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Abstract

Although resonant planets have orbital periods near commensurability, resonance is also dictated by other factors, such as
the planets’ eccentricities and masses, and therefore must be confirmed through a study of the system’s dynamics. Here,
we perform such a study for five multiplanet systems: Kepler-226, Kepler-254, Kepler-363, Kepler-1542, and K2-32. For
each system, we run a suite of N-body simulations that span the full parameter space that is consistent with the
constrained orbital and planetary properties. We study the stability of each system and look for resonances based on the
libration of the critical resonant angles. We find strong evidence for a two-body resonance in each system; we confirm a
3:2 resonance between Kepler-226c and Kepler-226d, confirm a 3:2 resonance between Kepler-254c and Kepler-254d,
and confirm a three-body 1:2:3 resonant chain between the three planets of Kepler-363. We explore the dynamical history
of two of these systems and find that these resonances most likely formed without migration. Migration leads to the
libration of the three-body resonant angle, but these angles circulate in both Kepler-254 and Kepler-363. Applying our
methods to additional near-resonant systems could help us identify which systems are truly resonant or nonresonant and
which systems require additional follow-up analysis.

Unified Astronomy Thesaurus concepts: Exoplanet dynamics (490); Exoplanet migration (2205); N-body
simulations (1083)

1. Introduction

While in operation, the Kepler space telescope discovered over
4500 planet candidates during both the Kepler and K2 missions.
Today, many of these candidates have been confirmed, and
Kepler-era exoplanets have contributed to the growth of the
confirmed exoplanet catalog to over 5000 and the catalog of
candidate planets to over 8500. This large sample size has led to
many investigations into planetary composition, formation,
dynamics, and evolution through astrobiological studies.

One intrigue raised by these studies is mean motion
resonance (MMR). MMR occurs when two or more orbiting
bodies periodically exert gravitational perturbations on each
other, leading to a repeated exchange of energy and angular
momentum. We can predict MMR by observing the orbital
frequency of neighboring planets. If in resonance, the ratio of
neighboring planets’ periods will reduce to a ratio of small
integers, such as 2:1 or 12:5. However, determining resonance
requires a deeper study into the systemʼs dynamics since a
period ratio of small integers does not necessarily mean the
system is in resonance. Such in-depth studies have been
conducted and confirmed resonance in a handful of Kepler
systems such as Kepler-80 (MacDonald et al. 2016), Kepler-
223 (Mills et al. 2016), and K2-138 (MacDonald et al. 2022).

Mean motion resonance can form in systems with two or
more orbiting bodies. The simplest form of MMR is the two-
body resonance. Mathematically, this is defined as the
oscillation or libration of the two-body critical angle:

( )j j j j j j 1b c b c b c b c, 1 2 3 4 5 6l l w wQ = + + + + W + W

where λp is the mean longitude of planet p, ωp is the argument
of periapsis, Ωp is the longitude of the ascending node, ji are
coefficients which sum to zero, and planet b orbits closer to the
host star than planet c.
In systems with three or more orbiting bodies, numerous

bodies may be in resonance, either in a chain of two-body
resonances or in a three or more body resonance. A zeroth-
order three-body MMR is defined by the difference of the two-
body resonant angles:

( ) ( )m m n n 2b c d c d b c d c b, , , ,f l l l= Q - Q = - + +

where λp is the mean longitude of planet p, and m and n are
integers. This angle is independent of all longitudes of periapsis
(w̄ w= W + ), making it ideal for resonant study in systems
with poorly constrained orbital angles and eccentricity.
Traditionally, such resonances are confirmed if all solutions

to the system’s RV or TTV forward modeling lead to librating
angles. Unfortunately, few systems produce large enough
perturbations that could be detected with a typical survey
cadence (30 minute cadence from photometry and ∼few day
cadence from radial velocities). Due to a lack of high-precision
measurements of these systems, we must model all solutions to
a system—across all potential parameters that are consistent
with the data—to confirm resonance. In the case that all
solutions result in the planets locked in MMRs, we are able to
confirm resonance in the system.
MacDonald et al. (2022) were the first to confirm a resonance

without forward modeling either transit times or the radial velocity
signal of the planets. They found that three of the planets of K2-
138 are locked in a resonant chain in 99% of N-body simulations
that spanned the entirety of parameter space that was previously
constrained by both photometry and radial velocity measurements,
providing a method of MMR confirmation in the absence of high-
cadence, high-precision data.
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Such a method, if applied on a larger scale to more systems,
would enable us to confirm more resonances. Since resonances
allow for the constraint of planetary properties, the system’s
formation history, and the planets’ long-term stability, a
significant number of confirmed resonant systems would allow
us to start leveraging these dynamics to better understand
planet formation and evolution.

Here, we perform such an analysis on five systems: Kepler-226,
Kepler-254, Kepler-363, Kepler-1542, and K2-32. Each of these
systems was suggested to be a “broken,” full-system 3:2 resonant
chain, where the discovery of an additional planet would complete
the chain (Christiansen et al. 2018). However, the period ratios of
adjacent known planets suggest the presence of resonant chains.
Very few known systems with similar architecture exist
(Livingston et al. 2018), and confirmation of such a chain can
provide valuable insight into the dynamics, history, and composi-
tion of systems of this architecture.

In Section 2, we briefly describe the five systems we study
and discuss the initial conditions and parameters of our N-body
simulations. We then present our results and analyze the
resonant configurations of each system in Section 3. For two of
the systems in which we confirm resonance, we use the
resonances to constrain the planetary masses and orbital
periods and discuss forming the chain in Section 4 before
summarizing and concluding our work in Section 5.

2. Methods

Kepler-226 is a G-type star hosting a super-Earth and two
Earth-sized planets with orbital periods between 4 and 8 days.
These three planets could be locked in a 2:3:4 resonant chain.
Since their initial confirmation (Rowe et al. 2014), the
anticorrelated TTVs of planets b and c constrained their
masses to M M24.0b 10.1

11.8= -
+

Å and M M45.2c 19.1
22.5= -

+
Å,

although the radii of these two planets (Rb= 1.64 R⊕ and
Rc= 2.47 R⊕; Berger et al. 2018) suggest these values to be
overestimates. Although the TTVs and period ratios of the
system suggest this chain of resonances, the specific dynamics
of the system have yet to be explore.

Kepler-254 is a relatively dim (V = 16.012) G-type star,
hosting three confirmed exoplanets with orbital periods ranging
from 5.8 to 18.7 days. The period ratios of adjacent planets
suggest the system could be locked in a 1:2:3 resonant chain.
Jontof-Hutter et al. (2021) suggest that Kepler-254d and
Kepler-254c could be locked in a 3:2 resonance. However, the
orbital dynamics of Kepler-254 have yet to be included in an
in-depth study to confirm MMRs.

Kepler-363 is a relatively bright (V = 13.472) G-type star,
hosting three confirmed exoplanets. These planets orbit their
stair fairly rapidly, with orbital periods ranging from 3.6 to 11.9
days. The period ratios of adjacent planets suggest the system
could be locked into a 1:2:3 resonant chain. The orbital
dynamics of Kepler-363 have yet to be included in any in-depth
study to confirm resonance in the system.

Kepler-1542 is a G-type star that hosts four transiting planets
and one planetary candidate, all smaller than Earth and orbiting
within 8 days. The orbital periods of the planets suggest a chain
of resonances of 4:3, 5:4, 7:6, and 6:5 if we include the
candidate. Validated by Morton et al. (2016), the four planets
have never been included in an in-depth study of the system.

K2-32 is a G-type star in a binary system, hosting four
transiting planets. The innermost planet K2-32e was most
recently discovered and validated by Heller et al. (2019),

suggesting that these four planets are in a 1:2:5:7 chain of mean
motion resonances. Although the orbital periods suggest this
resonance, as do many follow-up studies (e.g., Lillo-Box et al.
2020), the dynamics of this system have yet to be explored.
Following the methods of MacDonald et al. (2022), we seek

to understand the dynamics of these systems by running N-
body simulations using the python module REBOUND (Rein &
Liu 2012). We run a suite of 1000 simulations, drawing initial
values for planetary masses, inclinations, and orbital periods
from independent, normal distributions that are centered on
values constrained by current photometry. For Kepler-226,
Kepler-254, and Kepler-363, we use the results from
Thompson et al. (2018) for all parameters except planetary
radii, for which we use the updated stellar, and therefore
planetary, radii from Berger et al. (2018). For Kepler-1542, we
use parameters from Morton et al. (2016), and for K2-32 we
use the values from Heller et al. (2019). For planets without
mass constraints, we draw masses from the mass–radius
relationship described in Weiss & Marcy (2014).3 Each
simulation therefore initializes with a set of parameters that is
unique from other simulations but consistent with current data.
Using the WHFast integrator (Rein & Tamayo 2015), we
integrate the modeled systems for 10Myr with a timestep of
5% the innermost planet’s period. We summarize the
simulation initial conditions for our simulations in Table 1.

3. Results

For each of our five systems of interest, we run a suite of 1000
N-body simulations for 10Myr and analyze the results of each
suite for two-body and three-body resonances. We stop integra-
tions when any planet experiences a close encounter, defined by a
distance of less than three Hill radii. To confirm a chain of
resonances, we search for simulations where the three-body angle
is librating or where both of the two-body angles are librating.
We find it unlikely that Kepler-1542 and K2-32 contain any

resonant chains; for each of these systems, no three-body angle
librated in our simulations, regardless of planetary mass. In
Kepler-1542, the resonant angle Θe,d= 7λd− 6λe− ωe librated
in 82% of simulations, and in K2-32 the resonant angles
Θc,d= 3λd− 2λc− ωc and Θe,b= 2λb− 1λe− ωe librated in
70% and 68% of simulations, respectively. Because not all
solutions to our current data lead to these angles librating, we
cannot claim the planets are in resonance.
In Kepler-226, we find that the two-body angle

3 2c d d c d, l l wQ¢ = - - librates about 180° in 99.8% of our
simulations, but with large libration amplitudes of 90.515.22

23.19+ .
The two-body angle 4λc− 3λb− ωc librates in 42% of our
simulations, and the three-body angle circulates in all
simulations. While we are therefore able to confirm the 3:2
resonance between Kepler-226c and Kepler-226d, we are not
able to confirm a resonant chain.
We focus the rest of this work on the two remaining systems,

Kepler-254 and Kepler-363. We summarize the results of the
resonance analysis for all systems in Table 2.

3.1. Kepler-254

Through our analysis, we find that nearly all (99.6%)
simulations of Kepler-254 remained stable during the

3 We explore a large range of masses for each planet and use the resulting
resonances to constrain the planet masses. We therefore are not sensitive to any
specific mass–radius relationship.
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10 Myr integrations, i.e., no planets experienced a close
encounter or were ejected, regardless of initial parameter
values. Of these simulations, 42.4% result in a 1:2:3 three-
body resonant chain. The two-body angle Θb,c= 2λc−
λb− ωc librates in 42.4% of the simulations, and the two-
body angle Θc,d= 3λd− 2λc− ωc librates in 99.2% of the
simulations. The three-body angle f1= 3λd− 4λc+ λb
circulated in all of the simulations. We show the evolution
of one the N-body simulations in Figure 1. Given these
results, we are therefore able to confirm a two-body
resonance between Kepler-254c and Kepler-254d where
the angle Θc,d librates around 0° with an amplitude of
65.1 5.0

4.6
-
+ . A three-body resonant chain is probable but requires

further analysis and more precise orbits to confirm. The
system could therefore benefit from follow-up observation
and analysis.

3.2. Kepler-363

Regardless of the initial parameters, nearly all 1000 simulations
of Kepler-363 remained stable for the 10Myr integration. We find

the 2:1 resonant angle Θb,c= 2λc− λb−ωc librates in 99.2% of
simulations, and the 3:2 resonant angle Θc,d= 3λd− 2λc−ωc
librates in 92.6% of simulations. Of all 1000 simulations, 92.4%
result in a three-body 1:2:3 resonant chain.
The two-body angles Θb,c and Θc,d librate about 0° with

moderate amplitudes of 35.1 17.8
30.0

-
+ and 55.1 13.7

13.9
-
+ , respectively,

and the two-body angle and c d,Q¢ librates around 180° with
large amplitudes of 96.98 35.54

34.82
-
+ . Curious enough, the three-

body angle f= 3λd− 4λc+ λb does not librate in any of our
simulations. We discuss the implications of this circulating
angle in more detail in Section 4. We show the evolution of one
the N-body simulations in Figure 2.

4. Discussion

With the confirmation of resonance, we are able to study
additional information about a system and its planets. In
particular, resonances allow us to constrain planetary masses
and orbits, and to explore the formation and subsequent
dynamical history of the planets.

Table 1
Planetary Properties for Determining Resonance

Kepler-226 b c d

P [days] 3.940997 ± 0.000020 5.349555 ± 0.000014 8.109044 ± 0.000094
t0 [days] 69.09337 104.80599 65.80333
i [°] 88.88 ± 0.2 89.62 ± 0.2 89.92 ± 0.2
Mp [M⊕] 4.271 1.825

1.933
-
+ a 6.237 1.952

2.071
-
+ a 2.440 1.244

1.985
-
+ a

Kepler-254 b c d

P [days] 5.82666 ± 0.00001 12.41218 ± 0.00008 18.7464 ± 0.0001
t0 [days] 106.01 75.54 80.13
i [°] 89.88 ± 0.2 89.95 ± 0.2 89.11 ± 0.2
Mp [M⊕] 8.84 1.94

2.02
-
+ a 5.75 2.05

1.99
-
+ a 6.72 1.98

2.03
-
+ a

Kepler-363 b c d

P [days] 3.61460279 ± 0.00003 7.54235832 ± 0.00004 11.93205399 ± 0.00005
t0 [days] 67.695 245965.961 245975.106
i [°] 86.02 ± 0.2 88.44 ± 0.2 89.52 ± 0.2
Mp [M⊕] 3.05 1.65

1.83
-
+ a 4.67 1.90

2.12
-
+ a 5.34 1.94

2.06
-
+ a

Kepler-1542 c b e d

P [days] 2.8922302 ± 1.472e − 05 3.95116882 ± 1.633e − 05 5.10115756 ± 2.409e − 05 5.99273738 ± 2.26e − 05
t0 [days] 65.86465 67.22178 65.42378 64.74864
i [°] 89.89 ± 0.2 88.05 ± 0.2 89.68 ± 0.2 88.08 ± 0.2
Mp [M⊕] 0.429 0.228

0.386
-
+ a 0.803 0.420

0.823
-
+ a 0.850 0.445

0.801
-
+ a 1.083 0.570

0.979
-
+ a

K2-32 e b c d

P [days] 4.34882 0.00075
0.00069

-
+ 8.991828 0.000084

0.000083
-

+ 20.66186 0.00098
0.00102

-
+ 31.7142 0.0010

0.0011
-
+

t0 [days] 1998.886 2000.92713 1999.42271 2003.7913
i [°] 90.0b 89.1 ± 0.7 89.3 ± 0.9 89.3 ± 0.9
Mp [M⊕] 1.095 0.625

2.248
-
+ a 16.5 2.7

2.7
-
+ <12.1 10.3 4.3

4.8
-
+

Notes. Initial conditions used for the simulations, including orbital period P, midtransit time t0, sky-plane inclination i, and planetary massMp. We initialize all planets
on circular orbits. We use the values published by Rowe et al. (2014) for all parameters of Kepler-226, Kepler-254, and Kepler-363, except for planetary radii, where
we use the updated stellar and therefore planetary radii from Berger et al. (2018). For Kepler-1542, we use parameters from Morton et al. (2016), and for K2-32 we use
the values from Heller et al. (2019). We assume stellar masses of 0.831 Me (Thompson et al. 2018), 0.943 Me (Berger et al. 2018), 1.173 Me (Thompson et al. 2018),
0.933 Me (Thompson et al. 2018), and 0.856 Me (Heller et al. 2019) for the stars as ordered in the table. All parameters were drawn from independent, normal
distributions, centered on the nominal values with widths equal to the value’s uncertainty; for parameters with unequal upper and lower uncertainties, we take the
larger uncertainty as the width.
a Planetary masses were drawn from the mass–radius relation (Weiss & Marcy 2014).
b At the time of this work, no estimate existed for this value, so we fix the parameter and do not draw it from a normal distribution.
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4.1. Using Resonance to Constrain Masses and Orbits

We explore the differences in planetary parameters between
simulations that resulted in resonance and those that did not.
We perform a two-sample Kolmogorov–Smirnov test, explor-
ing the null hypotheses that the masses, eccentricities, and
orbital periods of the planets in resonance and the planets not in
resonance are drawn from the same distribution. As an
example, we take the distribution of masses of Kepler-363b
from simulations where Θb,c librates as one sample for the K-S
test, and the distribution of that planet’s mass from simulations
where the same angle circulates as the second sample.

For all parameters except the eccentricity of Kepler-363c, we
recover large p-values (p> 0.05) and fail to reject the null
hypothesis. For Kepler-363c’s eccentricity, we recover a p-
value of 0.018, suggesting that the two distributions are
statistically different. We find that the resulting eccentricity for
simulations with a librating Θc,d is smaller than for those with a
circulating Θc,d (2.3 101.4

1.8 4´-
+ - and 3.0 101.7

1.5 4´-
+ - , respec-

tively). Although we are not able to use the system’s
resonances to constrain the planets’ masses, we do find that
this system’s resonant state is not very dependent on the

planetary masses, confirming that more precise mass measure-
ments are not necessary to confirm these resonances.

4.2. Constraining Dynamical History

With confirmed resonances, we are now able to study each
system’s formation and evolution. Although resonant chains
are typically seen as the hallmark of disk-driven migration, two
additional pathways exist to form resonant chains that are each
consistent with in situ formation (MacDonald & Dawson 2018).
Following the prescription of MacDonald & Dawson (2018),
the three formation pathways for forming chains of MMR are
long-scale migration (LM; hypothesizes the planets were
formed both further from their star and each other when
compared to current observations), short-scale migration (SM;
planets formed near current observations, just outside of
resonance, where small shifts in the planets’ semimajor axes
will lead to resonance), and eccentricity dampening (ECC;
planets formed near current observations, just outside of
resonance, where damping to the planets’ eccentricities will
lead to resonance).

Table 2
Resonance Results

Angle % Librating Center (°) Amplitude (°)

K2-32 stable = 984 resonant = 664
Θe,b = 2λb − λe − ωe 67.58% −0.005 0.315

0.349
-
+ 48.4 20.2

23.8
-
+

Θb,c = 2λc − λb − ωb 14.43% 0.036 0.513
0.501

-
+ 58.3 31.8

14.0
-
+

Θc,d = 3λd − 2λc − ωc 69.92% 0.015 2.065
2.073

-
+ 64.5 18.9

9.7
-
+

2e b b e b, l l wQ¢ = - - 0.90% −5.38 14.09
12.75

-
+ 134.64 4.81

6.23
-
+

2b c c b c, l l wQ¢ = - - 0.00% L L

3 2c d d c d, l l wQ¢ = - - 6.80% −0.06 12.71
15.61

-
+ L

Kepler-226 stable = 998 resonant = 457
Θb,c = 4λc − 3λb − ωc 42.00% −0.052 0.504

0.571
-
+ 119.1 20.9

22.2
-
+

Θc,d = 3λd − 2λc − ωc 45.80% −0.05 0.88
0.91

-
+ 135.03 30.3

11.8
-
+

4 3b c c b b, l l wQ¢ = - - 41.60% 179.9 0.428
0.577

-
+ 137.25 11.85

9.21
-
+

3 2c d d c d, l l wQ¢ = - - 99.8% 179.9 1.11
1.38

-
+ 90.5 15.22

23.19
-
+

Kepler-254 stable = 996 resonant =
Θb,c = 2λc − λb − ωc 42.40% 0.021 0.39

0.35
-
+ 118.6 49.9

21.48
-
+

Θc,d = 3λd − 2λc − ωc 99.20% −0.15 2.22
2.41

-
+ 65.1 5.0

4.6
-
+

2b c c b b, l l wQ¢ = - - 0.00% L L

3 2c d d c d, l l wQ¢ = - - 100.0% 179.98 1.81
1.79

-
+ 87.1 14.21

12.34
-
+

Kepler-363 stable = 998 resonant = 924
Θb,c = 2λc − λb − ωc 99.2% 0.0029 0.243

0.224
-
+ 35.1 17.8

30.0
-
+

Θc,d = 3λd − 2λc − ωc 92.59% −0.02 0.44
0.54

-
+ 55.1 13.7

13.9
-
+

2b c c b b, l l wQ¢ = - - 0.0% L L

3 2c d d c d, l l wQ¢ = - - 98.8% 179.97 0.37
0.41

-
+ 96.98 35.54

34.82
-
+

Kepler-1542 stable = 897 resonant = 0
Θc,b = 4λb − 3λc − ωb 9.81% 0.16 0.67

0.66
-
+ 64.5 24.3

8.7
-
+

Θb,e = 5λe − 4λb − ωb 5.13% −0.17 0.88
1.30

-
+ 74.1 7.4

2.9
-
+

Θe,d = 7λd − 6λe − ωe 81.94% −0.05 0.81
0.88

-
+ 61.2 16.5

10.8
-
+

4 3c b b c c, l l wQ¢ = - - 0.50% −5.19 0.85
3.04

-
+ 132.50 1.50

3.34
-
+

5 4b e e b e, l l wQ¢ = - - 2.80% −2.47 8.74
12.97

-
+ 127.21 2.12

3.25
-
+

7 6e d d e d, l l wQ¢ = - - 29.2% 1.08 13.93
11.11

-
+ 131.72 4.75

7.99
-
+

Notes. For each system, the number of simulations out of 1000 that survived 10 Myr, the number of simulations where all planets participate in the chain, then, for
each angle, the percentage of simulations where the angle librates and the center and amplitude of the libration. For each system, all three-body angles were
circulating.
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To study the formation of the resonances in Kepler-254 and
Kepler-363, we follow the methods of MacDonald & Dawson
(2018) which we briefly describe here. For each formation
pathway, we run a suite of 500 N-body simulations with the
same initial conditions shown in Table 1 except with inflated
orbital periods. We use the modify_orbits_forces
routine in the REBOUNDx library (Tamayo et al. 2020) and
the WHFast integrator (Rein & Tamayo 2015). For the LM
simulations, we initialize the inner planet at 1 au from its host
star and start the other planets just wide of the observed
resonances.4 For the SM and ECC simulations, we initialize the

planets a small percentage wide of their observed orbits, where
we draw this percentage for each planet and each simulation
from a normal distribution of N[5, 3]%. All simulations start
with the planets out of resonance. We then form the resonant
chains by damping the semimajor axes and/or eccentricities of
the planets, following the prescription in Papaloizou &
Larwood (2000). For the LM and SM simulations, we damp
only the outer planet’s eccentricity and semimajor axis,5 and
for the ECC simulations, we damp the eccentricity of all

Figure 1. Example evolution of the orbital periods, eccentricities, inclinations, all four two-body resonant angles, and the three-body resonant angle of the three
planets of Kepler-254. We find that the two-body angle Θc,d librates in nearly all of our simulations, the two-body angle Θb,c only librates in approximately 40%, and
the corresponding three-body angle circulates in each one. The initial values for this simulation were drawn from independent, normal distributions, as described in
Section 2 and summarized in Table 1. We integrate this simulation beyond 10 Myr for visualization purposes.

4 We round each planet’s semimajor axis up to the nearest 0.1 au to ensure the
planets start out of resonance.

5 Both the direction and rate of migration for each planet will depend on
conditions of the disk and are therefore unknown. By simulating the migration
of only the outer planet, we implicitly assume that the migration timescale of
the inner planets is much longer.

5
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planets. We draw the timescales for the semimajor axis
damping (τa) and eccentricity damping (τe) from independent,
log-uniform distributions of log τa=U[7, 9] yr, log τe=
U[4, 6] yr; log τa=U[6, 9] yr, log τe=U[4, 7] yr; and
log τe=U[5, 7] yr for the LM, SM, and ECC suites,
respectively. We explore a wide range of damping timescales,
representing a wide range of disk conditions, to avoid fine-
tuning our simulations.

We integrate each system forward with a timestep of 5% the
innermost planet’s observed orbital period. After 5× 106 yr,
we “turn off” the damping effects and integrate for another
0.25Myr to ensure stability after the gas disk would dissipate.
We then study each resulting simulation for librating two- and
three-body resonant angles.

We find we are able to produce a full three-body resonant
chain in systems like Kepler-254 and Kepler-363 through all
three formation pathways. However, each formation pathway
yields unique results, which we discuss in turn below. We
summarize the centers and amplitudes of librating angles
resulting from each formation pathway in Table 3, and we
compare examples from each of these formation pathways in
Figures 3 and 4.
Short-scale migration: For both systems, short-scale migra-

tion (SM suite) results in the three-body angle f=Θb,c−Θc,d

librating in some of the simulations (34% and 25% for Kepler-
254 and Kepler-363, respectively), and librating about 180°,
∼285°, and a third center with moderate amplitudes
(∼10°–20°).

Figure 2. Example evolution of the orbital periods, eccentricities, inclinations, all four two-body resonant angles, and the three-body resonant angle of the three
planets of Kepler-363. We find that the two-body angles Θb,c, Θc,d, and c d,Q¢ , librate in nearly all of our simulations, but the corresponding three-body angle circulates
in each one. The initial values for this simulation were drawn from independent, normal distributions, as described in Section 2 and summarized in Table 1. We
integrate this simulation beyond 10 Myr for visualization purposes.
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Long-scale migration: Since very few of the LM simulations
for Kepler-254 remained stable for the full integration time, and
with only one simulation in resonance, we are unable to
perform any meaningful statistical analysis on this suite. The
long-scale migration for Kepler-363 resulted in very few
simulations where f librates and only 27% of the stable
simulations with a three-body resonant chain.

Eccentricity damping: We find that eccentricity-damping
results in the libration of the two-body angles Θb,c, Θc,d, and

c d,Q¢ for both Kepler-254 and Kepler-363 in about half of the
simulations, but very rarely results in the libration of

2b c c b b, l l wQ¢ = - - or of the three-body angle f. For
Kepler-254, Θb,c and Θc,d, each librate about 0° with small
amplitudes of 5.96 0.62

5.23
-
+ and 5.76 1.21

9.26
-
+ , respectively, similar to

the centers we recover in Section 3.1 but with significantly
smaller amplitudes. For Kepler-363, Θb,c and Θc,d each librate
about 0° with amplitudes of 4.22 0.47

2.45
-
+ and 28.32 2.13

4.05
-
+ ,

respectively, similar to the centers we recover in Section 3.2;
but, again, with significantly smaller amplitudes.

In Section 3.1, we confirmed the two-body resonance
between Kepler-254c and Kepler-254d, but we were unable
to confirm a resonance between the inner planet pair in the
system. Since each of the formation pathways resulted in the
libration of this angle and therefore each pathway is possible
given our current data, we cannot select one pathway over
another as more probable. We find it likely that the resonant
chain of Kepler-363 formed through eccentricity- damping,
which we discuss in more detail below in Section 4.3.

4.3. Unique Dynamical Configuration

The three planets of Kepler-363 are locked in a three-body
resonance, where both two-body angles librate and the three-
body angle f=Θc,d−Θb,c= 3λd− 4λc+ λb circulates; the
three-body angle even circulates in most of our chain-formation
simulations (see Table 2). Typically, the three-body angle will
librate if the associated two-body angles librate,6 and so we
must ask: how could this resonant chain form without the
libration of this three-body angle? We also find that the angle

2b c c b b, l l wQ¢ = - - always circulates in our simulations
and the angle 2c d d c d, l l wQ¢ = - - always librates in our
simulations. We can use all five resonant angles (Θb,c, Θc,d,

b c,Q¢ , c d,Q¢ , and f) to study the possible formation history of
Kepler-363; a likely formation pathway would result in systems
with dynamics similar to those we observe: Θb,c, Θc,d, and c d,Q¢
are librating, but b c,Q¢ and f are circulating.
Short-scale migration: The angle b c,Q¢ librates in 38% of our

SM simulations, and c d,Q¢ librates in 82.9% of our SM
simulations. In addition, the three-body angle f librates in
33% of our simulations. If b c,Q¢ and f are indeed circulating, we
find it unlikely that the resonant chain formed through short-
scale migration.
Long-scale migration: As discussed above, it is challenging

to form this chain through long-scale migration as the system
becomes unstable without large eccentricity damping.

Table 3
Formation Pathway Results

Angle % Librating Center (°) Amplitude (°) Angle % Librating Center (°) Amplitude (°)

Kepler-254 SM stable = 481/500 res = 368/500 Kepler-363 SM stable = 474/500 res = 356/500
f1 8.11 180.32 2.20

2.43
-
+ 15.33 7.98

18.7
-
+ f1 11.6 90.99 17.78

19.23
-
+ 13.64 9.18

17.38
-
+

17.0 81.75 11.25
28.74

-
+ 14.07 8.12

19.00
-
+ 6.3 180.37 2.55

10.54
-
+ 20.86 10.24

30.08
-
+

9.1 287.56 6.50
7.94

-
+ 22.48 12.91

19.64
-
+ 7.4 285.27 15.72

5.85
-
+ 20.93 12.03

12.12
-
+

Θb,c 49.9 0.11 0.85
3.38

-
+ 7.95 4.04

37.17
-
+ Θb,c 8.6 48.88 8.56

14.25- -
+ 14.05 7.08

9.50
-
+

10.8 48.62 8.02
11.05- -

+ 10.64 5.50
8.53

-
+ 68.6 0.17 1.06

16.90
-
+ 12.09 7.99

28.53
-
+

16.2 45.53 10.71
9.70

-
+ 11.48 6.27

8.50
-
+ Θc,d 82.1 0.02 1.71

2.63
-
+ 15.72 12.57

14.21
-
+

Θc,d 84.0 0.04 1.09
3.40

-
+ 7.44 5.34

20.09
-
+

b c,Q¢ 13.1 279.32 26.93
16.34

-
+ 8.53 4.82

9.41
-
+

b c,Q¢ 21.2 287.45 33.69
6.09

-
+ 7.24 3.98

8.55
-
+ 8.4 65.87 6.30

10.33
-
+ 11.62 5.09

6.35
-
+

11.6 66.59 4.17
8.83

-
+ 10.12 5.96

8.16
-
+ 7.2 179.04 21.02

3.88
-
+ 31.02 21.05

43.83
-
+

6.7 179.70 2.93
2.20

-
+ 15.55 8.64

36.56
-
+

c d,Q¢ 82.9 179.97 1.58
1.42

-
+ 11.30 8.21

18.78
-
+

c d,Q¢ 81.3 179.99 1.02
14.76

-
+ 7.78 6.24

18.20
-
+

Kepler-254 ECC stable = 500/500 res = 238/500 Kepler-363 ECC stable = 500/500 res = 229/500
f1 0.0 L L f1 0.6 L L
Θb,c 47.6 0.017 0.541

0.587- -
+ 5.96 0.62

5.23
- Θb,c 46.8 0.019 0.412

0.392
-
+ 4.22 0.47

2.45
-
+

Θc,d 62.0 0.013 0.522
0.478- -

+ 5.76 1.21
9.26

-
+ Θc,d 47.0 0.031 1.735

2.242- -
+ 28.32 2.13

4.05
-
+

b c,Q¢ 0.0 L L b c,Q¢ 1.4 L L

c d,Q¢ 62.2 180.00 0.22
0.31

-
+ 3.69 0.83

10.61
-
+

c d,Q¢ 47.2 179.99 0.79
0.84

-
+ 15.57 0.89

1.46
-
+

Kepler-254 LM stable = 13/500 res = 1/500 Kepler-363 LM stable = 73/500 res = 21/500
f1 0.2 L L f1 1.2 L L
Θb,c 0.2 L L Θb,c 6.4 0.28 2.38

6.81
-
+ 9.16 5.05

50.69
-
+

Θc,d 0.2 L L Θc,d 6.8 0.19 1.98
5.94

-
+ 40.42 38.84

38.66
-
+

b c,Q¢ 0.2 L L b c,Q¢ 1.2 L L

c d,Q¢ 0.2 L L c d,Q¢ 8.8 179.99 3.84
2.97

-
+ 26.93 23.70

20.19
-
+

Note. For each system, the number of simulations that survived the full integration, the number of simulations where all planets participate in a 1:2:3 chain, then, for
each angle, the percentage of simulations where the angle librates and the center and amplitude of the libration. We do not include center or amplitude data for angles
librating in fewer than 5% of simulations.

6 Although the opposite is not true in the case of pure three-body resonance.
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Figure 3. Example evolution of systems like Kepler-363, forming the resonant chain through three formation pathways: eccentricity damping only, short-scale
migration, and long-scale migration. The period ratio marked as black dots is the ratio between planets b and c, the period ratio marked as green dots is the ratio
between planets c and d, and the vertical red line indicates when we “turn off” the damping effects. Although each pathway is able to lock the planets into both two-
body resonances, both short-scale migration and long-scale migration result in the libration of the three-body angle 3λd − 4λc − λb, which we find to be circulating.
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Figure 4. Example evolution of systems like Kepler-254, forming the resonant chain through three formation pathways: eccentricity damping only, short-scale
migration, and long-scale migration. The period ratio marked as black dots is the ratio between planets b and c, the period ratio marked as green dots is the ratio
between planets c and d, and the vertical red line indicates when we “turn off” the damping effects. Both eccentricity dampening and short-scale migration are lock the
planets into both two-body resonances while only short-scale migration results in the libration of the three-body angle 3λd − 4λc − λb, which we find to be circulating.
Long-scale migration did not lead to enough simulations remaining stable to yield statistically significant results.
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However, we still find numerous sets of initial parameters that
result in f librating. It is therefore possible that that this
resonant chain formed through long-scale migration but
requires more fine-tuning of parameters.

Eccentricity damping: From our 500 simulations, only seven
(1.4%) result in the libration of b c,Q¢ , and only three (0.6%)
result in the libration of f. Of the seven simulations resulting in
the libration of b c,Q¢ , one simulation has only this angle
librating and all other angles circulating, one simulation does
not result in Θc,d librating, one simulation results in all angles
librating, and the remaining four simulations result in all two-
body angles librating. The angle f librates in one simulation
where all angles librate and in two simulations where all other
angles circulate. We therefore find that it is challenging for b c,Q¢
and f to librate if this chain was formed without any change in
the planets’ semimajor axes.

Since we are only able to simulate the formation of resonant
chains in systems similar to Kepler-363, we caution against
claims of one formation mechanism; however, we find that the
angles b c,Q¢ and f do not librate in chains formed with
eccentricity-damping when the angles Θb,c, Θc,d, and c d,Q¢ do
librate, resulting in the dynamics we observe. Resonant chains
formed through short-scale and long-scale migration both result
in the libration of b c,Q¢ and f in the majority of simulations
where the other angles librate.

5. Conclusion

Planets in mean motion resonance with one another
periodically exchange energy and angular momentum, enabling
us to constrain the formation history of individual systems and
identify indicators of formation history in other systems.
Because the confirmation of resonance requires an in-depth
study of a system’s dynamics, most resonances have not been
confirmed. Here, we perform such a dynamical study of five
multiplanet systems whose period ratios suggest they could be
in resonance.

For each system, we run a suite of N-body simulations,
exploring the full range of possible planetary and orbital
parameters as constrained by available data. We confirm that
two planets are in resonance if their critical resonant angle
librates in at least 90% of our simulations. Kepler-1542 and
K2-32 each contain at least one planet pair that is likely in
resonance, but the uncertainties on the planet masses and orbits
prohibit us from confirming these resonances. We confirm the
3:2 resonance between Kepler-226c and Kepler-226d, confirm
the 3:2 resonance between Kepler-254c and Kepler-254d, and
confirm the 1:2:3 resonant chain between the three planets of
Kepler-363. For each of these systems, we find that the three-
body critical angle f=Θc,d−Θb,c= 3λd− 4λc+ λb circulates
in all of our simulations, even when both Θc,d and Θb,c librate.
All five of these systems could benefit from additional data and
certainly additional analysis, as their proximity to resonance
likely results in measurable TTVs.

We explore the dynamical history of Kepler-254 and Kepler-
363, integrating the systems through three potential formation
pathways: long-scale migration, short-scale migration, and only
eccentricity damping. Under our simple migration model, both
migration pathways lead to the libration of the three-body
angle, suggesting that the resonances in these two systems are
more likely to have formed in the absence of migration.
Our methods to confirm or constrain resonances within

systems in the absence of high-precision data can be applied to
other systems with near-resonant planets and would provide a
list of potential new resonances that require further analysis.
With the confirmation of new resonances and particularly new
resonant chains, we are able to fully leverage the benefits of
resonances and constrain the formation history of exoplanetary
systems.
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