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Abstract: SARS-CoV-2 Main Protease (Mpro) is an enzyme that cleaves viral polyproteins translated
from the viral genome, which is critical for viral replication. Mpro is a target for anti-SARS-CoV-2
drug development. Herein, we performed a large-scale virtual screening by comparing multiple struc-
tural descriptors of reference molecules with reported anti-coronavirus activity against a library with
>17 million compounds. Further filtering, performed by applying two machine learning algorithms,
identified eighteen computational hits as anti-SARS-CoV-2 compounds with high structural diversity
and drug-like properties. The activities of twelve compounds on Mpro’s enzymatic activity were
evaluated by fluorescence resonance energy transfer (FRET) assays. Compound 13 (ZINC13878776)
significantly inhibited SARS-CoV-2 Mpro activity and was employed as a reference for an experi-
mentally hit expansion. The structural analogues 13a (ZINC4248385), 13b (ZNC13523222), and 13c
(ZINC4248365) were tested as Mpro inhibitors, reducing the enzymatic activity of recombinant Mpro
with potency as follows: 13c > 13 > 13b > 13a. Then, their anti-SARS-CoV-2 activities were evaluated
in plaque reduction assays using Vero CCL81 cells. Subtoxic concentrations of compounds 13a, 13c,
and 13b displayed in vitro antiviral activity with IC50 in the mid micromolar range. Compounds
13a–c could become lead compounds for the development of new Mpro inhibitors with improved
activity against anti-SARS-CoV-2.

Keywords: chemoinformatics; COVID-19; SARS-CoV-2; Mpro; 3CLpro; virtual screening; ligand-
based drug discovery

1. Introduction

SARS-CoV-2 is an enveloped single-stranded positive RNA virus with significant
economic and health repercussions [1–3]. This virus, identified at the end of 2019, has
a genetic similarity of 79–96.3% with other coronaviruses [1,4]. SARS-CoV-2 infection is
mainly mediated by spike (S) protein binding to angiotensin-converting enzyme 2 (ACE2)
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on the surface of host cells and the subsequent S protein cleavage that activates membrane
fusion [5]. The initial 20 kb downstream the 5′ end of the viral genome contains the open
reading frames (ORFs) 1a and 1b, which encode the polyproteins 1a and 1ab. Polyprotein 1a
(pp1a) comprises nonstructural protein (NSP) 1 to NSP11, whereas polyprotein 1ab (pp1ab)
includes NSP1 to NSP16 [1]. The generation of NSPs from pp1a and pp1ab requires the
release by the papain-like protease (PLPro) and the Mpro (also known as 3CLPro) by self-
cleavage [1,6,7]. NSPs are vital to viral replication [8,9]. For example, RNA-dependent RNA
polymerase (RdRp/NSP12) is a crucial component of the genome replication/transcription
complex; helicase (NSP13) unravels double-stranded (ds) DNA and RNA along the 5′–3′

direction; and Mpro and PLPro participate in the excision of the pps [10].
Mpro is a cysteine protease with hydrolase activity that cleaves the sequence Leu-

Gln↓Ser-Ala-Gly, which is unusual in human enzyme substrates [11]. The bioactive form of
Mpro is a homodimer, where the rearrangement of the catalytic pocket in the monomers
induced by dimerization promotes substrate recognition [11,12]. Each monomer has three
domains. Domains I and III mediate dimerization through a salt bridge between Glu209
and Arg4 of opposite monomers [11,13]. The catalytic pocket and the catalytic residues
His41 and Cys145 are in domains I and II [10,14]. The substrate-binding pocket of Mpro has
been divided into five sub-pockets—S1, S2, S3, S4, and S1′—which accommodate different
residues of the substrate [10,15]. S2 and S4 are hydrophobic cavities, while S1 mediates the
recognition of molecules similar to glutamine, and the small S1′ cavity allows the thiol of
Cys145 to come into contact with the substrate [13,15].

Mpro has multiple characteristics that make it a prominent therapeutic target for drug
development: (i) it is crucial for the viral replicative cycle; (ii) it has a high (96%) nucleotide
similarity between coronaviruses; (iii) it has a low mutation rate; and (iv) it has no homol-
ogy to human proteins [11,16]. Accordingly, multiple Mpro inhibitors have been developed
to date. For example, boceprevir, SY110, and GC376 have been effective in preclinical
studies [17–19]; simnotrelvir, ensitrelvir, ebselen, and masitinib have reached clinical stud-
ies [20–23]; and nirmatrelvir has been approved by regulatory agencies for the clinical
treatment of non-severe COVID-19 [11,24]. Nirmatrelvir decreases the hospitalization and
death risks by 90%, demonstrating that Mpro inhibition is clinically relevant. The two
non-covalent inhibitors, ebselen and masitinib, form π-π interactions with His 41. On the
other hand, simnotrelvir and nirmatrelvir form a covalent bond with Cys146 and hydrogen
bonds with Glu166. All four inhibitors form hydrogen bonds with His163 [25–28].

The medicinally relevant chemical space is vast, enabling the identification of candi-
date compounds for therapeutic development [29,30]. Indeed, the chemical and biological
space continues expanding, and it is still challenging to develop and implement efficient
methodologies to explore such large and evolving spaces for drug discovery [31]. Virtual
screening (VS) or computational filtering of compound collections is a powerful tool for
systematically exploring the chemical space that allows the evaluation of some compounds
to be prioritized over others in subsequent drug development phases [32]. VS has been
used to identify candidate compounds for SARS-CoV-2 molecular targets [33].

VS allows for the analysis of up to billions of small molecules [34,35] since it can
use simplified representations of chemical entities, overcoming the main limitations of hit
identification based only on experimental approaches, such as high-throughput screen-
ing [36,37]. VS based on the ligand uses knowledge about the intrinsic characteristics of
molecules with defined activity to find new potential active compounds. Those approaches
are based on the similarity principle, which states that “a compound structurally similar to
active compounds will probably also be active”, with the relevant exceptions of activity and
property cliffs (e.g., chemical compounds with very similar chemical structures but very
different activity profiles) [37,38]. In particular, ligand-based VS relying on the structural
similarity principles typically uses molecular fingerprints generated from two-dimensional
representations to describe molecular structures and compares the structural similarity
between molecules within a chemical database (e.g., screening collection) and compounds
with the desired activity (e.g., reference or queries) through a similarity metric [39–41]. The
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prediction of pharmacokinetic properties at this stage allows for the selection of molecules
with a better probability of success and susceptibility to optimization [42,43]. However,
identifying new bioactive compounds with the aid of VS still requires the experimental
testing of the computationally filtered compounds through in vitro and in vivo assays to
identify compounds with value in drug development [33].

Herein, we aimed to identify SARS-CoV-2 Mpro inhibitors using ligand-based VS
based on similarity searching. We virtually screened a chemical library with nearly 17 mil-
lion molecules using compounds with demonstrated activity against coronavirus as ref-
erences or queries. For the refinement of the computational hits, we used the different
machine learning (ML) algorithms available in the Assay Central software, which were
previously employed to search for molecules against SARS-CoV-2 [44–46], and the algo-
rithm developed by Alves et al. [47] for identifying Mpro inhibitors. One commercially
available computational hit (compound 13) effectively inhibited Mpro in FRET assays. In a
follow-up analysis, compound 13 was used to explore its local SAR through the selection
and experimental testing of three new analogs that are commercially available (13a–c).
Those four compounds inhibited Mpro enzymatic activity with different potencies, and
three of them reduced the cytopathic effect elicited by SARS-CoV-2 infection in Vero CCL81
cell cultures. Our study provides new candidates for developing Mpro inhibitors and
anti-SARS-CoV-2 drugs.

2. Results and Discussion
2.1. In Silico Identification of Potential Mpro Inhibitors

Given the need to find new inhibitors for SARS-CoV-2 Mpro [48,49], we conducted
a VS using the strategy summarized in Figure 1. First, from the literature, we identified
anti-coronavirus compounds with diverse mechanisms of action (Table S1) to be used
as references for similarity searching from a compound screening library with ~17 mil-
lion molecules of bioactive compounds, natural products, and peptides [50–58]. Of the
62 reference molecules, thirteen (Table S2) have been shown to inhibit at least one of two
SARS-CoV-2 proteases [59–70]. Using three different molecular fingerprints, we identified
632,149 unique molecules that had similarity values greater than the mean plus three stan-
dard deviations (SDs) for all three of the molecular fingerprints. We verified the availability
of physical samples of these molecules in the ZINC15 database, finding 4423 molecules
listed as commercially available. This group of compounds includes candidates that may
have anti-coronavirus activity independently of its mechanism of action. Our primary
selection, using fingerprint-based similarity searching, has been successfully employed in
VS campaigns to identify inhibitors of the protein kinase AKT-2 [71] and, more recently, a
novel inhibitor of the epigenetic target DNA methyltransferase 1 [72].

To prioritize the evaluation of a smaller number of compounds, we decided to focus
on the identification of potential Mpro inhibitors by implementing the seven ML algorithms
available in the Assay Central Software [44] and the ML-QSAR of Alves et al. [47], which
have successfully identified SARS-CoV-2 Mpro inhibitors [44–47]. This further refinement
directed us to select potential Mpro inhibitors, defining the subsequent experiments. With
the overall strategy, we identified eighteen compounds as computational hits (Table S3).
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Twelve out of eighteen computational hits were purchased, and their activities on 
Mpro activity were assessed by FRET analysis at the single concentration of 100 µM. We 
found that two compounds (3 and 13) significantly inhibited Mpro compared to their ve-
hicle control (Figure 2d). Compound 13 was the most active, inhibiting >90% Mpro activ-
ity, demonstrating a successful large-scale VS. 

Figure 1. Virtual screening protocol. Identification of potential Mpro inhibitors from a large chemical
library combining multiple databases. Similarity analysis was performed with the Tanimoto coeffi-
cient and three structural fingerprints (indicated in the figure): MACCS Keys, ECFP4, and ECFP6.
ML: machine learning; QSAR: quantitative structure–activity relationship.

2.2. Property and Diversity Profiling of Computational Hits and Experimental Validation

The computational hits chosen by our protocol (Figure 2a and Table S2) had an overall
high structural diversity with an average Tanimoto coefficient < 0.2 computed with the
ECFP6 fingerprint (Figure 2b). However, we identified two groups of molecules that
were structurally related: compounds 5 and 6, and compounds 14–18. The predicted
physicochemical, pharmacokinetic, and toxicological properties for all computational hits
were in the range of typical drug-like molecules, which was expected, given the composition
of the reference set. Most of the computational hits complied with seven desired values for
properties associated with favored oral bioavailability (water solubility, topological polar
surface area (TPSA), molecular weight, rotatable bonds, lipophilicity, and H-bond donors
and acceptors) (Figure 2c). However, compounds 5, 14, 15, and 16 had a TPSA < 20 Å2, and
compound 8 had reduced lipophilicity.

Twelve out of eighteen computational hits were purchased, and their activities on
Mpro activity were assessed by FRET analysis at the single concentration of 100 µM. We
found that two compounds (3 and 13) significantly inhibited Mpro compared to their
vehicle control (Figure 2d). Compound 13 was the most active, inhibiting >90% Mpro
activity, demonstrating a successful large-scale VS.
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the range of values for each property where oral bioavailability is favored. (d) Mpro activity in the 
presence of 100 µM of the selected computational hits (blue bars) or the positive control GC376 (1 
µM; red bar) [18]. The signal was normalized and statistically compared against the corresponding 
vehicle (Student’s t test; * < 0.05 for inhibitory compounds). Bars show the average ± standard error 
of the mean (SEM) from two independent experiments. 
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and Table S3). The newly identified analogs had desired physicochemical properties asso-
ciated with favored oral bioavailability (Figure 3c), complying with Lipinski’s and Ver-
ber’s rules, and showing high (>86%) predicted absorption after oral administration (Table 
1). None of the compounds were predicted to cross the blood–brain barrier (BBB). Com-
pounds 13 and 13a, but not 13b or 13c, may inhibit multiple CYP isoforms and cause hepa-
totoxicity. Our analysis indicates that compound 13c may have an extended half-life in 
humans (Table 1). 

The dose–response curves with recombinant SARS-CoV-2 Mpro showed that the pos-
itive control, GC376, inhibited Mpro with a high potency (Figure S1). Compounds 13, 13b, 
and 13c inhibited the enzymatic activity of Mpro with IC50 values of 3.5, 29.1, and 1.8 µM, 
respectively (Figure 3d). The inhibitory potency of compounds 13, 13b, and 13c is similar 
to other compounds identified using other VS strategies. For example, docking and sub-
sequent molecular dynamics found Mpro inhibitors with IC50 values ranging from 6.74 to 
1370 µM [26]. 

Figure 2. Structure and physicochemical properties of the computational hits. (a) Chemical structure
of compounds 1–18, identified by our protocol as potential SARS-CoV-2 Mpro inhibitors. (b) Similarity
matrix of the computational hits computed with the Tanimoto coefficient and the ECFP6 fingerprint.
(c) Physicochemical properties profiles of the computational hits. The gray area represents the range
of values for each property where oral bioavailability is favored. (d) Mpro activity in the presence
of 100 µM of the selected computational hits (blue bars) or the positive control GC376 (1 µM; red
bar) [18]. The signal was normalized and statistically compared against the corresponding vehicle
(Student’s t test; * < 0.05 for inhibitory compounds). Bars show the average ± standard error of the
mean (SEM) from two independent experiments.

2.3. Identification of New Mpro Inhibitors by Searching Analogs of Compound 13

We selected and experimentally tested analogs of compound 13. We identified three
compounds (Figure 3a) that were commercially available and had high similarity to com-
pound 13: 13a (ZINC4248385), 13b (ZINC13523222), and 13c (ZINC4248365) (Figure 3b and
Table S3). The newly identified analogs had desired physicochemical properties associated
with favored oral bioavailability (Figure 3c), complying with Lipinski’s and Verber’s rules,
and showing high (>86%) predicted absorption after oral administration (Table 1). None of
the compounds were predicted to cross the blood–brain barrier (BBB). Compounds 13 and
13a, but not 13b or 13c, may inhibit multiple CYP isoforms and cause hepatotoxicity. Our
analysis indicates that compound 13c may have an extended half-life in humans (Table 1).

The dose–response curves with recombinant SARS-CoV-2 Mpro showed that the
positive control, GC376, inhibited Mpro with a high potency (Figure S1). Compounds 13,
13b, and 13c inhibited the enzymatic activity of Mpro with IC50 values of 3.5, 29.1, and
1.8 µM, respectively (Figure 3d). The inhibitory potency of compounds 13, 13b, and 13c is
similar to other compounds identified using other VS strategies. For example, docking and
subsequent molecular dynamics found Mpro inhibitors with IC50 values ranging from 6.74
to 1370 µM [26].
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Figure 3. Inhibitory activities of compounds 13–13c on Mpro activity. (a) Chemical structure of
compound 13 and its three commercially available structural analogs. The maximum common
substructure is shown in black. (b) Similarity matrix of compounds 13–13c calculated with the
Tanimoto coefficient and the ECFP6 fingerprint. (c) Physicochemical properties of the compounds
(13: red; 13a: purple; 13b: brown; 13c green). The gray area represents the range of values where oral
bioavailability is favored. TPSA: topological polar surface area. (d) Representative concentration–
response curves showing the inhibitory activities of compounds 13–13c on Mpro activity (d). Two
independent assays were performed for each compound.

Table 1. Pharmacokinetic and toxicology properties of compounds 13–13c predicted using Swis-
sADME and pkCSM-pharmacokinetics.

Molecular Descriptor Compound 13 Compound 13a Compound 13b Compound 13c

Intestinal absorption (%) 89.21 93.79 86.80 87.54
Lipinski violations None None None None
Verber violations None None None None
BBB permeability No No No No

P-glycoprotein substrate No Yes Yes No
P-glycoprotein inhibitor Yes No No No

CYP1A2 inhibitor Yes Yes No No
CYP2C19 inhibitor Yes Yes No Yes
CYP2C9 inhibitor Yes Yes No No
CYP2D6 inhibitor No No No No
CYP3A4 inhibitor No No No No

Total clearance (log
mL/min/kg) 0.75 0.75 0.79 −0.16

AMES toxicity Yes Yes Yes Yes
Hepatotoxicity Yes Yes No No

BBB, blood–brain barrier; CYP, cytochrome P450.

SAR expansion has been employed for the optimization of protease inhibitors with
antiviral activity. For example, benserazide analogs identified by SAR expansion display
increased affinity for the 3C protease from human coxsackievirus B3, and improved antiviral
activity [73]. Herein, the SAR expansion of compound 13 allowed for the identification of
two new Mpro inhibitors, and one of them (13c) had a 1.9-fold increase in potency.
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2.4. In Silico Characterization of Compound Binding to SARS-CoV-2 Mpro

Compounds 13–13c were docked into the catalytic cavity of SARS-CoV-2 Mpro. Anal-
ysis of the best-ranked poses of compounds 13–13c into SARS-CoV-2 Mpro showed that, as
expected given the high structural similarity of the compounds, they have similar binding
modes, all occupying sub-pockets S1 and S2 of the active site (Figure 4a). The docking poses
suggested π-π interactions between the pyridone motif of compounds 13a–13c and the side
chain of His41 (Figure 4b). Residues Cys145 and His41 are essential for the proteolytic
activity of SARS-CoV-2 Mpro since they constitute its catalytic dyad [13,15]. Thus, ligands
interacting with Cys145 and/or His41 reduce SARS-CoV-2 Mpro activity. For example,
Mpro covalent inhibitors target Cys145 [11,17,18].
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Figure 4. Binding models of Mpro inhibitors generated by molecular docking employing Molecular
Operating Environment software. (a) Surface representation of monomeric Mpro with compounds
13–13c docked into the catalytic site. The insets show each compound bound the sub-pockets
S1 and S2. The catalytic residues His41 and Cys145 are shown in green and yellow, respectively.
(b) Ribbon representation of the Mpro sub-pocket S2 showing the predicted π-π interactions between
the pyridone of compounds 13a–13c and His 41.

According to the predicted docked poses, other residues potentially mediating the
binding of compounds 13–13c to Mpro included the polar residues Gly143 and His163, the
hydrophobic residue Leu141, and the negatively charged residue Glu166 (Figure S2). The
interactions with His163 and Glu166 may participate in the enzymatic inhibition reported
here since they would affect substrate binding. During catalysis, Mpro His163 forms a
hydrogen bond with the conserved Gln adjacent to the cleavage site, and Glu166 forms
extensive van der Waals interactions and hydrogen bonds with multiple atoms from the
substrate [74]. Importantly, Cys145, His163, and Glu166 are conserved among coronavirus
Mpro [75], and their frequency of mutation in circulating SARS-CoV-2 variants has been
reported to be <1 per million of sequences by two different studies [75,76]. Altogether,
these data suggest that compounds 13–13c could display broad-spectrum activity against
coronavirus, a desirable characteristic for pandemic preparedness [77].

We did not find a correlation between the docking scores for compounds 13–13c
(Table S4) and their inhibitory activities. In the molecular dynamics simulation of the
13c-SARS-CoV-2 Mpro complex, the ligand rapidly abandoned the docked conformation
and explored multiple conformations inside of the catalytic cavity. Eventually, ligand 13c
moved outside of the cavity because of the relocation of a highly flexible loop comprising
Mpro residues 43 to 54 (Figure S3). Together, these results suggest that our docking
results may not accurately capture the molecular interactions that influence the observed
inhibitory activity. This can be caused by the inherent limitations of docking methods,
including approximations in representing isolated systems and the omission of factors like
solvation [75,76], combined with the complexity of the biological target. In agreement,
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multiple docking protocols for Mpro have shown unsatisfactory performance [39,78]. Thus,
clarification of the binding modes of compounds 13–13c will require the generation of
experimental structures in future work.

2.5. Evaluation of Antiviral Activity in Cell Culture

First, we determined the effect of compounds 13–13c on the viability of Vero CCL81
cells (Figure S4). The exposure of cell cultures to the reported Mpro inhibitor GC376
for 72 h reduced cell viability with respect to the vehicle, but the reduction was greater
than 20% only at the highest concentration tested (100 µM). Compounds 13, 13a, 13b
(0.78–100 µM), and 13c (0.39–50 µM) had null cytotoxicity compared to their corresponding
vehicles (DMSO 0.2% for 13–13b and DMSO 0.5% for 13c). Determining the cytotoxic effect
of the test compounds is essential to ensure a healthy cell layer during antiviral evaluation,
reducing false positive results, and allowing for speculation that the antiviral activity could
be achieved in vivo without toxic effects. Thus, the FDA guidance documents for the
development of antiviral products define cytotoxicity evaluation as crucial [79].

Using subtoxic concentrations of the Mpro inhibitors 13–13c, we performed plaque
reduction assays in cell cultures infected with SARS-CoV-2 (see Figure S3 for representative
images). The positive control, GC376, inhibited lytic plaque formation (Figure 5a) with
an EC50 value that was consistent with that of previous reports [18,80]. Surprisingly,
compound 13 lacked antiviral activity in vitro (Figure 5b) despite its efficient inhibition of
Mpro in FRET assays. The discrepancy between enzymatic inhibition and antiviral efficacy
could be caused by a reduced stability of the compound in cell culture, permeability issues,
increased efflux transport in Vero cells, or buffering by host or viral off-target proteins.
Compound 13a showed the best antiviral effect among the candidates with an EC50 value
of 35.3 µM (Figure 5c). Compounds 13b and 13c displayed EC50 values of 59.9 and 57.0 µM,
respectively (Figure 5d,e). The anti-SARS-CoV-2 activity of compounds 13a–c confirms that
they could be new lead compounds for the development of Mpro inhibitors.
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Figure 5. Anti-SARS-CoV-2 effect of Mpro inhibitors. Quantification of the cytopathic effect elicited
by SARS-CoV-2 in Vero CCL81 after 72 h in the presence of (a) the positive control, GC376; (b) com-
pound 13; or (c–e) analogs 13a–c. The maximal concentration tested for each compound was deter-
mined by evaluating its cytotoxicity in uninfected cells. Graphs show the mean percent reduction in
the cytopathic effect from three technical replicates ± SEM. A representative curve is shown from
two independent experiments performed.
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3. Materials and Methods
3.1. Preparation of the Screening Chemical Library and the Reference Set of Active Compounds

We generated a large chemical library with 17,802,481 compounds from eight chem-
ical libraries (dataset comprising CAS COVID-19 candidate compounds: 44,787 com-
pounds; ChEMBL version 25: 1,667,509 compounds; COlleCtion of Open NatUral producTs
(COCONUT): 379,309 compounds; the Food Database (FooDB): 23,883 compounds; the
Colombian database of Chemistry of Bioactive Plant Natural Products (CCBPNP in-house
database): 535 compounds; REadily AccessibLe database (REAL) by Enamine: 15,547,017
compounds; Dark Chemical Matter (DCM) database: 139,352 compounds; and the peptide
FDA-approved drug (PEP FDA): 92 compounds. The large chemical library was curated
using an in-house protocol described in detail in the literature [81]. Briefly, from the Simpli-
fied Molecular Input Line Entry Specification (SMILES) notation of each molecule [82], their
largest fragment was kept. Duplicate molecules and those that contained atoms other than
H, B, C, N, O, F, Si, P, S, Cl, Se, Br, and I were dismissed. Then, the corresponding tautomers
were generated through the neutralization and reionization, implementing public tools and
an application programming interface (API) in Python based on the RDKit toolkit for chem-
informatics. The API uses the “Standardizer”, “LargestFragmentChoser”, “Uncharger”,
“Reionizer”, and “TautomerCanonicalizer” functions from the MolVS standardize and
validation tools section. In parallel, we built a reference list of sixty-two molecules with
anti-coronavirus activity reported until 2021 [50–58] (Table S1), which was prepared in the
same way as the large chemical library and used in the first phase of the VS.

3.2. VS

We developed an API in Python using the “Fingerprinting and Molecular Similar-
ity”, “Topological Fingerprints”, “MACCS Keys”, and “Morgan Fingerprints (Circular
Fingerprints)” modules from the RDKit toolkit for cheminformatics. The molecules in the
large chemical library and the reference list were represented using three 2D molecular
fingerprints of different designs: Extended Connectivity Fingerprints of radius two and
three (ECFP4 and ECFP6)—2048 bits [83]—and Molecular Access System Keys (MACCS
Keys)—166 bits [84]. The structural similarity between the molecules was determined using
the Tanimoto coefficient [84,85]. We identified molecules with similarity values greater than
the average similarity plus three SDs for each reference molecule. Those unique molecules
above the cutoff limit from all three molecular fingerprints were considered consensus hits,
and their commercial availability was determined using the ZINC15 database using the
following keywords: “For sale”, “In Stock” and “Now”. Refinement of the computational
hits included using the different ML algorithms available in the Assay Central Software [44]
(available at https://www.collaborationspharma.com/assay-central (accessed on 20 De-
cember 2023)) as well as the quantitative structure–activity relationship based on machine
learning (ML-QSAR) using a random forest algorithm developed by Alves et al. [47] to
search for Mpro inhibitors. The lists of reference molecules employed in those algorithms
have been previously presented [44–47].

The ML algorithms of Assay Central software employs Bayesian ML models, including
but not limited to Bernoulli Naive Bayes classifiers, Adaptive Boosting, and Random Forest,
all of which have been previously used to search for molecules against SARS-CoV-2 [44–46].
These algorithms operate based on the result obtained with the molecular descriptor ECFP6,
providing a comprehensive assessment of predictability and applicability. Molecules with
scores greater than 0.5 in these predictions are identified as active.

The ML-QSAR algorithm integrates Random Forest classifiers and three distinctive
descriptors: Morgan fingerprints, SiRMS, and Dragon version 7.0. This comprehensive
model evaluates various features of compounds, including lipophilicity, partial charges,
refractive index, and the potential to form hydrogen bonds (as acceptors or donors). The
results of the ML-QSAR model undergo scrutiny through an average consensus analysis of
the three descriptors, with the activity of each prediction being scaled from zero to one. A

https://www.collaborationspharma.com/assay-central


Pharmaceuticals 2024, 17, 240 10 of 16

consensus result exceeding 0.7 (70%) designated compounds as positive hits, and results
were categorized as either 0 (negative) or 1 (positive).

Compounds with favorable predictions in both the ML algorithms and ML-QSAR
predictions were regarded as computational hits, contributing to a refined selection of
molecules with promising activity against SARS-CoV-2 Mpro.

3.3. Analysis of Structural Diversity and Physicochemical Properties of Computational Hits

The Tanimoto coefficient for ECFP6 fingerprints was used to measure the similarity
between the computational hits. Clustering maps were generated using the DisplayR
software version 1.2.37478 (Displayr, Pyrmont, Australia). Physicochemical properties
for the final computational hits were calculated using the SwissADME [86] and pkCSM-
pharmacokinetics web servers [87].

3.4. Compounds

Compounds were purchased from MolPort (Molport, SIA, Riga, Latvia), Vitas M
Chemical (Hong Kong, China), Sigma-Aldrich (St. Louis, MO, USA), Enamine (Kyiv,
Ukraine), TargetMol (Wellesley Hills, MA, USA), MedChemExpress (Monmouth Junction,
NJ, USA), or Life Chemicals (Niagara-on-the-Lake, ON, Canada) for evaluation of their
activity on Mpro enzymatic activity, cell viability, and SARS-CoV-2 replication in cell
culture. Details of vendors and catalog numbers can be found in Online Resource 2. The
reported Mpro inhibitor GC376 [18] was obtained from Cayman Chemical (Cat. 31469). All
compounds were dissolved in dimethyl sulfoxide (DMSO).

3.5. Mpro Enzymatic Activity Assays

Mpro activity was evaluated using a continuous kinetic FRET assay performed accord-
ing to the protocol and specifications of the supplier Reaction Biology Corp. (Malvern, PA,
USA) or Charles River Laboratories (Saffron Walden, Essex, UK). Briefly, the compounds
were mixed with recombinant Mpro in the reaction buffer (Tris 25 mM pH 7.3, EDTA 1 mM,
Triton X-100 0.005%). Protease activity was monitored as a time-course measurement of the
increase in fluorescence signal (excitation 340 nm and emission 492 nm) after the addition
of the fluorogenic substrate [NH2-C(EDANS)VNSTQSGLRK(DABCYL)M-COOH]. Initial
enzymatic rates were calculated via linear regression using data from the initial proportion
of the kinetic curve. Data were normalized using enzymatic rates from vehicle control,
and control without enzyme as maximal and minimal responses, respectively. GC376 was
employed as a positive control. Dose–response curves were performed for a selected subset
of compounds with nine concentrations (3-fold serial dilution from 100 µM). Non-linear
regression and IC50 values were obtained using the Prism 10 v 10.1.1 (GraphPad software,
Boston, MA, USA). Experiments were repeated two times independently.

3.6. Molecular Docking

Docking simulations for selected compounds (13–13c) were performed with the Molec-
ular Operating Environment (MOE) software, version 2018 (Chemical Computing Group
ULC, Montreal, Canada), using the crystal structure of SARS-CoV-2 Mpro retrieved from
Protein Data Bank (PDB ID: 7JPZ) [88] and the induced fit protocol. Before docking simu-
lations, the co-crystallized inhibitor structure was excised from the catalytic site. Protein
preparation within the MOE framework involved using the “Quick prepare” module,
employing default parameters and the AMBER10:EHT force field. The chemical structures
of compounds 13–13c were constructed and prepared in MOE starting from their canonical
SMILES. The preparation process included the application of the “wash”, “partial charges”
calculations, and “energy minimize” functions to optimize ligand conformations. The
molecular docking simulations were executed utilizing the “Triangle Matcher” method,
complemented by the “London dG” function, with a maximum of 1500 iterations and an
initial population of 100 poses.
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3.7. Molecular Dynamics Simulations

Molecular dynamics (MD) simulation was conducted using GROMACS 2021.6 with the
CHARMM36m force field [89]. The complex of 13c with SARS-CoV-2 Mpro was obtained
with the docking protocol described above. Ligand parameters were generated through
the CHARMM graphical user interface [90] module within the force field framework. The
complex was placed in a periodic cubic simulation box measuring 99 Å on each side,
followed by solvation using the three-point (TIP3P) model to incorporate water molecules.
All histidines were protonated as neutral HSD states. Sodium (Na+) and chloride (Cl−)
ions were added to neutralize the system charge and reach an ionic concentration of 0.15 M.
Energy minimization utilized the steepest descent algorithm, followed by equilibration in
an NVT ensemble employing a modified Berendsen thermostat. The LINCS algorithm was
applied to constrain hydrogen bonds. Simulations were run at 1 bar and 310.15 K for 250 ns
with a 2 fs integration time frame, saving trajectories every 10 ps.

3.8. Cytotoxicity Assessment

Vero CCL81 cells were seeded in 96-well plates at 12,000 cells/cm2 in Eagles’s Mini-
mum Essential Medium (EMEM) supplemented with 10% fetal bovine serum (FBS). Com-
pounds (2-fold serial dilutions from 100 µM) were added to the wells and incubated for
72 h at 37 ◦C with 5.0% CO2. Vehicle control was DMSO 0.2%, except for 13c, which was
compared to DMSO 0.5%. The cytotoxic drug doxorubicin (5 µM) was used as a positive
control. Cell viability quantification was performed using 3-(4,5-Dimethylthiazolyl)-2,5-
diphenyltetrazolium bromide (MTT) as previously reported [91]. Data were normalized
with respect to the corresponding vehicle control.

3.9. Evaluation of Antiviral Activity by Plaque Reduction Assay

In vitro viral neutralization assays were performed as previously described [92] using
a clinical isolate of SARS-CoV-2 (GenBank: OL790194). Briefly, cultures of Vero CCL81
cells (50,000 cells/cm2) were seeded into 24-well plates, and the next day, the cells were
exposed for 1 h to subtoxic concentrations of the Mpro inhibitors prepared in serum-free
EMEM. Viral infection was performed by adding 100 SARS-CoV-2 plaque-forming units
for 1 h. Then, the cell culture medium was replaced by an overlay media (carboxymethyl
cellulose 1% w/v, FBS 1% v/v, in EMEM) containing the same concentration of the test
compounds. GC376 was used as the positive control, and uninfected cultures were used
as negative controls. At the end of the incubation period, the cell cultures were fixed with
formaldehyde 37% and incubated overnight at 4 ◦C. Then, the medium was removed,
and the cell layer was stained with crystal violet. Finally, the lytic plaques were counted,
and data were normalized against vehicle controls. The effective concentration-fifty was
calculated by non-linear regression with Prism 10 v 10.1.1 (GraphPad software, Boston,
MA, USA).

4. Conclusions

In this study, we identified three small molecules (13a, 13c, and 13b) with in vitro
antiviral activity with IC50 values in the mid micromolar range. The three compounds could
become lead compounds for the development of Mpro inhibitors with improved activity
against anti-SARS-CoV-2. A ligand-based VS of a large screening library led to the rapid
identification of compound 13 with significantly inhibitory activity against SARS-CoV-2
Mpro. A successful follow-up exploration of analogs of the confirmed computational hit
led to the finding of two additional active compounds. This study represents a further
example of a successful large-scale VS followed by an experimental validation to identify
active compounds for a therapeutic relevant molecular target.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/ph17020240/s1, Table S1: Reference compounds for com-
putational screening; Table S2: Reference compounds with proven activity against Mpro and PLpro of
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SARS-CoV-2; Table S3: Compounds evaluated experimentally; Table S4: Molecular docking scores of
compounds 13–13c; Figure S1: Concentration–response curve for the reported Mpro inhibitor GC376
in our FRET assay; Figure S2: Binding mode of identified Mpro inhibitors predicted by molecular
docking; Figure S3: Molecular dynamics simulation of SARS-CoV-2 Mpro/13c complex; Figure S4:
Cytotoxicity of SARS-CoV-2 Mpro inhibitors on CCL81 Vero cells exposed for 72 h to the selected
compounds; and Figure S5: Cytopathic effect elicited by SARS-CoV-2 on cell cultures treated with
Mpro inhibitors.
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