Table 6). 
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Table 5. Accuracy measures of the Scenario 2 classification (June 2021). Accuracies reported are for 
the validation set. 

 SVM RF 
F1 Accuracy (%) 
Sunflower 88.9 87.9 
Alfalfa 55.1 48.4 
Pastures and meadows 69.6 54.4 
Maize 72.3 64.9 
Other crops 89.1 88.5 
Overall Accuracy (%) 
 83.2 80.3 
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Figure 4. Crop type map of Parvomay municipality produced using the Support Vector Machines 
method and a June 2021 composite image from Sentinel-2. 

Table 6. Error matrix of the SVM classification for Scenario 2 (June 2021) composed using the val-
idation set. 

 Reference      

Classification Sunflower Alfalfa 
Pastures and 

Meadows Maize Other Crops UA (%) 

Sunflower 295,247 5935 1489 3484 29,522 88.0 
Alfalfa 17,604 59,596 19,436 3689 34,317 44.3 

Pastures and meadows 959 12,555 56,560 220 10,759 69.8 
Maize 9311 1518 927 80,734 39,015 61.4 

Other crops 5477 2255 3129 3746 525,473 97.3 
PA (%) 89.9 72.8 69.4 87.9 82.2  

OA (%) 83.2      

Among the three scenarios, the classification in Scenario 3 had the highest overall 
accuracy (Table 7, Figure 5). The classification was performed on the multitemporal da-
taset (April and June), as this approach has the advantage that both winter and summer 
crops are mapped through a single processing operation. Moreover, the accuracy for the 
winter crops remained high and that for the summer crops increased in comparison with 
Scenario 2. The increase in accuracy was more important for the ‘maize’ class, which had 
a 13.3% higher F1 score in Scenario 3 compared with Scenario 2. The two grassland clas-
ses, ‘alfalfa’ and ‘pastures/meadows’, also increased their accuracy. However, the ‘alfalfa’ 
remained poorly recognized (F1 score of 65.5%) even though an increase of 10.4% com-
pared with Scenario 2 was observed. The reason, as in the other scenarios, was the over-
estimation at the expense of class ‘other crops’ (Table 8). The high classification accuracy 
achieved using the multitemporal data is in agreement with previous studies which 
demonstrated the utility of using monthly Sentinel-2 composites. For instance, a study by 
Hernanedez et al. [63] mapped 31 land cover and crop classes with good accuracy using 
12 monthly composites in a 1.2 Mil. ha study area in Portugal. Similarly, Khuong et al. 
[64] used seven intra-annual median monthly composites from Sentinel-2 to map land 
cover and crop classes in two study areas in the USA, achieving an overall accuracy of 
83% and 94%, respectively. 

The two machine learning methods used in the present study have become the 
standard choice when classifying remote sensing imagery in recent years as they are rel-
atively simple and implemented in many software packages. However, other methods, 
like deep learning, are under constant development and have shown promising results 
[65]. Such models may lead to further increases in crop mapping accuracy; however, their 
complexity may be forbidding. Alternative approaches, such as hierarchical classifica-
tion, may also be considered for crop mapping. For instance, a first level of classification 
may extract winter and perennial crops in the study area, while other agricultural areas 
may be classified in a second level of classification discriminating between summer 
crops. 
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Table 7. Accuracy measures of the Scenario 3 classification (multitemporal). Accuracies reported 
are for the validation set. 

 SVM RF 
F1 Accuracy (%) 
Winter wheat 92.1 91.1 
Sunflower 91.2 90.8 
Alfalfa 65.5 56.6 
Pastures and meadows 78.0 68.7 
Maize 85.6 81.6 
Winter rapeseed 98.0 98.4 
Other crops 68.7 63.1 
Overall Accuracy (%) 
 85.6 82.5 

Both the SVM and RF classification methods demonstrated strong performance in 
distinguishing major crop types, although SVM notably achieved slightly higher accu-
racy compared to RF, in terms of higher class-wise accuracies (F1 scores) and overall ac-
curacies in all three scenarios. In Scenario 1, the winter crops are distinguished with very 
high accuracy (F1 score for winter rapeseed > 98%). In early spring, the winter crops are 
in the early development phase and their identification with high accuracy during this 
period is of crucial importance because it allows farmers to make early season manage-
ment decisions in the event of possible disturbances, which can be detected with remote 
sensing methods [11]. While many classification methods prioritize prediction accuracy, 
it is equally crucial to consider the timeliness of predictions. Making decisions early can 
significantly impact time-sensitive activities, such as agricultural management. [66]. Eu-
ropean countries utilize land parcel identification systems (LPISs) based on remote 
sensing data and farmers declarations for crop distribution data. However, most devel-
oping nations lack similar systems, hindering precision agriculture development. Estab-
lishing parcel-level crop mapping systems is crucial for timely adjustments and an ac-
curate allocation of agricultural resources [67]. 
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Figure 5. Crop type map of Parvomay municipality produced using the Support Vector Machines 
method and a multitemporal image from Sentinel-2 (stack of two composites, April and June). 

Table 8. Error matrix of the SVM classification for Scenario 3 (multitemporal) composed using the 
validation set. 

 Reference        

Classification Winter Wheat Sunflower Alfalfa Pastures and Meadows Maize Winter Rapeseed Other Crops UA (%) 
Winter wheat 430,920 3690 1293 871 713 32 25,515 93.1 

Sunflower 10,940 325,679 3141 996 3820 19 8617 92.2 
Alfalfa 4226 11,270 51,783 9789 2019 246 14,720 55.1 

Pastures and meadows 1358 730 2920 56,753 362 11 10,053 78.6 
Maize 4222 6361 413 108 85,866 0 5706 83.6 

Winter rapeseed 16 3 1 0 0 10,736 28 99.6 
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Other crops 21,199 13,073 4501 4765 5117 76 124,192 71.8 
PA (%) 91.1 90.3 80.8 77.4 87.7 96.5 65.8  

OA (%) 85.6        

3.2. Winter Wheat Yield Modeling 
The correlations between yield and VIs were strongly dependent on the time of 

image acquisition (dates of registration) throughout the growing season, as observed in 
Figure 6. With few exceptions, the tested VIs were not significantly (α = 0.05) correlated 
with yield for the images collected on 26 and 31 March. This is not unexpected because 
winter wheat was still in a tillering growth stage at that period in time. The correlations 
became significant starting from registration on April 10. The highest correlations were 
observed for the registration on April 30 (up to r = 0.82 for greenNDVI). The correlation 
coefficients started to decrease gradually from May and the beginning of June. Figure 6 
also shows the correlation coefficients for the monthly composite of April. It is interesting 
to note that the correlations for that composite are comparable to those based on the April 
10 and 30 registrations. This consistency suggests that one can use VIs computed from a 
monthly composite instead of single-date registration without losing prediction capabil-
ity. This can be of particular importance for application over larger areas where a single 
cloud-free image covering the entire study area may not be available, thus making tem-
poral compositing the only solution. Notably, the highest correlation for the April com-
posite was achieved again by using the index greenNDVI (GNDVI). 

The data from Figure 6 reflect the agro-climatic conditions and winter wheat growth 
situations through vegetation indices for the period, as the average daily temperatures 
for the month of March were close to the multi-annual values for the area. An exception 
was observed for the last decade (10 days) of the month, when a strong cooling started to 
persist until the second decade of April. This cooling led to a delay in the crop develop-
ment, until the middle of April, when a sharp warming began, which led to a rapid crop 
development and recovery. 

At the beginning of May, due to the lower volume of rainfall (54% lower than the 
norm for the period), the crop began to experience temperature stress, therefore straining 
its development. Abundant precipitation occurred in the last decade of May, which 
helped the crop development and the crop recovery from the temperature stress and the 
grain filling. A favorable temperature regime in June in addition to the rainfall at the end 
of May helped the crop to enter the final stage of development, wax maturity, which is 
reflected by the good correlation between yield and VIs based on the data from 9 June 
(Figure 6). 
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Figure 6. Pearson’s correlation coefficients between winter wheat yield and the vegetation indices 
derived from Sentinel-2 data during the growing season. Dashed line indicates the critical value at 
the level of significance α = 0.05 (df = 10, two-tailed test). 

Based on the results from the correlation analysis, greenNDVI computed from the 
April composite was selected for constructing a yield prediction model. Figure 7a shows 
the fitted linear regression model where greenNDVI is the predictor. The RMSEcv of the 
model was 2.1 t/ha, and the rRMSEcv was 19.4%. Figure 7b presents the measured yield 
against that predicted through the LOOCV. The predicted yield was generally in good 
agreement with the true yield. Figure 8 shows the map of the biological yield estimated 
for the entire test field. The yield is calculated using the regression model with 
greenNDVI (Figure 7a). The range of the predicted yield values showed a good agree-
ment with the field yield samples. 

 
Figure 7. (a) Linear regression model for predicting winter wheat yield based on the greenNDVI 
from a Sentinel-2 temporal composite imagery of April. (b) Leave-one-out validation of the model. 
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Figure 8. Predicted crop yield (kg/ha) map at the test field. 

We can deduce that the Sentinel-2 data are suitable to provide accurate estimates of 
within-field yield variation, provided that ground-based yield data could be used to 
calibrate the model. Also, for a better interpretation of the results, an eventual integration 
of Sentinel-2 data with meteorological and soil data into the model would certainly im-
prove the model’s prediction capability. It should also be noted that the regression model 
was calibrated with a limited number of field samples from a single test field and, there-
fore, the model may generate less accurate estimates in agricultural fields with higher 
green NDVI values than the calibration dataset. In the future, the model will be further 
calibrated with a larger amount of data representative of the entire study area. Cavalaris 
et al. [31] used Sentinel-2 satellite data to forecast and estimate yield using vegetation 
indices: NDVI, EVI NDWI and NMDI. They found that the model utilizing vegetation 
index EVI performed with the highest accuracy when the input data were collected be-
tween 20 April and 31 May. In the present study, the best results were achieved when the 
input data between April and May were provided. Also, when Cavalaris et al. [31] used 
models based on a single date, as well as models based on maximum seasonal vegetation 
index values, the achieved results showed similar accuracy. 

As water content in wheat plays a role in grain filling and yield formation, some 
authors use this variable to predict yield due to its role in grain filling [68]. They use 
NDVI to predict yields. Also, NDVI is a sensitive index to specific phenological devel-
opments and it is suitable for predicting and estimating the yields not only of wheat but 
also of other autumn cereal crops [69]. Skakun et al. [29] also used NDVI to estimate 
yields. Both NDVI and EVI2 have been found to be useful for yield modeling and per-
form well. Furthermore, to improve yield estimation and prediction models, Zhao et al. 
[70] used a combination of the peak values of several vegetation indices obtained during 
the growing season. In a multivariate analysis determining the best combination for 
wheat yields’ prediction at the field level, “PeakOSAVI + PeakCI” and “PeakNDVI + 
PeakCI’’ were found to be the two combinations showing the highest correlations with 
the yields [70]. 
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Yield monitoring is essential to inform and develop national food security policies 
and production management strategies [71]. In addition, this type of open access data can 
be used by the public sector to limit the insurance risk for insurance companies [72,73], 
making the service more accessible to farmers. Satellite technologies provide opportuni-
ties for a timely signaling of problems in crops and, accordingly, for predicting yields 
both at the field level and for the whole farm. They enable farmers to make timely deci-
sions to counter potential problems that would have an impact on yields. Unfortunately, 
a large number of farmers still do not apply this type of technology due to gaps in 
knowledge about their sufficiency, expediency and the economic effect they will have on 
the farms [74,75]. It is necessary for farmers to be adequately trained on how to use these 
technologies to improve their productivity and income, and improve the state of the en-
vironment [76]. 

4. Conclusions 
This study considered some important aspects in agricultural area monitoring, 

namely crop and yield mapping. Both aspects of this research were successfully carried 
out using Sentinel-2 data. First, crop mapping was performed at different times of the 
growing season using monthly composites. An April composite was found suitable as 
input data for mapping the two main winter crops in the study area—wheat and rape-
seed—achieving an F1 score over 90% for both crops. Using a June composite, sunflower 
was classified with high accuracy, while the other summer crop, maize, was more diffi-
cult to be recognized. A multitemporal approach combining the April and June compo-
sites proved to be advantageous for maize mapping, resulting in 85.6% accuracy for this 
crop. In contrast to identifying the main winter and summer crops, the grasslands, rep-
resented in the study area by alfalfa and pastures/meadows, were more challenging to 
accurately classify. The multitemporal approach was useful to increase the accuracy of 
these two classes but the accuracy of alfalfa identification was still low. Both machine 
learning algorithms used for classification performed well, although SVM provided 
slightly better results than RF. The produced crop maps allowed crop-specific yield 
models to be set up in order to map the yield on a regional scale. 

Moreover, this study showed that under the agro-climatological conditions in the 
Upper Thracian Lowland, the data collected during the tillering growth stage were not 
suitable for yield modeling. The correlation between yield and VIs increased in April and 
reached its maximum for the input data collected around 30 April, when the crop entered 
the phonological stage of stem elongation. For the whole study period from March to 
June, GNDVI proved to be the best-performing index for yield prediction. The highest 
correlation using a linear regression model was found when an April monthly GNDVI 
composite was used as input data, allowing us to estimate the winter wheat yield at the 
municipality level two months before the harvest. 
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