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Abstract: Wildfires have nearly become a guaranteed annual event in most western National Forests.
Severe fire effects can be mitigated with a goal of minimizing the hydrologic response and promoting
soil and vegetation recovery towards the pre-disturbance condition. Sometimes, post-fire actions
include salvage logging to recover timber value and to remove excess fuels. Salvage logging was
conducted after three large wildfires on the Lolo National Forest in Montana, USA, between 2017
and 2019. We evaluated detrimental soil disturbance (DSD) on seven units that were burned at
low, moderate, and high soil burn severity in 2022, three to five years after the logging occurred.
We found a range of exposed soil of 5%–25% and DSD from 3% to 20%, and these values were
significantly correlated at r = 0.88. Very-high-resolution WorldView-2 imagery that coincided with
the field campaign was used to calculate Normal Differenced Vegetation Index (NDVI) across the
salvaged areas; we found that NDVI values were significantly correlated to DSD at r = 0.87. We were
able to further examine this relationship and determined NDVI threshold values that corresponded
to high-DSD areas, as well as develop a model to estimate the contributions of equipment type,
seasonality, topography, and burn severity to DSD. A decision-making tool which combines these
factors and NDVI is presented to support land managers in planning, evaluating, and monitoring
disturbance from post-fire salvage logging.

Keywords: salvage logging; soil burn severity; WorldView; NDVI; detrimental soil disturbance

1. Introduction

Fire and fuels management has a long history on public lands in western US forests.
The occurrence of large wildfires has increased in recent years due to numerous interre-
lated factors, including a changing climate, decades of fire suppression, human encroach-
ment into the wildland–urban interface (WUI), insects, and disease [1–4]. There is an
equilibrium to be achieved with fire on public forested lands, as fire is a natural phe-
nomenon that provides essential ecosystem services, including forest thinning, disease
prevention/eradication, and soil nutrient cycling [5]. A balancing act is necessary when
surrounding communities, air quality, and the secondary effects of severe wildfire (e.g.,
hydrologic events, vegetation succession changes, etc.) are considered for the use of fire
on the landscape. When the natural requirement for fuel reduction cannot be achieved
with fire (natural or prescribed), mechanical fuel removal can be implemented. In some
circumstances after wildfire, salvage logging is implemented to recover timber value and
to remove excess fuels [6].

The extent and degree of the soil and vegetation disturbance by wildfire may have
serious ecologic and economic implications on the forest system for years [7]. The severity
of the burn combined with the resilience of the ecosystem influences the magnitude of
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secondary fire effects, as well as the trajectory back towards the pre-fire or pre-disturbed
state. Vegetation consumption and damage is often the most immediate and visible effect of
wildfire. The impact of wildfire varies by pre-fire environmental conditions (e.g., drought,
vegetation health, weather) and the intensity and severity at which the fire burned [8,9].
Postwildfire precipitation, particularly on severely burned soils, can rapidly lead to severe
impacts on water quality and produce potentially life-threatening debris flows in rural
areas and in the wildland–urban interface [10]. Fire effects on soils go beyond soil loss
(erosion); there is also loss of organic matter, and changes in soil chemical, physical, and
biological properties [11,12]. Mitigation measures, such as mulching or seeding, can be
implemented to minimize short-term hydrologic effects [13], while longer-term solutions
may include reforestation treatments [2].

The compound effects of severe fire and salvage disturbance can delay recovery by an
additional year or more [14,15]. Consequences can reach areas far downslope of the logging
unit, depending on the degree, scale, and connectivity of the disturbance [16–18]. Most
salvage logging operations employ some ground-based machinery, either for the primary
harvest and yarding, or for the eventual transport of the logs offsite [19]. Ground-based
operations (e.g., feller-bunchers, skidders, tractors, forwarders) often have more damaging
ground effects than operations that have aerial components (e.g., skyline or helicopter).
Equipment traffic and the disturbance of soil and vegetation from yarding logs can result
in a connected network of trails and landings. The configuration of these trails, called
skid trails, may look similar to a stream network, or trails may be parallel across (on
contour) or with the slope; additionally, the orientation to the slope and the connectivity to
roads and nearby streams influences the potential elevated runoff and erosion risk [13,20].
Federal regulations and state best management practices (BMPs) [16] optimally exist to
ensure logging is completed with minimal disturbance to the forest floor, existing roads,
and surrounding unlogged areas. Natural resource values to be protected include water,
vegetation, soils, timber, wildlife, fish, and productivity [21].

Land management planning agencies have protocols in place to manage, minimize,
and mitigate potential disturbance from logging activities [22]. Contracts for logging are
awarded to private timber companies and contractors, and there is an expectation that
contractors follow the protocol to minimize detrimental soil impacts. For example, there are
Forest Service directives to maintain soil productivity by limiting the amount of detrimental
soil disturbance (DSD) to less than 15% of the areal extent of a logging unit [23,24]. DSD
is defined in [19], and is a combination of the compaction, rutting, and displacement of
soils after logging. Factors impacting DSD include burn severity, soil parent material,
topographic features, the logging equipment used (e.g., ground or skyline harvest; tracked
or rubber tire logging equipment; helicopter), the harvest season (winter or summer), and
site/soil resiliency [22,25–27]. DSD can exist prior to the logging operation from past
forest activities, and effects can be cumulative and long-lasting from previous logging,
severe fire, and salvage operations [28]. There is a particular need to consider the effects
of logging operations on burned slopes, where ground cover is sparse and where there is
direct connectivity to roads and streams [13,20].

Since the passage of the National Forest Management Act of 1976 (NFMA) [24], re-
gions and forests in the US Forest Service have implemented standards and guidelines to
maintain soil productivity by limiting forest soil disturbance. Minimizing the total area
of disturbance is an operational strategy for minimizing the impact to forest soils and
restoration expenses [29]. The USDA Forest Service monitors soil disturbance as a means
to evaluate regulatory compliance. In the Lolo National Forest Monitoring and Evalua-
tion Report [30], the monitoring reported findings where logging units were assessed for
detrimental soil disturbance against an areal threshold of 15% DSD. Exceeding 15% DSD in-
dicates potential long-term impairment to soil productivity. The main soil quality indicators
that led to DSD were soil compaction and displacement in the 10–30 cm portion of the soil
profile. The postharvest monitoring requires a minimum 30-point sampling protocol within
each logging unit, which can increase in sample size depending on the desired confidence



Forests 2023, 14, 2218 3 of 25

interval [31,32]. On-the-ground sampling efforts take time and resources, particularly when
estimating the areal extent of various disturbances across a harvest unit.

Remote sensing is often the best solution for landscape-scale environmental monitor-
ing. Satellite imagery can be used to evaluate disturbance and to monitor change over time,
and there are standardized protocols for mapping and monitoring burned landscapes [8,9].
There is a need to monitor the disturbed environment after wildfire and salvage logging
over both the spatial scale of the salvage site and the temporal scale of the recovery period.

While the Normalized Difference Vegetation Index (NDVI) is conventionally a green-
ness index (equation in the Methods) [33], its simplicity and utility has resulted in other uses
in burned and disturbed landscapes, and generally, as an inverse of exposed
soil [34–36]. NDVI values above 0.4 are generally live vegetation, with lower values
ranging from nonphotosynthetic vegetation (NPV) to a mix of soil and NPV, to nearly
bare soil in the 0.35 down to 0.1 range. In another study, Ref. [34] evaluated the use of a
post-salvage ground-cover treatment adding logging slash to reduce runoff and erosion,
and the ability to evaluate it remotely with satellite imagery. The relationship between
the amended ground cover and NDVI was significant, and NDVI was used as a proxy for
estimating and mapping ground disturbance as it related to erosion potential. They found
an NDVI threshold of 0.32 to be a breakpoint between salvaged areas that had sufficient
ground cover (generally >60%) to minimize postdisturbance runoff and erosion.

Salvage logging operations were conducted on several fires in the Lolo National
Forest (NF) following wildfires in 2016 and 2017. Because of the environmental and legal
requirements for logging on public lands, there is substantial documentation available
concerning potential detrimental impacts to the disturbed lands. Public comments on the
Environmental Impact Statement (EIS) included recommendations for more research to set
realistic and consistent thresholds for determining forestry activities that are detrimental
to forest productivity and water quality for drinking or for aquatic habitat. Specifically,
they call for (1) interpreting results of after-activity “effectiveness” monitoring, including
the severity and areal extent of soil disturbance, and (2) assessing the tradeoffs in risks
to soil capacity between activities to reduce fuels and wildfire hazard compared to the
consequences of wildfire.

We propose to investigate satellite imagery and the use of NDVI alongside ground-
cover and ground-disturbance measurements to detect the change in bare soil and wood-
slash cover multiple years after salvage-logging operations. Significant and/or prolonged
changes in ground cover will be considered a proxy for estimating forest-floor disturbance.
The objectives of this study are to (1) evaluate post-salvage landscapes for detrimental soil
disturbance (DSD) 4–5 years after the logging, (2) relate ground-disturbance conditions to
very-high-resolution satellite imagery (<2 m), (3) use the relationship between NDVI and
ground cover to classify and map soil-disturbance conditions from the pre-fire to current
period, and (4) merge these complimentary image and field-analysis components in an
innovative methodology that will deliver a protocol and product to identify the areas at
greatest risk for DSD following salvage logging. An overarching goal of this project is to
aid land managers in minimizing soil degradation after wildfire and salvage logging while
still allowing for sustainable and efficient use of the resources within impacted forests
and watersheds.

2. Materials and Methods
2.1. Fire Information

The Copper King Fire burned 12,000 ha, starting in July 2016 on the Lolo NF in Sanders
County, MT (Figure 1). Thirty percent of the burned area was classified as moderate and
high soil burn severity (burn-severity information for all three fires at: [37]). Soil burn
severity was classified from Landsat-derived (30 m pixels) dNBR (differenced Normalized
Burn Ratio) values, which were field-validated to reflect the effects of the fire on the soil [9].
The Rice Ridge Fire burned 65,000 ha in July 2017 in the Flathead and Lolo NFs (Missoula,
Powell, and Lewis and Clark Counties). More than half (56%) of this fire was classified as
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moderate or high burn severity. The Sunrise Fire burned 10,500 ha, also in July 2017, on the
Lolo NF (Mineral County), 34% of which was classified as moderate and high severity. All
three fires are geographically dispersed across mountainous western Montana, separated
east-to-west by about 160 km. Vegetation regimes in this region are generally mixed conifer,
with warmer west and southerly slopes dominated by ponderosa pine (Pinus ponderosa)
and Douglas fir (Pseudotsuga menziesii), and cooler or higher elevation slopes dominated
by subalpine fir (Abies lasiocarpa), lodgepole pine (Pinus contortus), and grand fir (Abies
grandis). Fire regimes in this region are generally mixed severity with a return interval of
5–25 years for low-intensity fire on the dry ponderosa pine forest type and 100+ years for
high-intensity stand-replacing fire in the subalpine forest type [38,39]. Soils in this region
are derived from metasedimentary deposits and are well-drained; volcanic ash-capped
soils dominate, and textures are largely silt loams (USDA NRCS 2020; web soil survey
online application).
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Figure 1. Locations of the three fires sampled. Soil-burn-severity maps from classified and field-
validated dNBR maps (Landsat, 30 m pixels), the salvage sale units, and the field units are shown for
each fire.

About one-third of the Copper King and Sunrise Fires, and just over half the Rice
Ridge Fire, were classified as moderate and high soil burn severity by post-fire assessment
teams [9]. Most trees are killed under high-burn-severity conditions, with understory
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and surface fuels largely consumed, leaving disturbed soils exposed and vulnerable to
erosion. Additionally, the risk to human safety, property, and other resources is elevated.
Natural resources at risk for all three sites in the immediate fire aftermath include bull trout
habitat, native plant communities, and noxious weed invasion. All three fires had some
fire-induced soil water repellency due to soil heating, as well as some steep drainages that
were deemed to be at risk for hydrologic impacts [37].

2.2. Field Sites

Across the three fires, the salvage units that were selected for field sampling had a
range of burn severities, and both tractor and skyline logging (Table 1). Four units with
ground-based tractor harvesting were sampled on the Copper King Fire. Salvage logging
on these units was completed in May of 2018. Elevation in these sites was about 1200 m
with average slopes of 25%. Three ground and skyline harvest units were logged on the
Rice Ridge Fire in summer 2018. Elevation in these units was 1600–2000 m with slopes
of 16%–27%. Three skyline units were salvage logged in summer 2018 after the Sunrise
Fire. These units had a mean elevation of 1500 m and ~25% slopes. The logging system
and topographical characteristics were compiled from the Lolo NF and the Forest Service
Activity Tracking System (online: https://data.fs.usda.gov/geodata/edw/edw_resources/
fc/S_USA.Actv_CommonAttribute_PL.gdb.zip; accessed on 22 March 2023). The year and
month of logging completion was confirmed visually from Sentinel-2 images.

Table 1. Harvest unit characteristics. Soil burn severity (SBS); tractor (T); skyline (SL). The completion
date was verified visually with Sentinel-2 imagery.

Fire Unit SBS Harvest
Method

Harvest
Description

Elevation
(m)

Area
(ha)

Slope
(%) Aspect Date

Complete

Copper King

4 Low T Improvement cut 3 1215 5.5 19 SE 1 May 2018
12 High T Stand clearcut w/leave trees 1200 4 24 NW 1 May 2018
13 Mod T Stand clearcut w/leave trees 1280 2 29 SE 1 May 2018
37 Low T Improvement cut 1175 5 17 NE 1 May 2018

Rice Ridge
20 Low SL 1 Salvage cut 1580 11 16 S 7 July 2019
26 Mod T/SL 2 Seed-tree and shelterwood 1760 15 18 SW 23 July 2019
61 High SL/T Stand clearcut w/leave trees 2000 5 27 S 27 July 2019

Sunrise
22 Mod SL Stand clearcut 1510 10 23 SE 20 September 2018
23 High SL Stand clearcut w/leave trees 1570 6 28 E 20 September 2018
25 High SL Stand clearcut w/leave trees 1470 8 26 SE 20 September 2018

1 All skyline units were specified as single-span. 2 Rubber-tire tractors were specified on the Copper King units
but not on the Rice Ridge unit. 3 Harvest descriptions in [40].

2.3. Field Sampling

We followed the Forest Soil Disturbance Monitoring Protocol [32] to evaluate DSD in
7 logging units on the Copper King and Rice Ridge Fires in the fall of 2022 (3–4.5 years after
salvage logging was completed). Randomly located transects were sampled in 7 monitoring
units across the 2 burned and salvage-logged areas. Each random transect had 30 points
where the soil-disturbance class was estimated, which was used to calculate the percent
of the detrimental soil disturbance (DSD) for the unit. Field crews assessed the degree of
soil disturbance by examining the deformation of the soil structure and alteration of the
A horizon in the upper soil solum, in addition to the amount of alternation of the forest
floor [31]. The visual clues served as surrogates for quantitative measures of the bulk
density and organic matter, which facilitate soil physical, biological, and chemical functions.
To assess deep-soil compaction (10–30 cm), field crews used a shovel inserted into the soil
to note the depth of compaction. If needed, a slice of soil was removed to check for platy
and massive structures, both of which indicate compaction. Surface visual assessments
can also serve as a surrogate for compaction within the profile. For example, if the organic
horizons were not as deep in the trafficked areas when compared to adjacent undisturbed

https://data.fs.usda.gov/geodata/edw/edw_resources/fc/S_USA.Actv_CommonAttribute_PL.gdb.zip
https://data.fs.usda.gov/geodata/edw/edw_resources/fc/S_USA.Actv_CommonAttribute_PL.gdb.zip
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soil, then it was likely that compaction occurred. Similarly, loss of the organic horizons or
surface mineral horizon could indicate soil displacement that can lead to an alteration of
soil properties.

If the point along the transect was classified as either disturbance class 2 or 3
(Table 2), the point was considered detrimentally disturbed. Due to time constraints,
we used a shorter walk-through assessment collecting information on unit disturbance, site
characteristics, and soil pit observations on 3 units on the Sunrise Fire.

Table 2. Detrimental-soil-disturbance classes (DSD) from [32].

Soil-Disturbance
Class Soil Surface Soil Compaction Soil Physical Condition

0
No tracks; forest floor intact; no soil displacement;

no heat-induced water repellency (natural may
be present)

No compaction Structure unchanged

1 Faint tracks; forest floor intact; light burning,
char < 1 cm; infiltration unchanged

Some compaction
0–10 cm

Structure changed,
0–10 cm to massive or
platy, noncontinuous;
roots can penetrate;

slight erosion

2
Tracks 5–10 cm; soil surface and forest floor partially

intact; moderate burning, char 1–5 cm; increased
water-repellent soils

Compaction
10–30 cm

Platy structure, 10–30 cm;
erosion is moderate

3
Tracks > 10 cm; forest floor absent, soil removal,

subsoil exposed; severe burning, duff/litter
consumed, char > 5 cm; water-repellent soils

Compaction is deep
>30 cm

Platy structure; roots do
not penetrate, erosion rills

or gullies

At all of the units in Table 1, we also sampled random transects to quantify ground
cover. Transects generally ran parallel to the slope gradient and were 50 to 400 m in length
depending on unit shape; multiple shorter transects were sometimes used to get at least
10 points per unit. Transect endpoint locations were collected with a Trimble GPS unit
(Trimble Inc., Westminster, CO, USA). Each transect was sampled at the endpoints and every
10 m; e.g., a 50 m transect had 6 ground-cover points. Ground-cover points were measured
using a quadrat (scaled frame) photo-analysis approach in which 4 photos each contained
0.25 m2 (Figure 2). These photos were converted to the percent of ground-cover classes
(e.g., mineral soil, litter, vegetation, gravel, rock, woody debris) using the Cover Monitoring
Assistant program (CMA; available at http://resources.nativerevegetation.org/; accessed
on 19 April 2023).

2.4. Spatial Data Layers

The soil-burn-severity layers based on the dNBR from GTAC (Geospatial Technology
Application Center; https://burnseverity.cr.usgs.gov/baer; accessed on 3 March 2023) were
used to calculate the majority soil-burn-severity class (low, moderate, or high) of each field
point and salvage unit. LANDFIRE layers EVC 2016 (Existing Vegetation Cover; https:
//landfire.gov/; accessed on 3 March 2023) and EVT 2016 (Existing Vegetation Type), which
were also derived from 30 m Landsat images, were used to approximate the major land-
cover attributes in the 1–2 years prior to the fires. The SSURGO (Soil Survey Geographic
Database; https://websoilsurvey.nrcs.usda.gov/app/; accessed on 3 March 2023) database
was used to pull the majority soil information of the salvage units. The United States
Geological Survey (USGS) 10 m digital elevation models (DEMs) were downloaded from
the National Map Downloader (https://apps.nationalmap.gov/downloader/; accessed on
20 February 2023) for elevation, slope, and aspect data.

http://resources.nativerevegetation.org/
https://burnseverity.cr.usgs.gov/baer
https://landfire.gov/
https://landfire.gov/
https://websoilsurvey.nrcs.usda.gov/app/
https://apps.nationalmap.gov/downloader/
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Figure 2. Ground cover photos from Copper King Unit 12 (top row), Sunrise Unit 22 (bottom right),
and Rice Ridge Unit 26 (bottom left) in September 2022. These photos represent typical ground-cover
conditions from the most disturbed unit we sampled on each fire; bare soil ranges from 6% to 60%.
The time since salvage logging was more than four years for the Copper King unit, and three years
for the Rice Ridge and Sunrise units.

2.5. Remotely Sensed Imagery

NDVI was calculated by the following equation, where R is the red band and NIR is
the near-infrared band:

NDVI = (NIR − R)/(NIR + R) (1)

Index values were extracted at all field plot and salvage unit locations, and the mean
NDVI for each was calculated for each site and year.

All commercial satellites utilized in this study are owned by MAXAR Technolo-
gies, Longmont, CO, USA (https://www.maxar.com/; accessed on 5 August 2023). The
WorldView-2 (WV2) satellite has a pixel size of 1.8 m and collects spectral data across
eight visible and near-infrared (NIR) bands. A typical skid trail is 4 m wide; therefore, it
is likely to be captured in one or two WorldView pixels. GeoEye-1 (GE1) has the same
ground resolution as WV2, and has five spectral bands spanning the visible and NIR range.
WorldView-3 (WV3) has a higher ground resolution, with 1.24 m pixels and more spectral
bands, including shortwave infrared bands. MAXAR’s commercial satellites must either
be tasked (requested) to acquire imagery over the area of interest (e.g., a wildfire), or the
archive can be searched (https://discover.maxar.com/; accessed on 9 March 2023) for
previous collections, which are available for purchase or free for US federal government
employees via an existing contract. Images are downloadable or delivered ready for anal-
ysis. We used a combination of pre-collected and archived images along with one new

https://www.maxar.com/
https://discover.maxar.com/
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collection per fire. For the archived data, we opportunistically selected the best available
images with dates that aligned annually and phenologically with dates of ground-cover
measurements taken in fall 2022 (Table 3). The goal was to assemble a range of images
for each site: pre-fire, post-fire, and post-salvage image(s). The tasked new collection in
September 2022 coincided with the field ground measurements.

Table 3. Satellite images dates available for analysis: GeoEye-1 (GE1); WorldView-2 (WV2);
WorldView-3 (WV3).

Fire Pre-Fire Post-Fire Post-Fire/Salvage 1 Post-Salvage New Collect

Copper King 30 May 2014
(GE1)

15 September 2016
(WV2)

7 June 2017
(WV2)

11 October 2022
(WV3)

Rice Ridge 27 July 2014
(WV2)

8 August 2017
(WV3)

5 September 2018
(GE1)

3 September 2019
(WV2)

10 October 2022
(WV2)

Sunrise 7 June 2017
(WV2)

16 October 2018
(WV3)

10 April 2020
(WV2)

11 October 2022
(WV3)

1 Some post-fire images are potentially midsalvage harvest depending on the timing.

Images were delivered georeferenced, radiometric- and sensor-corrected, and ready for
orthorectification. Residual geometric error was corrected by automatic orthorectification
in ENVI (ENVI 4.4, ITT Visual Information Solutions, Boulder, CO, USA). The resulting
root mean square error (RMSE) of the position for each geometric correction was kept
below one pixel. A dark-object subtraction [41] was applied to each image to normalize the
atmospheric effects between annual images.

2.6. Statistics and Data Analysis
2.6.1. Overview

Statistical software programs R (Ver. 4.3.1) [42] and SAS (Ver. 9.4; SAS Institute,
Cary, NC, USA) were used to perform statistical analyses. Model diagnostics included
testing residuals for normal distribution, plotting residuals versus predicted values, plot-
ting residuals versus order, and quantile–quantile plots of residuals versus predicted
values [43] to ensure model assumptions were met. A combination of parametric (correla-
tion and mixed model) and nonparametric (classification tree) analyses were run to meet
multiple objectives.

The correlation analysis was run as an exploratory exercise to evaluate the relationship
between DSD and other field measures and NDVI to identify important variables moving
forward. The parametric mixed model provided insight on variables’ contribution to the
post-salvage NDVI values, in particular the differences between the factor variables (e.g.,
harvest method and harvest season). The nonparametric classification tree was primarily
used to identify breakpoints in NDVI values associated with the levels of DSD and to
provide classification thresholds.

Some analyses were done with the individually sampled field points (n = 29 or 39),
while other time values were aggregated to the salvage unit means (n = 7 or 10); the higher
or lower n indicates whether or not DSD values were recorded at the field points; DSD was
not explicitly measured at the Sunrise Fire. Other analyses were done with the full dataset
of all units that were salvaged after the three fires (n ~ 300); it is specified in each Results
section and in each figure in which the dataset was used.

2.6.2. Model Details

In SAS, a linear mixed-effects model [44] was developed for the response variable
post-salvage NDVI using the full dataset of unit means. Fire, equipment, month, year, SBS
class, aspect, slope, soil type, EVC and EVT tested as fixed effects, and site as the random
effect. As fixed effects were found insignificant (p > 0.05), they were iteratively removed
from the model. For each response, an autoregressive correlation structure was applied.
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The significance of differences across multiple comparisons among fixed effects were tested
using least-squares means.

A classification tree analysis was performed to evaluate the relationship between
field-measured variables (field points only) and their contribution to the determination
of DSD using the R software (ver. 4.3.1) (R Development Core Team, 2022) package
‘rpart’ [45]. Classification-tree methods are nonparametric and function as recursive parti-
tioning regressions. They operate by partitioning variables into increasingly homogeneous
response-variable classes (e.g., detrimental soil disturbance) or breakpoints (e.g., NDVI
values). The weight of each predictor variable is calculated, and each predictor variable is
used in order of significance to divide the data [46]. All data at a terminal node are assigned
the same class of disturbance. The classification tree was first built using all available
variables and narrowed down as variables proved unimportant. Variables that did not
meaningfully improve the division of the response variable into classes or breakpoints
were eliminated until only significant variables remained.

3. Results
3.1. Ground Cover

Total ground cover included logging slash, litter, and vegetation; total ground cover
was inversely correlated with bare mineral soil, which is the primary factor affecting
postdisturbance runoff and soil erosion [47,48].

An average of 12% soil (soil + rock + gravel) cover was reported on all sampled plots
regardless of prior disturbance, salvage logging, or equipment method, etc. The range
of soil was also the smallest compared to the other cover categories, ranging from 0% to
25% (Figure 3, left). There was more nonphotosynthetic vegetation (NPV) in the plots than
live vegetation; however, this was likely due to the timing of the field sampling in early
fall. Organic ground cover of at least 60% is generally considered to be the threshold for
elevated runoff or erosion events [49–51].
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In the seven units sampled for DSD, the percent of the area that was still found to
have detrimental disturbance 2–4 years after salvage logging ranged from 1% to 20%
(Table 4). This was a significant finding considering the likely higher degree of disturbance
immediately after the logging disturbance. The three units with more than 10% DSD
remaining were all primarily ground-based tractor-logged. There was a strong correlation
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between the exposed soil that was measured via the photo method and DSD that was
measured using other methods (Figure 3, right). Many other factors besides the percent of
soil exposed are taken into consideration when DSD is calculated.

Table 4. Unit means of ground cover and detrimental soil disturbance (DSD) from the field-sampled
units; DSD was not explicitly measured at the Sunrise Fire. Mean NDVI values were calculated
and extracted from each salvage unit using Sentinel-2 satellite imagery. Nonphotosynthetic vegeta-
tion (NPV).

Fire Unit
2022 Ground Cover (%)

Unit
DSD (%)

NDVI

Inorganic: Soil +
Rock + Gravel

Organic:
NPV + Litter Live Veg Pre-Fire Post-Fire Post-Salvage 2022

Copper
King

4 9 73 18 3 0.70 0.43 0.47 0.44
12 13 47 40 20 0.71 0.20 0.18 0.43
13 10 51 39 10 0.73 0.25 0.22 0.41
37 1 66 33 3 0.69 0.47 0.45 0.42

Rice Ridge
20 7 73 20 7 0.64 0.30 0.37 0.37
26 21 48 31 13 0.60 0.25 0.31 0.31
61 7 72 21 1 0.71 0.28 0.39 0.32

Sunrise
22 23 63 14 - 0.66 0.21 0.16 0.32
23 12 53 35 - 0.70 0.27 0.02 0.47
25 5 50 45 - 0.62 0.20 0.17 0.29

3.2. Imagery

Four sets of imagery were evaluated for each fire (Table 3; Figure 4). The dates of the
pre-fire images ranged from 2014 to 2017, and one post-fire (but prior to salvage) image was
also identified for each fire, and the dates of those images ranged from 2016 to 2018. The
post-fire to post-salvage date range is more difficult to identify with certainty due to the
timing of salvage logging (i.e., the salvage completion dates are available but not the start
dates). On the ground-based units in particular, it was fairly easy to determine whether
or not salvage logging had been initiated from the 2 m WorldView imagery (Figure 4).
Therefore, we feel confident that we have identified post-salvage imagery for each of the
units that we sampled, regardless of the dates in the tables.

NDVI values from the pre-fire images were similar, ranging from 0.6 to 0.7, indicating
green vegetation typical of a mixed-conifer forest. Post-fire values dropped significantly to
~0.25 across all fires (Table 4; Figure 5). Interestingly, the post-salvage values had the widest
range, both lower and higher than the post-fire values. By 2022, the sites had begun to
homogenize again, with less variability in NDVI (~0.4), and values were increasing towards
pre-fire levels.

The relationship between the post-salvage NDVI and percent of DSD was significant
(Figure 6). As DSD increased, NDVI values decreased steeply. For contrast, the 2022 NDVI
values were also plotted against DSD, and this emphasized the degree of vegetation
recovery and homogenization of NDVI values in the 2–3 years between the post-salvage
and 2022 imagery.

The correlation analysis (Table 5) highlights several significant relationships between
the ground-collected and image (NDVI) variables. Soil burn severity was negatively
correlated with NPV cover and post-fire and post-salvage NDVI. As the burn severity
increased, these other variables decreased. Soil cover was positively correlated with DSD;
more soil and rock exposure indicated a higher degree of detrimental soil disturbance.
The NPV was only positively correlated with the post-salvage NDVI; there was likely a
high volume of timber slash and other woody debris in the post-salvage images. DSD was
strongly negatively correlated with both the post-fire and post-salvage NDVI (r = −0.62,
−0.73 (respectively); p < 0.0001). Collectively, these results indicate the capability to use
NDVI to map DSD as it relates to more exposed soil, as well as the presence of NPV, which
may indicate logging activity.



Forests 2023, 14, 2218 11 of 25

Forests 2023, 14, x FOR PEER REVIEW 11 of 27 
 

 

The post-fire to post-salvage date range is more difficult to identify with certainty due to 
the timing of salvage logging (i.e., the salvage completion dates are available but not the 
start dates). On the ground-based units in particular, it was fairly easy to determine 
whether or not salvage logging had been initiated from the 2 m WorldView imagery 
(Figure 4). Therefore, we feel confident that we have identified post-salvage imagery for 
each of the units that we sampled, regardless of the dates in the tables. 

NDVI values from the pre-fire images were similar, ranging from 0.6 to 0.7, indicating 
green vegetation typical of a mixed-conifer forest. Post-fire values dropped significantly 
to ~0.25 across all fires (Table 4; Figure 5). Interestingly, the post-salvage values had the 
widest range, both lower and higher than the post-fire values. By 2022, the sites had begun 
to homogenize again, with less variability in NDVI (~0.4), and values were increasing 
towards pre-fire levels. 

 
Figure 4. Rice Ridge Fire Unit 26; ground-cover field-plot locations are overlaid in the figure. Image 
years are (a) 2014 (pre-fire), (b) 2018 (post-fire), (c) 2019 (post-salvage), and (d) 2022. The reported 
completion date of salvage logging was August 2019; the 2022 image shows about 3 years of 
recovery. 
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completion date of salvage logging was August 2019; the 2022 image shows about 3 years of recovery.
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Figure 5. Box and whisker plot showing field unit means (n = 10) of NDVI values over time and across
the fire and salvage logging disturbances. Pre-fire NDVI (Pre_NDVI), post-fire NDVI (PF_NDVI),
post-salvage (PS_NDVI), and 2022 NDVI (NDVI_22) image dates are in Table 3. On the boxplots,
minimum and maximum values are represented by the whiskers; the first and third quartiles are
shaded; the median is in the shaded box.
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Figure 6. Scatterplot of NDVI values compared to ground-measured percent of detrimental-soil-
disturbance (DSD) values at the field units (n = 7). Post-salvage and 2022 NDVI values are plotted.

Table 5. Correlation analysis between the ground cover, disturbance, and topographic variables with
the image NDVI values at the field points (n = 29–39). Pearson correlation (r) values less than |0.01|
are indicated by a dash. Significant correlations (p < 0.05) are in bold. Soil (soil + gravel + rock);
nonphotosynthetic vegetation (NPV); detrimental soil disturbance (DSD); normalized differenced
vegetation index (NDVI).

Soil Burn Severity Soil NPV Live
Vegetation DSD Pre-Fire NDVI Post-Fire NDVI

Soil 0.19
NPV −0.33 −0.39

Live vegetation 0.15 −0.47 −0.60
DSD 0.24 0.36 −0.29 -

Pre-fire NDVI 0.24 - - - -
Post-fire NDVI −0.30 −0.21 - 0.17 −0.62 0.23

Post-salvage NDVI −0.73 −0.23 0.33 −0.12 −0.73 −0.19 0.60
2022 NDVI 0.14 0.18 −0.16 - - 0.36 0.37

3.3. Classification

We used regressive partitioning trees on the individual field-point data to attempt
to determine breakpoints in the data that indicated a high/moderate/low degree (or
high/low) of disturbance. Again, using the post-salvage (PS_NDVI) values in the parti-
tioning trees, two breakpoints were clearly identified (Figure 7). NDVI values greater than
0.32 had a low proportion of DSD, while values lower than 0.22 had a high proportion
of DSD (Figure 8). Moderate DSD was between 0.22 and 0.32 NDVI. We were unable to
extrapolate this analysis to the greater dataset (all salvaged units) because we only had
DSD values for the points that were field-sampled.

We repeated the partitioning tree analysis with the 2022 NDVI (NDVI_22) data to see
how NDVI thresholds might change over time. The breakpoint for the low DSD increased
to 0.38, while the breakpoint for the high DSD increased to 0.31. This is intuitive, as all sites
have had vegetation recovery in the 2–3 years between the two sets of images. There was
no natural separation for a ‘moderate’ DSD class using the 2022 NDVI values. This also
makes sense, as the sites are likely becoming more similar as the vegetation recovers.
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Fire 
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Equipment 
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Figure 8. Mixed-model results showing the difference in NDVI values by the season salvage logging
was completed. Completion dates for each field unit are listed in Table 1 and are generally in the
fall; however, this figure was created from the full dataset (n ~ 300), where salvage unit completion
dates were more varied. Winter (December–March); early Summer (April–July); Autumn (August–
November). The dashed horizontal line at NDVI = 0.22 is a breakpoint below which indicates
detrimental soil disturbance from the classification tree analysis in Figure 7. Minimum and maximum
values are represented by the whiskers; the first and third quartiles are shaded; the median is in the
shaded box. Significant differences (p < 0.05) between NDVI values by season are indicated by capital
letters A and B.

3.4. Mixed-Model Results

A mixed model was used to evaluate the influence of several variables on the post-
salvage NDVI values. All available topographical, vegetation, soil, logging equipment,
soil burn severity, and logging completion date variables were initially considered. Non-
significant variables were iteratively eliminated until significant and meaningful variables
remained (Table 6).
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Table 6. Results from the mixed model of the form: Post-salvage NDVI = Fire • Equipment • Month
• SBS • Slope • Elevation. SBS: soil burn severity. The model includes all tractor and skyline units
(n = 318) with complete datasets (no missing values) for all three fires.

Effect Factor
Variables

LS Means
Estimates

Continuous
Variables

Range
Num DF Den DF F Value p > F

Fire
Copper King 0.22 (B)

2 306 100.4 <0.0001Rice Ridge 0.36 (A)
Sunrise 0.12 (C)

Equipment Tractor 0.25 (A)
1 306 6.5 0.011Skyline 0.21 (B)

Season
Winter 0.26 (A)

2 306 3.0 0.05Summer 0.22 (B)
Fall 0.22 (B)

SBS
majority

Un/very low 0.23 (B)

3 306 10.7 <0.0001
Low 0.27 (A)

Moderate 0.22 (B)
High 0.20 (B)

Slope (%) 5–65 1 306 10.2 0.002
Elevation (m) 762–1957 1 306 10.1 0.002

Factor variables (fire, equipment, season, SBS) were evaluated for their relative differ-
ences by class. Tractor logging had a significantly lower NDVI (0.21) compared to skyline
logging (0.25). The salvaged units on the Sunrise Fire had the lowest post-salvage NDVI
(0.12), followed by Copper King (0.22) and Rice Ridge (0.36). The units classified as low
SBS had the highest post-salvage NDVI (0.27) compared to the moderate- and high-SBS
units (0.22, 0.21; respectively). Of the continuous variables, both elevation and slope were
significant, but compared to the other variables had relatively minor effects on the model.

The season variable was determined by the month that the salvage logging was
completed, and there was a significant effect on the post-salvage NDVI values (Figure 8).
When salvage logging was completed in winter months (December–March), NDVI was
higher. NDVI values were significantly lower in early summer or growing-season months
(April–July), and the lowest NDVI values occurred when logging was completed in autumn
months (August–November). This indicates less disturbance when logging was done over
snow, more disturbance during the growing season, and the greatest disturbance during
the fall, when soils may be occasionally wet and susceptible to rutting and compaction.

3.5. Imagery

Using the ranges of NDVI values that indicated the post-salvage DSD from the thresh-
olding analysis, we classified NDVI values and overlaid them on true-color imagery
(Figure 9). The skid trails are highly visible and show the network of traffic patterns from
the salvage logging. Areas of greater disturbance (red/yellow pixels) likely had more traffic
passes or a greater concentration of activity. Areas of relatively less disturbance (yet still
greater than the surrounding undisturbed land) are green/blue pixels and likely had fewer
traffic passes.

These images can be useful for managers, as they highlight the areas that were detri-
mentally disturbed, as well as provide some framework for the degree of disturbance
of the whole unit. The skid-trail networks can also be digitized for further analysis for
road-network connectivity and disturbance, as it pertains to greater watershed disturbance
after wildfires. In order to quantify the percent of each of these units that was likely
detrimentally disturbed, we plotted NDVI values on histograms with bins (Figure 10)
closely corresponding to the values in the legends in Figure 9. NDVI values less than
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0.22 potentially indicate DSD. From the histograms, we can see ~15% DSD in Unit 20, 23%
in Unit 26, and 7% in Unit 61.
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Figure 9. Classified NDVI values from Rice Ridge Fire imagery in the identified range of high to
low DSD, which highlight the skid trails from salvage logging. Panels are Rice Ridge (a) Unit 20,
(b) Unit 26, and (c) Unit 61.

The thresholding analysis (Figure 7) found higher NDVI values to indicate likely DSD
in an image that was several years postdisturbance compared to shortly after the event (0.31
and 0.22, respectively). The 2022 Copper King imagery was overlaid with classified NDVI
values thresholded at the higher limits to estimate the areal disturbance of the salvage units
(Figure 11). Using 2022 imagery, the breakpoint for DSD is ~0.31, giving 10%–25% DSD
in these four units (U4 18%; U12 26%; U13 10%; U37 25%). While these values may
seem high for 4+ years post-salvage disturbance, we measured 3%–13% exposed soil and
3%–20% DSD at the field plots (Table 4, Figure 2); thus, the field data correspond with the
image classifications.
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Figure 10. Histograms showing the distribution of pixels from the 2019 NDVI-classified images from
the Rice Ridge (RR) Fire in Figure 9; (a) Unit 20, (b) Unit 26, and (c) Unit 61. The frequency × 100%
gives the percentage of each of the classes in the units, with NDVI values below 0.22 indicating
potential detrimental soil disturbance (DSD).

We were able to observe the spread and degree of disturbance in the salvage units on
all three fires (Figures 9, 11 and 12; Rice Ridge, Copper King, and Sunrise, respectively)
using the post-salvage classified NDVI values. Somewhat varying NDVI values indicate
different degrees of disturbance on all three fires, and that can primarily be attributed to
the time between the fire and salvage logging, and the image that was used to evaluate dis-
turbance. The time between salvage-logging completion and the imagery was ~1 month for
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the Rice Ridge and Sunrise Fires, and NDVI values at or below 0.21 highlighted ground dis-
turbance directly due to logging operations (e.g., skid trails, patches of newly exposed soil)
(Figures 9 and 12). While on the Copper King Fire, more than 4 years passed between the
salvage and the high-resolution image we acquired; consequently, more revegetation had
occurred, and higher NDVI values (~0.3) indicated remaining soil disturbance (Figure 11).
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The results from the analyses are summarized along with management considerations
in Table 7. Our goal was to provide functional guidance for post-fire-salvage-logging
planning. Mindful planning considering the topography, background soil burn severity,
time since the fire, and logging season can all significantly lessen DSD.
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Figure 12. True color imagery from the Sunrise Fire. (a,b) are 2018 images approximately one year
after the fire and only one-month post-salvage; classified NDVI values are overlaid on panel (b),
showing widespread post-salvage disturbance; (c) shows revegetation in the 2022 image.
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Table 7. Decision tool for evaluating risk or likelihood of detrimental soil disturbance (DSD).

Rule Created for Value Risk Considerations

Slope >25%
>35%–45%

Elevated risk of DSD
Identified BMP threshold

Minimize ground disturbance on steep slopes;
consider orientation and placement of skid trails on

contour rather than downslope

Elevation >1600 m Elevated risk of DSD
Vegetation density and regrowth may be lower at
higher elevation and there may naturally be more

exposed soil

Harvest method Tractor or other
ground-based method Elevated risk of DSD

Ground-based methods inherently have more soil
disturbance; this is exacerbated by a prior fire

disturbance

Soil burn severity (SBS) Moderate or high SBS Elevated risk of DSD Elevated soil disturbance from severe fire

Harvest season Winter
(December–March) Decreased risk of DSD

Snow cover or frozen ground protects the soil
surface; wet soils may be more prone to rutting and

rill formation

NDVI values < 2 years
post-salvage

<0.22 Likely DSD Breakpoints for NDVI values and DSD will likely
vary by ecoregion, fire, time since the fire, etc.;

therefore, we recommend using these values as
starting points to evaluate and classify

the disturbance

>0.22 <0.32 Potential DSD

NDVI values > 2 years
post-salvage

<0.31 Likely DSD
<0.38 Potential DSD

4. Discussion
4.1. Ground Cover and DSD

Although immediate ground-cover measurements were not taken, we often found
0%–30% ground cover after high-severity fires in the immediate post-fire period [14,52,53],
with salvage logging potentially decreasing that value even further [20,34,54]. On these
fires, the wildfire appears to have reduced cover by at least half in our study sites, which
we can estimate from NDVI values (Figure 5). Sites were salvage-logged 2–3 years after the
fire, and ground-cover values showed high variability in this period; some sites had less
cover post-salvage than post-fire due to tree removal and soil exposure on the skid trails,
while other post-salvage sites have more cover, likely attributed to vegetation regrowth,
logging slash debris, and the general ‘recovery’ in the postdisturbance period. Moreover,
salvage impacts are highly localized even within salvage units; areas which are impacted
are often highly impacted, while other areas are untouched by the salvage operation. By
2022, all units were at least 5 years post-fire and at least 3 years post-salvage, and cover
had increased to 80%–90% on most units, with the Sunrise units having the least total
ground cover at ~75% (Table 4), which is likely due to a site factor, such as soil depth or
localized rainfall. The values found on these sites are typical for a mixed-conifer forest
in the western US, as Ref. [34] found total vegetation cover on skid-trail plots at a site in
eastern Washington at least doubled between the first and second post-fire years. Another
study in the same region found vegetation recovery was slow after delayed salvage logging
(3–4 years post-fire), particularly on sites burned at high or moderate burn severity [14],
with exposed soil still high at ~50–75%. Although the percent of soil exposed is only a proxy
for DSD, there was a significant relationship between DSD measurements, the percent of
exposed soil, and NDVI values (Table 5; Figures 3 and 6).

4.2. Using Imagery to Map DSD

Matching the spatial scale of remotely sensed imagery to the scale of the element or
process of interest is an essential part of a successful mapping campaign. Wildfire distur-
bances are often mapped at the 10–30 m (pixel) scale because of the frequently available
Sentinel-2 or Landsat satellites, which have appropriate bands for detecting changes in the
vegetation and soil conditions due to the wildfire [55]. The on-the-ground heterogeneity of
a wildfire disturbance can certainly be finer than 10 or 30 m, but for a full-fire burn severity
map, this type of imagery is the standard protocol [8,56,57]. For this study, however, a
typical logging skid trail is 2–4 m wide, which makes very-high-resolution imagery, such as
WorldView, better suited for evaluating fine-scale soil disturbances. Currently, WorldView
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and other commercially available imagery must be ordered, but it is becoming more widely
used and available. To estimate salvage logging completion dates, we used 10 m Sentinel-2
imagery and found that, in highly disturbed-ground salvage units (such as Rice Ridge
Unit 26, see Figure 4), we were able to identify skid trails easily with true-color and NDVI
images. On units that were less disturbed (e.g., Copper King Units 4 and 37; see Figure 11)
and did not have obvious skid trails, it was more difficult to determine when salvage had
occurred. The scale of the disturbance was finer than what was captured with 10 m pixels.

We applied NDVI as a disturbance indicator or as proxy for the percentage of DSD in
a salvage unit. We were able to estimate the areal percentage of disturbance in each salvage
unit using classified NDVI values. Skid trails, heavily trafficked roads and intersections,
and log landings are the major contributors of disturbed soil after a salvage operation [13].
The patterns of trail networks and landings that are the result of logging activities are
visible in imagery and are enhanced by classified NDVI values (Figures 4c and 9b). Best
management practice guidelines aim for less than 15% DSD in a unit. We found values
ranging from about 5% to 25% in various units, some of which are higher than desirable.
However, we feel that our estimates are likely within the range of variability of what would
actually be measured on the ground, and feel comfortable recommending that managers
use the estimates from classified NDVI values for post-salvage disturbance estimates.
Researchers found that both logging methods and timber operators contribute to the degree
of disturbance after logging, and there can be a need for quality control [25]. An areal
estimate of the disturbance from satellite imagery presents an efficient proxy to estimate
DSD to supplement soil field assays. Field assessments help to clarify and ground-truth
the image estimates according to the soil type and ecological recovery. A complaint in
the public record from the Lolo NF salvage sales was that only 7 units (out of 300+) were
evaluated for DSD [30], which were different than the 7 units that were evaluated as part of
this study. A remote assessment would allow a much greater percentage of sites to have a
consistent evaluation.

The degree of disturbance estimated is strongly related to the time since the distur-
bance has passed, and we found that we were able to map disturbance patterns (skid trails
and patches) even 4+ years after logging on the Copper King Fire (Figure 11). However,
the rate at which revegetation occurs is often rapid after the first postdisturbance growing
season [52,53], and is likely captured by one or two images in the proceeding year(s). Thus,
there is no critical need in most cases for weekly or monthly images, like one could get
with either Landsat or Sentinel time series, or at even higher temporal resolution with Har-
monized Landsat–Sentinel time series [55]. For both spatial and temporal considerations,
we feel that very-high-resolution imagery (<5 m) is most appropriate for mapping logging
skid trails and post-salvage disturbance. With a modest amount of effort, we were able to
acquire very-high-resolution imagery at sufficient periodic timesteps to capture the change
in the forest environment due to wildfire and salvage logging at the desired spatial and
temporal resolution.

On the Lolo NF, presalvage soil monitoring found around 2%–4% DSD in potential
logging units, primarily from existing jammer road systems [30]. Because it may not be
possible to return a disturbed system fully to its pre-disturbance state, the goal is often
to rehabilitate along a trajectory that aims to come as close to the pre-disturbance state as
possible. The same Lolo NF Monitoring Report [30] found 25% or more DSD after an initial
assessment of high-burn-severity units on the Copper King Fire. Other Lolo units (not
part of this study) averaged around 7.5% DSD, which is well below the BMP limit of 15%.
This range of DSD values across sites is not surprising, as many factors, such as soil burn
severity (i.e., prior extreme disturbance), slope, equipment, intensity, and harvest season,
all play a role in the degree of disturbance from logging activities [16,22,27]. The range of
values emphasizes the need for monitoring at a broad scale, which is much more feasible
with remote sensing techniques rather than relying on field visits alone.

The factors that we found to be influential for DSD after salvage logging broadly
fell under three categories: topographical, prior disturbance, and logging activity. To-
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pographically, higher slopes and higher elevations both lead to an increased chance of
DSD (Tables 6 and 7). There are BMPs for slope, but not for elevation. A review by [28]
indicated that the greatest disturbance on machine-operated skid trails occurred on slopes
greater than 20%. The authors of [26] found that bulk density and rut depth increased
on steeper slopes due to unbalanced load distribution. These results agreed with what
we found (Table 7), i.e., that there is an increased risk of DSD at slopes greater than 25%,
and even more so on slopes greater than 35%. We found that, as elevations increased,
so did DSD, and this is likely the result of soil types and vegetation density differing by
elevation. Lower vegetation density, lower vegetative ground cover, and rocky soils at
higher elevations could all be elements signaling the potential for greater disturbance after
salvage logging. Similarly, lower elevations than the study area could prove to have slower
recovery due to less vegetation vigor and overall production.

Prior disturbance for salvage logging is primarily soil burn severity, which is specific
to the effects of the fire on the ground surface rather than the canopy [8,9], but could also
include land use such as grazing or prior logging activity [58]. High soil burn severity in
particular indicates severe effects of the fire on the soils, which can mimic and compound the
disturbance from logging: the removal of surface organics, reduced infiltration, increased
risk of runoff, and erosion [9,22]. Other studies have found logging traffic increased the soil
bulk density by 25% up to a soil depth of 10 cm [20,34,59,60]. In addition to soil disturbance
leading to a potential hydrologic response, long-term tree recovery and stand performance
may also be compromised [21,61]. We calculated the dNDVI (pre-NDVI–post-NDVI) for
both post-fire and post-salvage NDVI from the values in Table 4. The mean dNDVI for the
post-fire timeframe was 0.39, while the post-salvage dNDVI was 0.40. This was interesting
because it hinted at the possibility of an additional impact from the secondary disturbance
of salvage logging, or at least showed little or no recovery between fire and salvage. Post-
salvage dNDVI was more strongly correlated (r = 0.71) to DSD than the post-fire dNDVI
(0.61) on the plots where DSD was measured. While it is difficult to determine from these
values alone the proportion of disturbance that can be attributed to either fire or salvage, or
the accumulation of both, it is clear that NDVI is capable of identifying areas of varying
degrees of disturbance. A decrease in NDVI values can be attributed to the destruction of
vegetation (increase in red values) as well as more exposed soil (decrease in NIR values).
Fire and logging can impact both vegetation and soils in the perturbed areas.

We use the term ‘logging activity’ broadly to incorporate the seasonal timing of the
logging operation, equipment type, and the intensity or impact of the logging on the unit.
Seasonally, we found that winter logging (December–March; Figure 8) had the least impact
on soils. These results are generally agreed upon in the literature, as frozen soils are more
resistant to compaction and rutting [61,62]. Reeves et al. [25] also proposed that seasonality
was a main factor, and included the interaction of the harvest season × land type as a
key variable in their model, along with slope and aspect. We evaluated two equipment
types in this study, skyline (cable suspension of logs) and tractor (log skidders) [19]. The
result was that the tractor-skidder units were significantly lower in NDVI values and
higher in DSD values (Table 6). This was an intuitive result, but also advantageous when
supported by data and statistics, as well as other studies [22]. Reeves et al. [25] discussed
equipment operator skill and sale administrator knowledge on local conditions having an
impact on the degree of soil disturbance during the logging activities. Equipment operators’
awareness and understanding of the need for adhering to BMPs likely plays a role in the
disturbance outcome.

4.3. Management Considerations

Identifying areas more susceptible to high impact and greater disturbance from har-
vest activities allows land managers to develop alternative strategies to meet management
objectives and can help prioritize the allocation of monitoring resources. Decision tools,
such as the one in Table 7, that incorporate geospatial layers like NDVI, which indicates
levels of disturbance, can play a crucial role in project planning and are a key component
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of adaptive management strategies. All of the factors that we have identified as influen-
tial for predicting detrimental soil disturbance are somewhat ameliorated with planning.
Naghdi [26] suggested that the adverse effects of salvage logging traffic can be partially
mitigated with adequate preparation, including spatially pre-planning machine-tracked
trails. Particular attention should be paid to minimizing traffic passes and eliminating
skidding on steep (>25%–35%) slopes. When possible, logging on wet or severely disturbed
soils should be avoided. If one or more of the conditions in Table 7 cannot be avoided, then
minimizing the number of confounding disturbance factors should be considered.

To include a real-life example from the Lolo NF, the timber industry asked for modifi-
cations from the Lolo Forest Plan in order to harvest more lands; for example, harvesting
on slopes >35%–50% [30]. The leadership team responded in a way that allowed some
variances to the BMPs with appropriate monitoring to allow for additional timber harvest
to meet other objectives (V. Archer, personal communication). We are not suggesting rigid
rules for harvest, but rather a set of factors to consider when planning in order to meet
a wide range of land-management objectives. Our methods presented here provide an
operational, repeatable process for monitoring soil disturbance after salvage logging over
many years, particularly in the most sensitive 1–3 years following the salvage disturbance.
Because NDVI is sensitive to changes in both green vegetation and soil exposure, it would
be appropriate to apply these methods to prescribed fires as well as fuel treatments (e.g.,
thinning), which are less disruptive to the impacted environment. NDVI is capable of
detecting minor disturbances [36] and should be an efficient method for other types of
disturbance mapping. Limitations to the application might include situations where the
impact to the soil is much higher than that of the canopy (occlusion), or a situation where
vegetation is affected by disease or pest, which might have zero associated soil disturbance.
Prior knowledge or historical images of the study area would help inform disturbance
history and increase the likelihood of success from the methods presented here. The
decision table and GIS procedure presented here move towards making both planning
and monitoring decisions easier and more accessible for land managers. There is a need
for the standardization of protocols and thresholds to apply technology across multiple
landscapes, and the methods presented here should be replicated on other fire and logging
environments for evaluation.

5. Conclusions

Our primary goal was to develop an operational methodology for remotely evaluating
detrimental soil disturbance (DSD) after post-fire salvage logging. We found strong corre-
lations between exposed mineral soil and DSD measured in the field, and subsequently
found strong correlations between post-salvage NDVI values and DSD. Three to four
years post-salvage, we found a range of exposed soil of 5%–25% and DSD of 3%–20%
across low-, moderate-, and high-soil-burn-severity units. NDVI values from the 2 m
WorldView-2 imagery <0.22 and <0.31 soon after salvage logging and 3 years post-salvage,
respectively, indicated high DSD. We modeled DSD based on NDVI and other logistical
logging factors (topography, season, soil burn severity, equipment), and made manage-
ment recommendations for minimizing DSD from salvage logging. While our general
management recommendations are not exceedingly novel, the additional geospatial anal-
ysis and threshold NDVI values provide a repeatable and scalable method for mapping
and monitoring logging disturbance over large areas and many years. Our management
considerations table is formatted as a decision-making tool to deliver functional guidance
for post-fire salvage-logging planning. Mindful planning considering the topography,
soil burn severity, time since fire, and logging season can all significantly lessen DSD.
The classified NDVI maps can be used to evaluate salvage disturbance, delineate existing
skid trails, and eventually incorporate skid trails and soil-disturbance information into
watershed-modeling tools.
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