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ABSTRACT 
 

The transmission dynamics of Hepatitis B Virus in a population with infective immigrant is 
presented with the inclusion of an optimal control strategy to curtail the spread of the virus. To 
understand the spread of this infection, we develop a mathematical model with control variables of 
migrant screening and public sensitization. The optimality system is characterized using 
Pontryagin’s maximum principle and solve numerically with an implicit finite difference method.  
Result of the numerical simulation is presented to illustrate the feasibility of this control strategy. 
The analysis reveals that combination of both control variables could be the most fruitful way to 
reduce the incidence of Hepatitis B virus. 
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1. INTRODUCTION 
  
It is pathetic that numerous individuals worry 
more about contracting Acquired 
Immunodeficiency Syndrome (AIDS) than 
Hepatitis, even when in reality each year about 
600,000 people worldwide die due to these viral 
hepatitis infections and many more become 
infected. At times, infected people die faster with 
viral hepatitis than they would with AIDS. More 
unfortunate is the fact that Hepatitis B virus is 
about 50 to 100 times more infectious than HIV 
[1].  
 

Hepatitis B is a dangerous liver infection brought 
about by the Hepatitis B Virus which is a 
significant worldwide medical issue and the most 
common sort of viral hepatitis. It is endemic in 
parts of Asia and Africa [2]. Around the world, 
about 2 billion individuals are asymptomatic or 
symptomatic of the infection and about 360 
million live with the highest degree of infection 
[3]. 
 

In 1990, 154 million individuals or 2.9% of the 
worldwide populace were migrant, though the 
comparing figure for 2013 was 3.2% [4] and 
these numbers exclude undocumented migrant. 
In 2013, the United States, Canada and some 
other EU countries were among the 10 top 
destinations for international migrants [5] 
.Research on some African migrants in part of 
the United States showed that the proportion of 
persons with HBV infection is ten times their host 
population. This is likely due to a combination of 
factors, including poor knowledge of the 
diseases, their risk factors and symptoms, lack of 
access to healthcare and health information. 
Studies have shown that workers and displaced 
people are 2–5 times bound to pass on from liver 
ailment than their host populace. Based on this 
submission, it is pertinent to fill the gap in the 
quest to eradicate HBV infection by presenting a 
mathematical model which includes treatment 
class, screening of migrant, adequate 
sensitization and improvement of public health 
[6]. 
 

The transmission dynamics and control of 
hepatitis B virus in china was presented by a 
model, it was reported that HBV is the most 
common serious viral infection and a leading 
cause of death in mainland China.  Based on the 
data reported by China Ministry of Health, the 
model provides an approximate estimate of the 

basic reproduction number 406.20 R . It was 
indicated that hepatitis B is endemic in China and 
is approaching its equilibrium with the current 
immunization program and control measures. 
Based on their report, China made great 
progress in increasing coverage among infants 
with hepatitis B vaccine thereby reducing the 
incidence and eventually eradicate the virus 
[7,8,9]  
 

A mathematical model for hepatitis B with 
migrant was presented in [10,11]. Analysis 
showed that strict immigration policies such as 
screening, and reduction in the number of 
immigrants into a given population could help 
control the spread of the disease. The state of art 
in modeling and interpreting data obtained from 
hepatitis B virus infected patients treated with 
antiviral agents was also reviewed in [12]. With 
increased understanding and quantitative tools, it 
will be easy to evaluate new treatments for 
antiviral and immune modulating effects, and 
may even ultimately predict long-term patient 
response based on viral kinetic studies. 
 

The role on epidemic models with infective 
immigrant and vaccination on disease dynamics 
was explored in [13]. This simple setting 
considers the possibility of conferred immunity 
with focus on SIR and SIS models with a 
vaccinated class. Also, [8,14,15] considered 
mathematical modeling of infectious diseases. It 
has shown that combinations of isolation, 
quarantine, vaccine and treatment are often 
necessary to eliminate most infectious diseases. 
However, if they are not administered at the right 
time and in the adequate amount, the disease 
elimination will remain a difficult task. With all 
these findings, our goal is to study the dynamics 
of Hepatitis B Virus in a population by developing 
a mathematical model thereby investigating the 
effects of immigrant and analysing the effect of 
control variable in reducing  HBV incidence.   
 

In Section 2, the state factors, parameters, and 
the mathematical model for HBV were presented. 
The control problem is investigated hypothetically 
and numerically in section 3 while section 4 
discusses the results and the conclusion was 
presented in section 5. 

 

2. FORMULATION OF THE MODEL 
 
A compartmental model for Hepatitis B virus 
infection is presented with seven compartment: 
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Susceptible S(t), Latent L(t), Acute A(t), Chronic 
C(t), Treatment Class T(t), Recovered R(t), and 
Vaccinated V(t). The treatment class T(t) are set 
of individuals who are hospitalized or undergoing 
treatment for the chronic stage of the infection 
and this is an improvement on the work of Zou et 
al. [9]. The rates of transfer between the 
diseases compartments consist of several 
epidemiological parameters. Recruitment by birth 

is represented by  ,   represents recruitment 
by immigration, proportion of birth without 

vaccination is denoted by  and )1(   

represent birth successfully vaccinated. 

denotes birth born to carrier mothers i.e Vertically 

infected birth rate,   represent the transmission 
rate, k shows the reduced transmission rate from 

chronic infectiousness to acute infection,   
represent natural death rate for all 

compartments, 1
 is the vaccination rate of 

susceptible population and 2
 represents loss of 

immunity of the vaccinated class. The rate at 
which latent class becomes infectious and 

progress to acute class is denoted  , 1i and 2i

are proportion of immigrant with acute and 
chronic HBV infection respectively, q is the 
proportion of acute that fails to clear HBV 

infection and become chronic,   is the 

progression rate of acute class,   represent 
HBV induced death rate and the rate of flow from 

chronic to treatment class is  , 


 is the rate of 
progressing from treatment class to recovered 
class after HBV elimination while )1( q  represents 
proportion of acute class who cleared the 
infection and progress to the recovered class. 
 

Then, )1( C   show the new born who are 

unimmunized and become susceptible, )1(    
represents successful immunization of new birth, 

C  measures the new birth who are born to 
carrier mothers and cannot be vaccinated.  
 
With findings from [16], migrant recruitment term 
was incorporated into the HBV population model 
with uninfected immigrant, acutely infected 
immigrant and chronically infected immigrant 

where  represent the recruitment rate for 

migrant, 1i , 2i  is the proportion of immigrant with 
acute and chronic infection respectively. Then 

 211 ii 
 is the proportion of uninfected or 

susceptible migrant population.  
 
The transmission dynamics of hepatitis B 
infection with migrant and treatment class is 
presented thus:  
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Subject to initial conditions,  
 

.0)0(,0)0(,0)0(,0)0(,0)0(,0)0(,0)0(  VRTCALS

 
The following assumptions were made: 
 

(i) The Population is assumed not to be 
constant since birth, immigration and death 
occur in the population. 

(ii) The natural death of all classes is the 
same except for chronic class. 

(iii) The susceptible vaccinated individuals 
become temporary immune for a period of 
25 years. 

(iv) The recovered individuals become 
permanently immune to the disease for life. 

(v) The chronic infected individual have a 

diseases induced death rate of  . 
(vi) This model is assume to be homogeneous 

mixing of individuals in the population 
where all individuals have equal likelihood 
of getting infected if they come in contact 
with infectious individuals. 

 

2.1 Diseases-Free Equilibrium (DFE) 
 
Consider equation (1), the disease free 
equilibrium of an epidemic model is obtained by 
setting  
 

0
dt

dV

dt

dR

dt

dT

dt

dC

dt

dA

dt

dL

dt

dS

 
 
At disease free equilibrium(DFE), it is assumed 
that there is no infection, and then all state 
variables except susceptible and vaccinated are 
set to be zero [9]. Such that,  
 

0 RTCAL  
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Fig. A.  Flow chart for the mathematical model of hepatitis b virus infection with Immigrant 
 

Where Sand 0V , 0SS 
 and 0VV 

 
 

Solving equation (1) at equilibrium, 
 

,0,, 00  RTCALVVSS
 

          
Then, the DFE of the working model is given as 
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2.2 Basic Reproduction Number 
 

Basic reproduction number is the effective 
number of secondary infection caused by an 
infected individual during his/her period of 
infectiousness, this makes it an important 
measure of transmissibility of a disease. Using 
the next generation matrix operator technique, 

the basic reproduction number, 0R  was obtained 
with mathematical expression [6]. 
 

1

0


 iiVFR

  
                 

Where iF is the rate of appearance of new 

infection in the infected compartment, iV  is the 

transfer of individuals out of compartment I by all 

other means and 0
is the disease-free 

equilibrium. Therefore, the spectral radius of the 
next generation matrix is the basic reproduction 
number for the working model  [8,11]. Consider 
equation (1), then 
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The jacobian derivative of F is given as 
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The transfer of individual out of the compartment 
i  is given by 
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Therefore, the jacobian derivative of iV  is  
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And then equation (5) implies 
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Then, the basic reproduction number is the 

dominant eigenvalue of
1FV , 
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       (3) 
 
From the above, the basic reproduction number

0R  is the largest eigenvalue of the working 
model and defined as the effective number of 
secondary infection caused by an infected 
individual during his/her period of infectiousness 
[11]. 
 

2.3 Optimal Control of HBV Model with 
Immigrant  

 

In this work, we are concerned with the problem 
of adopting the best strategy of controlling the 
spread of hepatitis in the presented mathematical 
model with immigrants; that is, we seek to search 
a maximum count of uninfected population with a 
minimum cost of the control strategy. Hepatitis 
model of equation (1) was extended to include 
two time dependent controls. These two major 
controls are screening of immigrants and public 
awareness are incorporated in the model to 
reduce the contact/ transmission rate. The 
purpose of this control strategy is to minimize the 

number of infected individuals and maximizng 
the number of uninfected individuals. [7,15]. 
 
For this analysis all control variable are 
constrained between zero and one, this implies 
that when the control value is one the maximum 
control effort is invested and when the control is 
set at zero then no control effort is invested. 
  

Hence, we denote 
)(1 tu

 as screening of 

immigrant control variable and 
)(2 tu

as 
sensitization control variable, the optimal control 
system is given by: 
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The objective functional of the optimal control 
system is given as 
 

dtuDuDtSJ
ft

tUu

])[)(( 2
22

2
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0
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         (5)  
 
The objective functional [8,14] is defined to 
maximize the benefit based on the immune 
population and minimizing the cost based on 
implementing this control. The parameters 

01 D
and 

02 D
represent the weights on the 

benefit and cost and ft is the final time. 
 

The optimal control for  *

2
*
1 , uu is given such that  
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,

*

2
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21

uuJuuJ
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Where, 
 

U is the set of measurable function defined from 
 ft,0  to  1,0 . For  )(),(),(),(),(),(),( tVtTtRtCtAtLtS  
subject to the state equation and the initial 
conditions; 
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0000000 )0(,)0(,)0(,)0(,)0(,)0(,)0( VVRRTTCCAALLSS     
 

Are free  where
,iD

for 2...1i are positive 
constant that are represented to keep a balance 

of the size of ).(),(),(),(),(),(),( tVtTtRtCtAtLtS  
 

1D and 2D
are weight corresponding to the 

controls 1u and 2u respectively.  maxU
is the 

maximum attainable value for controls  
 

max1u and max2u             (6)  
 

Where max1u and max2u depend on the amount 
of resources available to implement each control 
measure. 
 

2.4 Optimality System 
 
Pontryagin’s maximum principle is a necessary 
condition that an optimal control [15] must 
satisfy. This principle is used in the 
characterization of an optimal control problem. 
 
To find an optimal solution pair, we firstly define 
the langrangian of the problem as  
 

)]()([),,,,,,,,( 2
22

2
1121 uDuDtSuuVRTCALSL    (7) 

 
The pontryagin’s maximum principle is used in 
equation (7) to analyze the maximum 
langrangian of the optimality system. This 
principle convert both the objective functional 
and the optimal control pair in a problem of 
maximizing point wise a Hamiltonian H with 

respect to 21,uu
. If )(* tu  and )(* tx  are 

optimal, there exist an adjoint variable 
)(t

such 
that : 
 

   )(),(),(,)(),(),(, *** ttutxtHttutxtH     
          
At each time for all u where Hamitonian is 
defined by 
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Using PMP to find the optimal control equation 
through the adjoint variable [14,15,17],the 
Hamitonian is defined as the integrand of the 
objective function couple with the right hand side 
of the state 
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The Hamiltonian for this problem is define as:   
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Theorem 1 
 

An optimal control pair 
*
2

*
1 ,uu and solutions 

******* ,,,,, VRTCALS of the corresponding state 
system (4), there exist adjoint variable 
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With transversality condition 
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Proof 
 

The adjoint system can be determined by 
differentiating the Hamiltonian with respect to 
variables of the control problem.  With 
transversality conditions 
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Using the optimality condition, the langrangian is 
maximized with respect to the set of controls at 

optimal ).,( *
2

*
1 uu  

 

Then 

0
),*( *

21
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The hamitonian (H) is given as 
 

 

CAL

s

ituituSkCAtu

SkCAtutuiiuDuDH





21112

2121
2
22

2
11

))(1())(1()())(1(

)())(1())(1)(()(





    
     

Then, for 1u : 
 

*

11212111

1

)(2 uuatiiiiuD
du

dH
CAS  

 
 

)()(2 21
*
11

1

CSAS iiuD
du

dH
 

 
        

Maximizing the langrangian, set 
0
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For control 2u , the hamiltonian (H): 
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Then, the two controls are bounded by 1 and 0 
which are the lower and upper bounds 
respectively, that is 
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This can be written in compact notion as  
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And for the second control function, 
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Hence, the second control function can also be 
written as, 
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From the above, then   
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Remark 1: The optimality system [8] is given 
below by incorporating the optimal control pair in 
the state system coupled with the adjoint system. 
Thus, 
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By theorem (1), hence the solution of optimality 
system exists.  
 

The controls are characterized in terms                
of the unique solution of the optimality                 
system. Then, equation (8) gives an optimal 
control strategy for Hepatitis B Virus under the 

scenario of these two control strategies ( 1u and

2u ). 
 

2.5 Numerical Analysis for the Control 
Problem 

 

The optimality system is solved using finite 
difference method with iterative scheme for the 
state variables forward in time and the adjoint 
variable backward in time. The control variables 
are updated at the end of each iteration using the 

calculated optimal control value
*
2

*
1 , uu  .In this 

section, we observe the effect of controls 
introduced to eradicate or reduce the spread of 
hepatitis B virus. 
The optimality system is solved using a finite-

difference method where the interval ftt ,0 is 
discretized at the point 

),,...,1,0(0 nmtmltk 
where l is the time 

step. Next, we define the state and adjoint 
variables.  
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and the controls )(),( 21 tutu  in terms of nodal 
points 
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at final time ft . The time derivative of first-order 
forward-di erence [5] is given for the state 
variable as   
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To solve equation (9), the scheme improved by 
Karrakchou [7] was adopted to solve this case  
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We couple equation (9) and (10) to establish an 
algorithm where 
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Hence, the above algorithm is computed using 
maple software for the coupled system of State, 
Adjoint and Control variable with given initial 
condition below and parameters in Table 1  
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3. RESULTS AND DISCUSSION 
 
The value of the basic reproduction number is 
calculated by substituting the parameters listed in 

Table 1 into equation (3) which gives 0925.10 R . 
The optimality system was analyzed numerically 
using implicit finite difference method with 
iterative scheme for the state variables forward in 
time and the adjoint variable backward in time. 
The control variables are updated at the end of 
each iteration using the calculated optimal 

control value 
*
2

*
1 , uu . Graphical illustrations 

presented shows the disease progression with 
the independent variable (t) on the x-axis and the 
state variables on the y-axis. 
 
The result of the optimal control model is 
discussed using the two time dependent control 

variable )(),( 21 tutu , screening of immigrant )(1 tu  

and sensitization )(2 tu  to investigate the effect 
of the combination of this controls on the 
transmission dynamics of HBV as observed in 
Figs 1-7. We observed in Fig. 1 that the 
susceptible population has a higher number of 
individuals compared with the uncontrolled case 
which is as a result of effectiveness of the control 

and led to a reduction in the transmission rate 


and infective immigrant 21 , ii
thereby reducing 

the incidence of the virus. This claim is in 
agreement with the discussion in [9]. 
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It was observed from Figs. 2, 3 and 4                      
that the combination of controls resulted in 
significant reduction in the number of latent, 

acute and chronic population as against the 
increasing number of infectives in the 
uncontrolled model. 

 

 
 

Fig. 1. Impact of control on Susceptible class against time (t) 
 

 
 

Fig. 2. Impact of control on Latent class against time (t) 



 
 
 
 

Akinboro et al.; ACRI, 20(6): 58-70, 2020; Article no.ACRI.61225 
 
 

 
67 

 

 
 

Fig. 3. Impact of control on Acute class against time (t) 
 

 
 

Fig. 4. Impact of control on Chronic class against time (t) 
 

Figs. 5 and 6 explain the role of control pair 
)(),( 21 tutu  on treatment and recovered class. 

Experimentally, )(2 tu  reduced the transmission of 

HBV while 
)(1 tu

 prevent infective migrants                   
from entering the population which resulted                 
in a lower number of infected individual to 
undergo treatment. Fig. 7 show the effect                      

of control on vaccinated class against                     
time (t). It was observed that the vaccinated 
population for both controlled and               
uncontrolled model increases due to presence of 
intervention strategies while the controlled  
model of case 3 has a higher vaccinated 
population compared with the uncontrolled 
cases. 
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Fig. 5. Impact of control on treatment class against time (t) 
 

 
 

Fig. 6. Impact of control on Recovered class against time (t) 
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Fig. 7. Impact of control on Vaccinated class against time (t) 
 
Table 1. Summary of parameter values used 

in Figures 
 

Parameter Value Source 


 

0.8 [11] 

k  
0-1, 0.16/year [18] 

  0.0143/year [11] 
  0.7/year [11] 
  0-1/year [9] 
  0.0121, 0.00693/year [9] 
  0.002/year [9] 

1
 

0.3/year [11] 

2
 

0.1/year [9] 

  6/year [11] 
q

 0.285/year [9] 


 0.3/year [11] 

q1
 

0.1-0.95, 0.715 [9] 


 

0.025/year Estimated 


 0.01/year Estimated 

 

4. CONCLUSION 
 
The simulation of the presented mathematical 

model with the two control pair 1u  and 2u  
reduced the prevalence of HBV in a dynamic 
population. Also, the inclusion of treatment class 
in the model revealed reduction in endemicity 
and transmission of the disease. From this work, 
the combination of the two controls screening of 

immigrant )(1 tu  and adequate sensitization of the 

public )(2 tu  plays an important role in 
eradicating the infection.  Routine screening of 
migrants and refugees for viral hepatitis should 
be performed in majority of host nations since 
multiple studies suggest that screening of 
migrants is likely to be cost-effective, especially 
in the case of HBV. In order to lower the 
transmission/contact rate of HBV, sensitization 
on Hepatitis B Virus modes of infection should 
be organized for health workers and the 
populace at large. 
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