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Abstract

A planet’s orbital eccentricity is fundamental to understanding the present dynamical state of a system and is a relic
of its formation history. There is high scientific value in measuring the eccentricities of Kepler and Transiting
Exoplanet Survey Satellite (TESS) planets given the sheer size of these samples and the diversity of their planetary
systems. However, Kepler and TESS light curves typically only permit robust determinations of the planet-to-star
radius ratio r, orbital period P, and transit midpoint t0. Three other orbital properties, including the impact
parameter b, eccentricity e, and argument of periastron ω, are more challenging to measure because they are all
encoded in the light curve through subtle effects on a single observable—the transit duration T14. In Gilbert et al.,
we showed that a five-parameter transit description {P, t0, r, b, T14} naturally yields unbiased measurements of r
and b. Here, we build upon our previous work and introduce an accurate and efficient prescription to measure e and
ω. We validate this approach through a suite of injection-and-recovery experiments. Our method agrees with
previous approaches that use a seven-parameter transit description {P, t0, r, b, ρå, e, ω}, which explicitly fits the
eccentricity vector and mean stellar density. The five-parameter method is simpler than the seven-parameter
method and is “future-proof” in that posterior samples can be quickly reweighted (via importance sampling) to
accommodate updated priors and updated stellar properties. This method thus circumvents the need for an
expensive reanalysis of the raw photometry, offering a streamlined path toward large-scale population analyses of
the eccentricity from transit surveys.

Unified Astronomy Thesaurus concepts: Exoplanets (498); Transit photometry (1709); Bayesian statistics (1900);
Eccentricity (441); Light curves (918); Astronomy data modeling (1859)

1. Introduction

Out of more than 5300 confirmed planets to date, ∼75% were
discovered via the transit method. These discoveries have paved
the way for keystone scientific advancements in our under-
standing of planet formation, evolution, and demographics. To
ensure the reliability of inferences based on the transiting planet
population, we must also ensure that characterizations of
individual transiting planets are consistently and accurately
derived. Previously, uncertainties on stellar parameters signifi-
cantly limited the achievable precision of planet properties (e.g.,
σ(Rå)∼ 27% and σ(ρå)∼ 51%; Thompson et al. 2018). Now, in
the era of Gaia (Collaboration et al. 2018) and high-precision
stellar characterizations (e.g., σ(Rå) 2% and σ(ρå) 10%), the
determination of key planet properties is limited by light-curve
modeling (see, e.g., Petigura 2020).

A variety of methods exist for modeling transit signals,
including various parameterizations (e.g., Seager & Mallén-
Ornelas 2003; Carter et al. 2008; Dawson & Johnson 2012;
Eastman et al. 2013; Thompson et al. 2018; Gilbert et al. 2022)
and sampling techniques (e.g., Feroz & Hobson 2008; Fore-
man-Mackey et al. 2013; Foreman-Mackey et al. 2021;
Speagle 2020; Gilbert 2022). Differences in posterior inference,
which arise from adopting a particular model parameterization
and sampling method, are often assumed to be insignificant
relative to other sources of uncertainty. However, if one wishes
to achieve percent-level precision on all quantities, one must
also carefully consider the strengths and weaknesses of
competing model/sampler implementations (see, e.g., Gilbert

et al. 2022; Gilbert 2022). Although substantial effort has been
put into vetting methods for transit signal detection (see, e.g.,
Christiansen et al. 2015), far less effort has been devoted to
validating subsequent methods for transit signal modeling. A
key aim of this work—which builds directly upon our previous
work in Gilbert et al. 2022, hereafter G22—is to place the
transit modeling problem on the same secure foundation as the
transit detection problem. Our primary focus here is on the
effects of model parameterization, with a secondary focus on
the role of the sampler.
A popular and straightforward method for transit model

parameterization is to use a seven-parameter basis that includes
the orbital period P, transit epoch t0, planet-to-star radius ratio
r, impact parameter b, eccentricity e, argument of periastron ω,
and either the stellar density ρå or scaled orbital separation
a/Rå, with these latter two parameters being related via
Kepler’s third law1 (see, e.g., Eastman et al. 2013). This
eccentricity-explicit basis {P, t0, r, b, e, ω, ρå}, e–ω–
ρ hereafter, benefits from being fully characterized by proper-
ties of the star, planet, and planetary orbit. However, real-world
photometric transit light curves typically only include enough
information to constrain four or five out of the seven
parameters. More precisely, in most real-world cases the
signal-to-noise ratio (S/N) of observations is low enough that
one cannot precisely measure the duration and curvature of
ingress/egress nor can one detect any transit asymmetry (see
Barnes 2007). Without resolved ingress/egress or transit
asymmetry, the problem remains unconstrained, with b, e, ω,
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1 In practice, other parameters related to the stellar limb darkening (i.e.,
quadratic limb darkening coefficients u1, u2) and to the properties of the
photometry (i.e., flux zero-point F0 and photometric noise σF) are usually also
needed, but these complicating details are not the focus of this paper.
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and ρå each imprinting themselves on the light curve indirectly
via the transit duration T14 (r imprints itself via the transit
depth; P and t0 via the ephemeris). More explicitly, for a given
ρå, b influences the transit chord length, e and ω influence the
speed of the planet during transit, and the ratio of transit chord
length to orbital speed produces T14.

An alternative approach that improves upon these limitations
of the seven-parameter method is to model the light curve
assuming a circular orbit, e= 0, regardless of what the true
underlying eccentricity might be (see, e.g., Seager & Mallén-
Ornelas 2003; Dawson & Johnson 2012). This shortcut reduces
the total number of model parameters by two with a trade-off
that the transit is now explicitly assumed to be symmetric.
Fortunately, for virtually all Kepler and Transiting Exoplanet
Survey Satellite class photometry, this assumption does not
introduce measurable biases into the analysis. In G22, we
explored the effectiveness of two different five-parameter
bases: {P, t0, r, b, T14} versus { ˜}rP t r b, , , ,0 , where r̃ is the
stellar pseudo-density, i.e., the stellar density inferred from the
transit photometry under the (probably false) assumption of a
circular orbit. We found that the two bases are equivalent when
an appropriate Jacobian transformation is properly applied, but
that the latter basis introduces complex, nonintuitive covar-
iances between b and r̃. These covariances artificially disfavor
b 0.7, which propagates through to other parameters, shifting
e toward higher values and r toward lower ones. Historically,
the use of parameter bases, which include r̃ has resulted in
biased inference, and we consequently recommend avoiding
the use of r̃ altogether. For the remainder of this work, we
therefore do not consider any parameterizations which
include r̃.

Our preferred model parameterization {P, t0, r, b, T14},
hereafter the T14 basis, benefits from being intuitive and close
to quantities that can be directly measured from the transit
photometry, which minimizes the risk of introducing unin-
tended bias. In G22, we demonstrated that this parameterization
yields unbiased posteriors on both b and T14. In this work, we
build on G22 to develop a post-hoc importance sampling
routine that enables indirect recovery of e and ω from direct
measurements of T14 and an independent external constraint on
ρå (e.g., from asteroseismology or spectroscopy). To validate
our methods, perform injection-and-recovery tests using
simulated transit photometry over a grid of transit parameters
and compare the performance of our proposed T14 +
importance sampling approach to the performance of the
standard e–ω–ρmodeling basis. We find that the two methods
yield equivalent posterior inferences on b, e, and ω, with
significant improvements to speed and efficiency when using
our new approach. Another major advantage of our proposed
technique is that it is “future-proof” in that it allows us to
update estimates of e and ω as stellar characterization is
inevitably updated in the future (e.g., from new Gaia data
releases) without requiring a computationally expensive rerun
of the transit fits. In comparison, the usual seven-parameter e–
ω–ρ basis “bakes in” a particular value of ρå at the time of
transit modeling.

We lay out our methodology for light-curve synthesis and
transit injection and recovery in Section 2. We then highlight
the procedural differences between the e–ω–ρmethod
(Section 3) and our T14 method (Section 4). In Section 5, we
analyze the results of our injection-and-recovery tests and

compare the performances of the two parameterizations. We
provide a summary of our conclusions in Section 6.

2. Synthetic Light-curve Construction

Our objective is to compare the performance of the physical
e–ω–ρ parameter basis to the simpler T14 basis. We aim to
demonstrate whether or not these methods return equivalent
and accurate posterior results and determine their relative
efficiencies. To achieve these objectives, we perform a suite of
injection-and-recovery tests over a grid of parameters that
spans a wide range of values of eccentricity e, argument of
periastron ω, inclination (parameterized as impact parameter b),
and signal-to-noise ratio (see Figure 1). Injection and recovery
is a standard tool used to evaluate transit signal detection
methods (see, e.g., Christiansen et al. 2015), but it has not been
applied to transit model validation on nearly the same scale.
Here, we construct a set of synthetic light curves; then we
proceed to use two distinct transit modeling methods to recover
the injected transit properties and compare the relative model
performances.
For all injection–recovery tests in this work, we inject the

transit signal of a sub-Neptune-size planet orbiting a Sun-like
star with an orbital period close to the average among Kepler
planets. We synthesize 10 transits per light curve with a
photometric zero-point flux of μflux= 0 and a fixed photometric
noise σflux, consistent with raw photometry that has been
accurately pre-whitened. We calculate the duration of each
injected transit signal T14 according to the following equation
from Winn (2010):
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We construct our synthetic light curves at three different S/
N levels: S/N ∼ [20, 40, 80]. We show example light curves
for each S/N level in Figure 1. At an S/N of 20, the injected
signal has a slightly lower significance compared to the median
Kepler planet signal. At the higher-S/N levels of 40 and 80, we
seek to identify any differences that emerge between our two
models as the transit ingress and egress become more distinct
from the photometric noise, making b measurements more
precise. From the selected S/N and other injected light-curve
properties, we generate Gaussian white noise per light curve
centered on σflux, which we calculate according to:

( )s =
T N

t

r

SNR
, 2flux

14,true transits

exp

true
2

where Ntransits is the number of injected transits and texp is the
simulated exposure time of our synthetic light curve. The
random seed used to generate the synthetic white noise is
unique to each injection–recovery test.
We also assign a unique set of transit parameter values {b, e,

ω} for each injection–recovery test, where each of these inputs
is drawn from a grid of discrete parameter values (see
Figure 1). We specifically choose a parameter grid that
emphasizes the region of the parameter space where the
e− ω− b degeneracy is the strongest (see, e.g., Van Eylen &
Albrecht 2015) as this is where the two parameterizations are
more likely to yield differing results. As a result, our injected
planet signals do not exactly mirror the distribution of Kepler
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planets, but they do include a broad range of realistic planet
characteristics.

As the transit shape is more sensitive to small changes in b at
high values, we select injected values of b with tighter spacing
toward higher values, spanning the nongrazing parameter

space. We construct an array of b values that are evenly spaced
on a reversed log scale: b∼ [0.1, 0.48, 0.7, 0.83, 0.9]. We also
prefer to use e values that span the range of eccentricities with
tighter spacing toward low-to-moderate values, as these are
more common. We select an array of possible e values which

Figure 1. Diagram showing (bottom middle) our grid of injected e and b values, along with (top) a gallery of phase-folded light curves for all combinations of S/N
and injected ω values (at e = 0.2 and b = 0.7, as an example). The four panels to the left and right of the bottom grid show demonstrative examples of phase-folded
light curves at the different extremes of our injected parameter grid (e.g., b = 0.1 or 0.9 and e = 0.05 or 0.8), all shown with ω = 132° and S/N = 40. Each light
curve is shown with the median final transit fits from both the e–ω–ρ (orange) and T14 + umb (blue) modeling methods, which overlap almost entirely.
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are evenly spaced on a log scale: e∼ [0.05, 0.1, 0.2, 0.4, 0.8].
Additionally, the ω values that we draw upon for our grid of
injected parameters are intentionally selected to include the
inflection points of periastron (π/2 or 90°) and apastron (3π/2
or 270°) along with three roughly evenly spaced values
between: ω∼ [90°, 132°, 178°, 226°, 270°].

We construct a set of 375 unique transit light curves from all
combinations of {b, e, ω, S/N} using the batman transit
modeling package (Kreidberg 2015). We synthesize these
injected light-curve models with an oversampling rate of 11
and =t 30exp minutes, similar to real Kepler photometry.
These light curves serve as inputs to the two modeling methods
that we are comparing, described below, in order to
demonstrate similarities and differences in model performance
across a range of potential transit signals (see Figure 2 for an
overview).

3. Method #1: Direct sampling in e–ω–ρ

We first model our synthetic transit light curves using the e–
ω–ρmodel, which serves as our baseline model and standard
reference when evaluating the performance of our proposed
T14+ umb model. This physically motivated transit model is
parameterized by {P, t0, r, b, ρå, e, ω}, along with quadratic
limb-darkening parameters {u1, u2}. As we simulate light
curves with white noise, we fix μflux and σflux which would
otherwise be directly sampled parameters when modeling real
transit photometry.

We construct the e–ω–ρmodel using uninformative priors
that are of standard use in transit fitting literature or drawn
directly from G22, summarized in Table 1. We apply a normal
prior on ρå which assumes that the stellar density is known with
10% uncertainty through independent measurements. To
mitigate boundary issues that can occur when sampling e and
ω directly, we use a common redefinition of these parameters
{ }w we esin , cos (see, e.g., Eastman et al. 2013), with
implicit uniform priors on both e and ω. These priors do not

account for transit probability or other astrophysically
motivated considerations (see Barnes 2007).
We implement this model using exoplanet (Foreman-

Mackey et al. 2021), with sampling performed by the NUTS
algorithm via PyMC3 (Salvatier et al. 2016). We use 3000
tuning steps with an additional 4000 sampler draws to ensure
that the sampler converges with an effective sample size
Neff≈ 103. We also set a high target acceptance fraction of 0.99
to encourage the sampler to adequately explore complex
topologies in the posterior parameter space, such as the b− r
and e− ω degeneracies. We follow the standard practice of
oversampling the light-curve model in order to mitigate binning
artifacts (see, e.g., Kipping 2010), using an oversampling factor
of 11. We fit our transit models via two sampler chains across
two CPU cores per injection–recovery test.

Figure 2. Diagram demonstrating an overview of our modeling procedure, from an input synthetic light curve to output e and ω constraints via both the e–ω–
ρ (orange) and T14 + umb (blue) modeling methods.

Table 1
Transit Model Parameters and Priors

Parameter Input Value(s) Prior

P (d) 26.1 fixed
t0 (d) 1.0 t0 ∼ N(1.0, 0.1)
r 0.03 log r ∼ U(−9, 0)
b [0.1, 0.48, 0.7, 0.83, 0.9] b ∼ U(0, 1 + r)
u1, u2 {0.4, 0.25} fixed
μflux 0 fixed
σflux derived fixed per light curve
T14 (d) derived logT14 ∼ U(−9, 0)
e [0.05, 0.1, 0.2, 0.4, 0.8] e ∼ U(0, 0.92)
ω (°) [90, 132, 178, 226, 270] ω ∼ U(−90, 270)
ρå (g/cm

3) 1.41 (e.g., ρe) ρå ∼ N(1.41, 0.141)

All parameters used in the models discussed throughout this analysis, along
with their units, input values, and associated priors (if applicable). Priors
include normal (N) and uniform (U) distributions. b, e, and ω each have five
input value options that form a grid of possible injected transit signal
properties. We note that the priors on e and ω can also be represented via the
transform { } { }w w w ~e e e, sin , cos Disk( 0.92 ).
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From initial experimentation, we found that sampler
limitations exist, which restrict the valid parameter space of
eccentricity modeling when applying the e–ω–
ρ parameterization via NUTS sampling with exoplanet.
When sampling e 0.92, this implementation of the e–ω–
ρmodel can have convergence issues due to the high curvature
of the posterior parameter space being traversed. This also
roughly corresponds with the upper eccentricity limit where we
expect transit duration approximations to begin breaking down
(see, e.g., Kipping 2014). Given that only 5 known planets
have e> 0.9 and only one of these was discovered via transit
modeling, we choose to restrict our eccentricity sampling to
e< 0.92 for all modeling approaches considered in this work.
By doing so, we avoid conflating our primary interest—
differences in modeling methods—with rare edge cases that are
beyond the scope of this work.

4. Method #2: Direct Sampling in T14, then Importance
Sampling in e–ω–ρ

Our alternative transit modeling approach, the T14+ umb
model, has a parameter basis that includes the observable
transit duration T14 as an explicit parameter. This parameter-
ization avoids explicitly sampling the complex degeneracies
introduced by e and ω, allowing us to instead measure these
parameters post-hoc via importance sampling (see 4.2). We
couple this duration-based parameterization with umbrella
sampling (see Gilbert 2022) to ensure that our model accurately
samples the complicated topology of the high-b “grazing”
parameter space. Based on the arguments made in both G22
and Gilbert 2022, we expect that our T14+ umb approach
should achieve results that are consistent with those from the e–
ω–ρmodel with a potential boost in efficiency.

4.1. Transit Fitting

Similar to our implementation of the baseline e–ω–ρmodel,
we also construct our T14+ umb model via exoplanet with
NUTS sampling and use it to model our synthetic transit
signals. This parameterization is motivated by observable
transit properties and characterized by the basis {P, t0, r, b,
T14}. Like the e–ω–ρmodel, the T14+ umb model also
includes quadratic limb-darkening parameters {u1, u2} as well
as fixed values of μflux and σflux. The priors used here are
identical to those used in our e–ω–ρmodel, summarized in
Table 1. Neither e nor ω is explicitly constrained during the
sampling process here, and their values are instead estimated
from post-model importance sampling. This parameterization is
thus agnostic to orbital eccentricity, except for the implicit
assumption of a symmetric transit. This is a reasonable
approximation as the acceleration of an eccentric planet during
its transit is unlikely to introduce detectable asymmetry given
modern photometry (Barnes 2007).

To improve both the sampling convergence and the
exploration of complex posterior topologies, we follow
Gilbert (2022) to implement umbrella sampling. We separate
our NUTS sampler into three windows (i.e., “umbrellas”)
defined within the joint {r, b} parameter space, which allows us
to sample the full posterior parameter space in smaller pieces
that are easier to explore. The resulting posteriors can later be
stitched together by applying the appropriate umbrella weights.
The three umbrella windows that we use correspond to
nongrazing and grazing orbits separated by a region that we

refer to as the transition umbrella, which partially overlaps with
the other two (see Gilbert 2022 for full description). In our
implementation, we apply the three umbrella models in series
but emphasize that this task can easily be parallelized to reduce
the apparent wall-clock runtime. In the Appendix, we also
discuss a potential alternative to umbrella sampling, known as
dynamic nested sampling (see, e.g., Skilling 2004; Skil-
ling 2006), which achieves roughly comparable results.

4.2. Importance Sampling

To recover {e, ω} samples from the T14+ umb modeling
approach, we apply post-hoc importance sampling to the
combined umbrella model posterior distributions. Importance
sampling (see, e.g., Oh & Berger 1993; Gilks et al. 1995;
Madras & Piccioni 1999) allows one to measure the properties
of a given parameterʼs probability distribution based on
samples generated from a different (typically easier to sample)
parameterʼs distribution. This method was first incorporated
into exoplanet characterization models by Ford 2005 and
Ford 2006, used in combination with Markov Chain Monte
Carlo (MCMC) sampling to improve radial velocity model
efficiency. Such methods can be useful to correct for
observational biases post-hoc or derive the distributions of
more complicated distributions outside of the MCMC sampling
routine. Importance sampling is closely related to umbrella
sampling, and the former can be thought of as a single-window
special case of the latter. In our implementation, importance
sampling only marginally increase the total runtime of the
T14+ umb approach by a few seconds.
We first compute the relative weights of the three umbrella

models following Gilbert 2022 and combine our posterior
chains into a single set of weighted posterior distributions. As
the umbrella weights effectively reduce the total number of
samples, we upsample the merged posterior distributions via
random resampling to generate a total of 105 samples per
parameter for convenience. We then perform importance
sampling to weigh how well the measured values of {P, r, b,
T14} at each sampler step can be described by an independently
measured density of the host star. We will refer to this
independent stellar density as ρå,true, with some uncertainty
sr ,true

. To determine the appropriate importance weights, we
first calculate the sampler-derived stellar density, ρå,samp, at
each point in the umbrella-weighted posterior. This calculation
directly follows from the transit duration equation described by
Winn 2010:
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We note that Equation 3 explicitly includes e and ω, for which
we do not yet have any information. We substitute these
parameters with random draws of {e, ω} from uniform priors
e∼U(0, 0.92) and ( )w

p
~ - pU

2
, 3

2
–recall that the upper limit

e= 0.92 was chosen to circumvent sampling issues at high e in
the e–ω–ρ basis. By deriving ρå,samp from measured values of
{P, r, b, T14} and random uniform values of {e, ω}, we ensure
that ρå,samp reflects a true stellar density as opposed to the
pseudo-stellar density parameterization which assumes e= 0
and was deemed unreliable by G22.
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We compare the samples of ρå,samp against the independently
measured ρå,true by computing the log-likelihood of each ith

sample,

⎛
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assuming a Gaussian likelihood function. We then weight each
sample from our umbrella-weighted posterior distributions by

( )
å

=w 5i
i

i
i




to produce the final, importance-weighted posterior distributions
for each parameter. We apply these same weights to the random
uniform {e, ω} samples to derive the final posterior distributions
of these two parameters. All analysis in this work regarding the
T14+ umb model is based on these posterior distributions that
have been umbrella-weighted, up-sampled, and importance-
weighted. The final posterior distribution of e that we measure
using our T14+ umb modeling approach can thus be directly
compared to the e posterior from the e–ω–ρmodel.

We therefore can use the T14 basis {P, t0, b, r, T14} along
with an independently constrained ρtrue to derive posterior
distributions for all parameters represented by the e–ω–ρ basis
{P, t0, b, r, e, ω, ρå}. With the T14 basis, we have the advantage
of avoiding introducing significant stellar constraints (i.e., ρå)
until after the transit has already been fully modeled. Thus, our
T14+ umb model only needs to be run once while the e–ω–
ρmodel would have to be rerun for each updated measurement
of stellar density. The post-hoc importance sampling step can
easily be rerun for an updated ρå,true value (or different priors
on e or ω) within only a few seconds, making our T14+ umb
modeling approach essentially future-proof. In the era of Gaia
and high-precision stellar characterization, such future proofing
will become increasingly valuable.

5. Results

5.1. Both Methods Return Equivalent Eccentricity Constraints

We fit 375 injected transit signals from our grid of injection–
recovery tests using both the e–ω–ρ baseline model and our
T14+ umb modeling approach. We measure all transit para-
meters using both modeling approaches, including e and ω. The
posterior distributions of e, ω, and b serve as our primary points
of comparison between the baseline model and our alternative
modeling approach. Here, we specifically focus our analysis on
e, as b (and its relationship with r) was already covered in G22
and ω is often a nuisance parameter in photometric modeling.
We use posterior comparisons of ω and b for secondary
analysis when necessary.

We perform a quantile–quantile comparison of the posterior
values ek at the k= 15th, 50th, and 85th percentiles of the eeωρ
and +eT umb14 eccentricity distributions. In Figure 3, we present a
comparison of ek from both modeling methods at each of the
key percentiles for all injection–recovery tests. We see that all
tests at each percentile are close to the one-to-one line (black),
demonstrating that the two modeling methods produce nearly
equivalent posterior results for e.

We compute the difference Δek (e.g., Δe50= e50,eωρ− e50,umb)
and use this as a measure of similarity between the two model
results. To estimate the significance of Δek for each posterior

comparison, we assume a standard eccentricity uncertainty of
σe= 0.05, informed by the typical uncertainty on e measured
among all known planets (σmedian(e)≈ 0.05; NASA Exoplanet
Science Institute 2020 2). For injection–recovery tests where
|Δek| 0.05 at the 15th, 50th, and 85th percentiles of
eccentricity, we assert that the e–ω–ρ and T14+ umb methods
produce equivalent results. Among multiple iterations of our
suite of injection–recovery tests, we did not identify any tests
which consistently produced posterior measurements for e that
differed by |Δek| 0.05 (see Figure 3). This suggests that our
approach is an excellent alternative to the e–ω–ρmethod, as the
two methods should converge on identical results (as opposed
to ∼68% identical).
We also consider how Δek differs as a function of both the

light-curve S/N and the injected transit duration T14.
Specifically, we consider the ratio between T14 and the
expected duration of the same planet on a circular, centrally
transiting orbit (the reference duration, T14,ref): T14/T14, ref.
This duration ratio is a more concise metric to interpret the
effects of e, ω, and b on the duration of a transit. While we
observe no trend in Δek with respect to S/N, we do note a
marginal trend in Δek as a function of T14/T14, ref across our
sample. We find that the T14+ umb model estimates slightly
higher e values than the e–ω–ρmodel at short transit durations
and vice-versa at long transit durations, but the deviations that
contribute to this trend are subsignificant. We ultimately
conclude that the two modeling methods produce equivalent
eccentricity measurements (within a reasonable uncertainty) for
virtually all tenable combinations of {e, ω, b, S/N}.

5.2. Both Methods Return Accurate Results

We have demonstrated that our alternative transit modeling
approach produces equivalently accurate results relative to our
baseline model, but we have not yet considered if these models
yield the correct results (relative to the injected parameters). It
is known in the field of exoplanet characterization that
photometric eccentricity constraints (and ω constraints) tend
to have large uncertainties for individual planets (see, e.g., Van
Eylen et al. 2019). Here, we qualitatively assess these
uncertainties across our set of injection–recovery tests.
As our sample is not representative of the observed planet

population, we describe the observed trends among our e
measurements according to different quadrants of e− b
parameter space. We split up our tests into four broad scenarios
based on their injected transit properties: (1) low e and low b,
(2) low e and high b, (3) high e and low b, (4) high e and high
b. We show demonstrative examples of of these four scenarios
in Figure 4 with several ω values, all at S/N =20. In all four
quadrants, the posterior distributions of e and b are broad, non-
Gaussian, and display a range of outcomes, but we describe the
general trends that we observe below. We also offer some
additional discussion regarding how ω can affect these
posterior constraints. We limit our discussion to only the
posterior distributions of the T14+ umb modeling approach as
the two approaches produce nearly equivalent results.
In scenario 1 (low e and low b), transit models accurately

measure low values for both e and b with little posterior mass at
higher values (Figure 4, top left), regardless of ω. In scenario 2
(low e and high b), models tend to significantly overestimate e
but produce more accurate measurements of b (Figure 4,

2 NASA Exoplanet Archive data retrieved on 2023 February 23
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bottom left), regardless of ω. The opposite is true in scenario 3
(high e and low b), where b tends to be overestimated while e is
measured more accurately (Figure 4, top right), except near
apastron where both are measured fairly accurately. In scenario
4 (high e and high b), transit models tend to accurately measure
high values for both parameters with little posterior mass at
lower values (Figure 4, bottom right), except near apastron
where neither is measured well. We avoid providing a
quantitative description of these observed trends because the
non-Gaussian posterior distributions are not well-represented
by simple summary statistics.

When e is high (e.g., scenarios 3 and 4), the value of ωtrue

can significantly impact the posterior constraints on e and b due
to the degenerate influence that these parameters can have on
the observed transit duration, particularly near apastron. On the
other hand, we do not observe any noteworthy trends in model
accuracy as a function of S/N. For a typical Kepler planet,
which has low e, nongrazing b, and ω closer to periastron, we
would generally expect to measure e and b posterior
distributions that are somewhat consistent with the true
underlying orbital geometry of the planet based on the trends
that we observe in Figure 4. In Appendix B, we briefly explore
whether using a different sampler (i.e., dynamic nested
sampling via dynesty; Speagle 2020) might yield even more
accurate posterior constraints, but our findings there are
inconclusive.

5.3. Our T14+ umb Method is More Efficient than the e–ω–ρ
Method

We have shown that the T14+ umb basis can be used as an
alternative to the e–ω–ρ basis, achieving equivalent results
while also reducing the number of parameters by two. This
parameter reduction should increase the efficiency of the
T14+ umb model, but this approach also requires three separate
sampling runs—one for each of the three umbrellas. To
evaluate the overall model efficiencies, we compared the
number of effective samples per second (η) achieved by each
method for all injection–recovery tests.

For the e–ω–ρmethod, we measure the number of effective
samples from the r posterior distribution for each test using
Geyer’s initial monotone sequence criterion via arviz
(Geyer 1992; Gelman et al. 2013; Kumar et al. 2019). We
select r because it is a common output between our models and
is less affected by complicated parameter degeneracies. We
then divide Neff by the total runtime for this model to achieve
the e–ω–ρ sampling efficiency, ηeωρ. For the T14+ umb
method, we average Neff of the r posteriors from each umbrella
model, weighted by their respective umbrella weights. We
divide this weighted average by the sum of the runtimes for the
three umbrella models (e.g., the CPU runtime) to achieve the
overall T14+ umb sampling efficiency, h +T umb14

.
We calculate the ratio of these two efficiencies for all

injection–recovery tests and find that h h >wr+ 1T eumb14
for

∼73% of tests, suggesting that the T14+ umb approach is
generally more efficient across our set of injected planet
parameters. The median value of h h wr+T eumb14

across our
sample is 2.0, implying that the T14+ umb approach is
typically 2×more efficient than the e–ω–ρmethod, although
the range of this efficiency ratio is broad. When we consider
h h wr+T eumb14

as a function of S/N, however, we measure a
median efficiency increase of 5.7×at S/N = 80, 1.2×at S/
N = 40, and 1.1×at S/N= 20 (see Figure 5). We also find that
the T14+ umb method is only more efficient than the e–ω–
ρmethod in ∼52% of low-S/N tests. These findings suggest
that the T14+ umb method tends to be less efficient when the
transit signal is weaker.
From Figure 5, we also see that the efficiency ratio changes

with respect to the duration ratio T14/T14,ref. For tests with S/
N= 20, the median efficiency ratio h h wr+T eumb14

decreases
significantly as the duration ratio increases, dropping from
2.1×at T14/T14,ref� 0.8 to 0.6×at T14/T14,ref> 0.8. This trend
is likely due to differences in how the two methods explore the
high-b grazing regime. As the duration ratio approaches unity
or higher, high b values are significantly less likely, but the
T14+ umb approach continues to carefully explore the high-b
regime via three umbrella models even when it is not
necessary. On the other hand, injection–recovery tests with

Figure 3. Comparison of e values measured from the T14 + umb and e–ω–ρ modeling methods at the 15th, 50th, and 85th percentiles of their distributions, along with
the residuals Δek for each comparison (e.g., Δe50 = e50,eωρ − e50,umb). We show Δek={0.05, 0.1, 0.15} in gray, as well as the ideal 1-to-1 line shown in black. These
comparisons generally lie close to the 1-to-1 line, implying that the results of the two models are approximately equivalent. We see no trends in the residuals of these
comparisons.
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higher b values (and generally shorter transit durations) are
more efficiently sampled by the T14+ umb approach. This
behavior is consistent with what we would expect, given that
umbrella sampling is specifically intended to ensure accurate
measurements of the high-b parameter space.

Our set of injected transit properties, however, is not
completely representative of observed planet demographics.
To make a more representative comparison, we estimate the
efficiency ratio for a typical Kepler planet based on both S/N
and duration ratio T14/T14,ref. We use the latter metric because
it reflects the combined effects of e, b, and ω in a single
variable. For a typical confirmed Kepler planet with S/N

≈20–40 and T14/T14,ref≈ 0.6− 1.1, we estimate an efficiency
ratio of ∼0.9×. Based on these findings, we assert that the two
methods generally have similar sampling efficiencies for real
planetary transit signals, with the T14+ umb approach excel-
ling for signals with higher S/N or lower duration ratio.
The efficiency increase from the T14+ umb approach is

more significant when we consider wall-clock time rather than
CPU time. As the three umbrella models can be run in parallel,
we can reduce the apparent runtime of the T14+ umb approach
by up to a factor of a few. In this parallelized case, the apparent
sampling efficiency of the T14+ umb method is ∼1.2×faster
than the e–ω–ρmethod for a typical Kepler planet. As another

Figure 4. Qualitative diagram showing the relative accuracy of measuring e and b from transit photometry in four distinct quadrants of the e−b parameter space, at
three different ω values. The four scenarios shown are (top left) low e and low b, (bottom left) low e and high b, (top right) high e and low b, and (bottom right) high e
and high b. Across all areas of the e−b parameter space, the T14 + umb (blue) and e–ω–ρ (orange) modeling methods perform equivalently.
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added benefit, the posteriors of the T14+ umb approach can be
importance sampled for updated values of ρå (as they become
available) without re-running the NUTS sampling process (see
Section 4.2), which is a major advantage in the long-term
efficiency of the T14+ umb parameterization.

6. Conclusions

In this work, we presented an updated photoeccentric transit
modeling method using a duration-based parameterization {P,
t0, r, b, T14} (with umbrella sampling) and post-hoc importance
sampling which efficiently achieves accurate constraints on e,
ω, and b. Through a suite of synthetic injection-and-recovery
tests, we demonstrated that our approach produces equivalent
eccentricity constraints relative to the more common eccen-
tricity-explicit transit model parameterization {P, t0, r, b, e, ω,
ρ}. We find that our modeling method generally has a higher
sampling efficiency than the e–ω–ρmethod when the true e or b
value is high or a similar efficiency otherwise. Our approach
can also be parallelized to increase its relative sampling
efficiency several-fold more.

A key advantage of our modeling method is that post-hoc
importance sampling allows us to successfully derive accurate
e and ω posterior distributions (relative to the e–ω–ρmethod)
without including e, ω, or ρ as explicit model parameters. Our
importance sampling routine is fast and flexible enough to
easily incorporate an updated prior on e and/or ω, which is
critical for hierarchical modeling approaches at the population
level. Our method also allows us to update parameter posterior
distributions according to updated values of ρå (e.g., from new
Gaia data releases) without any loss of generality. In the
modern era of high-precision stellar characterization, this sort
of “future proofing” will be invaluable as the number of transit
candidates around well-characterized stars continues to grow.
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Appendix A
Sampling Methods

Modeling transit photometry requires efficient exploration of
the joint posterior parameter space for some number of transit
parameters. A higher number of parameters typically increases
the complexity of the posterior space and decreases modeling
efficiency. Various tools have been developed for sampling
from these complicated posteriors, which we employ and
compare throughout this work.
In this section, we briefly review several sampling

techniques. This review is not intended to be exhaustive but
rather serves as a jumping-off point for readers who may be
unfamiliar with one or more methods explored in this work.

A.1. Importance Sampling

Importance sampling (see, e.g., Oh & Berger 1993; Gilks
et al. 1995; Madras & Piccioni 1999) allows one to measure the
properties of given parameterʼs probability distribution based
on samples generated from a different (typically easier to
sample) parameterʼs distribution. This method was first
incorporated into exoplanet characterization models by
Ford (2005) and Ford (2006), used in combination with
MCMC sampling to improve radial velocity model efficiency.
Such methods can be useful to correct for observational biases
post-hoc or derive the distributions of more complicated
distributions outside of the MCMC sampling routine. Impor-
tance sampling is closely related to umbrella sampling (see

Figure 5. Ratio of sampling efficiencies h h wr+T eumb14
as a function of the duration ratio T14/T14,ref and S/N. We bin the data across every 10th percentile of the

duration ratio distribution, showing a single point per bin per S/N (bins are separated by vertical gray lines). Each point shows the 15th, 50th, and 85th percentiles of a
given bin. The increased efficiency of the T14 + umb method relative to the e–ω–ρ method depends on the S/N of the modeled light curve. At higher S/N the
T14 + umb method is significantly more efficient, but at moderate-to-low S/N the two methods have more similar efficiencies. At shorter transit durations, the
T14 + umb method is always more efficient, but this behavior changes around T14/T14,ref ≈0.8. The large spread in some uncertainties reflects the heterogeneity of our
injected light-curve parameters.
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Section A.2), and the former can be thought of as a special case
of the latter.

A.2. Umbrella Sampling

A critical challenge for any sampling problem is knowing
when (and if) the posterior space has been fully explored. Even
the most sophisticated sampling algorithms may fail to find
isolated modes or explore the long tails of distributions.
Moreover, convergence tests may offer no hint that portions of
the parameter space have been missed. In order to ensure
proper sampling, one may adopt umbrella sampling (Torrie &
Valleau 1977; Kästner 2011), which manually forces the
sampler to consider all parts of the posterior topology.

The core idea behind umbrella sampling is straightforward:
rather than sampling from a pathological posterior using a
single chain (or set of live points), we break the problem into
smaller more manageable pieces (“windows,” in the standard
nomenclature), sample from the subdistributions indepen-
dently, and then recombine the subsamples into a single joint
posterior distribution after the fact. As long as all subdistribu-
tions are adequately sampled, umbrella sampling will return
results that are at least as good as those obtained through
standard methods, and often better. Umbrella sampling does
not replace other sampling methods, but rather works in tandem
with them as a meta-strategy for guiding the sampling problem.
Umbrella sampling was introduced into the astrophysics
literature by Matthews et al. (2018) and adapted to the problem
of exoplanet transits by Gilbert (2022).

Appendix B
Sampler Comparison: NUTS Versus Nested Sampling

In the previous sections, we demonstrated that the baseline
e–ω–ρmodel and our alternative T14+ umb approach yield
equivalent results when posterior samples are obtained using
MCMC methods. Unfortunately, we also saw that posterior
inferences of eccentricity can be significantly overestimated or

underestimated relative to their true values. Here, we explore
whether using a different sampling technique—dynamic nested
sampling (Skilling 2004; Skilling 2006)—can yield more
accurate results and/or serve as a potential alternative to NUTS
sampling with umbrella sampling.
We implement the duration-based parameterization using the

dynesty framework for dynamic nested sampling (Spea-
gle 2020), which does not necessitate the use of umbrella
sampling because it already accomplishes the same goal of
thoroughly exploring complicated posterior topologies. To
model the transit shape and measure the log-likelihood at each
sampler step, we use a modified version of batman which
takes {P, t0, r, b, T14} as explicit transit parameters (in contrast
to the default set {P, t0, r, b, e, ω, ρå}). As before, we perform
post-hoc importance sampling to obtain {e, ω, ρå} samples. We
apply this alternative modeling method, T14+ dyn, to all 375
injection–recovery tests in an identical manner as the previous
models.

B.1. Posterior Comparison

For each injection–recovery test, we measure the values
+ek T, dyn14 from the T14+ dyn eccentricity posterior at the

k= 15th, 50th, and 85th percentiles of the distribution and
compare to the results of the T14+ umb method like in
Section 5.1 (Figure 6). We find that the T14+ umb and
T14+ dyn methods yield eccentricity results that are broadly in
agreement. However, there appears to be more differences
between samplers (T14+ umb versus T14+ dyn) than between
parameterizations (T14+ umb versus e–ω–ρ ). The comparison
between parameterizations yielded no test results that consis-
tently differed by |Δek|� 0.05, but the comparison between
samplers yields 42 of such discrepancies. Among these, there
are three tests that differ by |Δek|� 0.15 and yield entirely
different posterior topologies for e.
The discrepant measurements of Δek are most common at

the k= 15th percentile, implying that the two sampling
methods differ most at sampling the low-e tail of the

Figure 6. Comparison of e values measured from the T14 + umb and T14 + dyn modeling methods at the 15th, 50th, and 85th percentiles of their distributions, along
with the residuals Δek for each comparison (e.g., Δe50 = e50,dyn − e50,umb). One outlier residual lies beyond the bounds of our residual plots, as indicated by the arrow
pointing toward the outlier atΔe50 = 0.417. We show the Δek={0.05, 0.1, 0.15} in gray, as well as the ideal 1-to-1 line shown in black. These comparisons generally
lie close to the 1-to-1 line, implying that the results of the two models are approximately equivalent. However, we do observe 42 tests where the T14 + umb and
T14 + dyn model results are discrepant by more than |Δek|  0.05. In these instances, we find that the T14 + dyn model tends to overestimate e relative to the
T14 + umb model, as seen in the residuals and discussed in Section B.1.
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eccentricity distribution. We observe that the T14+ dyn method
produces e posterior distributions with much less posterior
weight in the low-e tail as compared to the results of the
T14+ umb approach. We also see a similar divergence of the
two methods in the upper tail of the b posterior distributions.
This is consistent with our additional observation that the
majority of the discrepancies occur in tests with shorter
duration ratios (T14/T14,ref 0.5). Most discrepancies also
occur at higher S/N levels, counter to expectations. Together,
these criteria for discrepant results only match with ∼1% of
observed Kepler transit signals, implying that real systems are
highly unlikely to fall into this subset.

B.2. Accuracy

We compare the true underlying eccentricity of each
injection–recovery test with the measured posterior distribution
of e from the T14+ dyn modeling method. Overall, we find that
the qualitative trends in e and b measured via the T14+ dyn
method are roughly equivalent to those measured from the
T14+ umb method (see Section 5.2). We do, however, find a
significant difference between the accuracies of the two
modeling methods among the three most discrepant injec-
tion–recovery tests, where |Δe50|� 0.15. For these discrepant
tests, seen as outliers in Figure 6, the T14+ dyn method
achieves more accurate posterior constraints on both e and b.
This may suggest that differences between samplers can, in
some cases, lead to significant differences in the accuracy of
modeled parameters. While all three of these tests have
etrue= 0.8, we unfortunately do not find any discernible rules

by which to distinguish when sampler differences will lead to
substantial differences in the accuracy of posterior results.

B.3. Efficiency

We also compare these two modeling approaches according
their sampling efficiencies. We calculate the efficiency h +T dyn14

of the T14+ dyn approach for each injection–recovery test,
based on the number of effective samples measured via the
Kish (1965) approach using dynesty. Similar to Section 5.3,
we compute the efficiency ratio between the T14+ dyn model
and our T14+ umb approach (h h+ +T Tumb dyn14 14

) and show these
results in Figure 7. The distribution of efficiency ratios among
our sample is broad but suggests that the two methods
generally have similar sampling efficiencies, with a median
efficiency ratio of h h »+ + 1.1T Tumb dyn14 14

. At lower duration
ratios, the T14+ umb approach is ∼1.4×more efficient, which
is to be expected as this part of the parameter space includes
higher b values—the specialty of umbrella sampling as
implemented by Gilbert (2022).
For a typical Kepler planet, however, we estimate that the

T14+ dyn method is ∼1.6×faster than the T14+ umb
approach. This observation, along with an occasional improve-
ment in accuracy, leans in favor of dynamic nested sampling
compared to NUTS sampling + umbrella sampling for our
tests, but there are many other compounding factors that are
beyond the scope of our experiment. Overall, both sampling
methods offer their own benefits with neither winning out
100% of the time, but it is clear that the duration-based
parameterization performs well regardless of the underlying
sampling method.

Figure 7. Ratio of sampling efficiencies h h+ +T Tumb dyn14 14
as a function of the duration ratio T14/T14,ref and S/N. We bin the data across every 10th percentile of the

duration ratio distribution, showing a single point per bin per S/N (bins are separated by vertical gray lines). Each point shows the 15th, 50th, and 85th percentiles of a
given bin. The efficiency of the T14 + umb method relative to the T14 + dyn method depends partially on the S/N of the modeled light curve. At shorter transit
durations, the T14 + umb method is typically more efficient, but the opposite is true at longer transit durations. The large spread in some uncertainties reflects the
heterogeneity of our injected light-curve parameters.
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