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Abstract

It has been suggested that a class of chemically peculiar metal-poor stars called iron-rich metal-poor (IRMP) stars formed
from molecular cores with metal contents dominated by thermonuclear supernova nucleosynthesis. If this interpretation is
accurate, then IRMP stars should be more common in environments where thermonuclear supernovae were important
contributors to chemical evolution. Conversely, IRMP stars should be less common in environments where
thermonuclear supernovae were not important contributors to chemical evolution. At constant [Fe/H]−1, the Milky
Way’s satellite classical dwarf spheroidal (dSph) galaxies and the Magellanic Clouds have lower [α/Fe] than the Milky
Way field and globular cluster populations. This difference is thought to demonstrate the importance of thermonuclear
supernova nucleosynthesis for the chemical evolution of the Milky Way’s satellite classical dSph galaxies and the
Magellanic Clouds. We use data from the Sloan Digital Sky Survey Apache Point Observatory Galactic Evolution
Experiment and Gaia to infer the occurrence of IRMP stars in the Milky Way’s satellite classical dSph galaxies ηdSph and
the Magellanic Clouds ηMag, as well as in the Milky Way field ηMWF and globular cluster populations ηMWGC. In order of
decreasing occurrence, we find h = -

+0.07dSph 0.02
0.02, h = -

+0.037Mag 0.006
0.007, h = -

+0.0013MWF 0.0005
0.0006, and a 1σ upper limit

ηMWGC< 0.00057. These occurrences support the inference that IRMP stars formed in environments dominated by
thermonuclear supernova nucleosynthesis and that the time lag between the formation of the first and second stellar
generations in globular clusters was longer than the thermonuclear supernova delay time.

Unified Astronomy Thesaurus concepts: Chemical enrichment (225); Chemically peculiar stars (226); Dwarf
spheroidal galaxies (420); Galactic archaeology (2178); Globular star clusters (656); Large Magellanic Cloud
(903); Magellanic Clouds (990); Milky Way Galaxy (1054); Population II stars (1284); Small Magellanic Cloud
(1468); Stellar abundances (1577); Type Ia supernovae (1728)

Supporting material: machine-readable table

1. Introduction

Thermonuclear supernovae4 are prolific producers of iron-
peak elements with a theoretically predicted average stable
yield of more than 0.6Me of iron-peak elements but much less
of the α and light odd-Z elements. This is in sharp contrast to
core-collapse supernovae that produce α and light odd-Z
elements in roughly the solar ratios but with relatively little
iron-peak production (e.g., Sukhbold et al. 2016).

Based on a compilation of theoretical stable nucleosynthetic
yields predicted by a variety of thermonuclear supernova
progenitor channels (i.e., single degenerate and double
degenerate) and explosion mechanisms (e.g., pure detonations,
pure deflagrations, delayed detonations, double detonations,
etc.), Reggiani et al. (2023) proposed the existence of a new
class of chemically peculiar metal-poor stars with [Fe/H]−1
and [O, F, Ne, Na, Mg, Al, Cl, K, Co, Cu, Zn/Fe]< 0 formed
from molecular cores with metal contents dominated by

thermonuclear supernova nucleosynthesis.5 They called stars
with these properties iron-rich metal-poor (IRMP) stars, as this
part of elemental abundance space is consistent with thermo-
nuclear supernova nucleosynthesis but rarely observed in
metal-poor stars. They argued that if their interpretation is
correct, then IRMP stars should be more common in
environments where thermonuclear supernovae were relatively
more important contributors to chemical evolution relative to
core-collapse supernovae (e.g., environments with long star
formation durations). On the other hand, they argued that in
environments where thermonuclear supernovae were not
important contributors to chemical evolution relative to core-
collapse supernovae (e.g., environments with short star
formation durations) IRMP stars should be less common.
One way to test this prediction would be to compare the relative

occurrence of IRMP stars in the Milky Way’s field population, its
globular clusters, its satellite classical dwarf spheroidal (dSph)
galaxies, and the Magellanic Clouds. At constant spectro-
scopically inferred metallicities [Fe/H]−1,6 both the Milky
Way’s classical dSph satellites (Shetrone et al. 2001, 2003;

The Astronomical Journal, 166:127 (9pp), 2023 September https://doi.org/10.3847/1538-3881/ace68d
© 2023. The Author(s). Published by the American Astronomical Society.

3 Carnegie Fellow.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

4 In this article we use the phrase “thermonuclear supernovae” to refer to the
theoretical concept of electron-degenerate carbon–oxygen white dwarfs
experiencing runway carbon fusion that releases enough energy to gravita-
tionally unbind the white dwarfs and thereby cause explosions.

5 The yields in that compilation came from Seitenzahl et al. (2013, 2016),
Fink et al. (2014), Ohlmann et al. (2014), Papish & Perets (2016), Leung &
Nomoto (2018, 2020a, 2020b), Nomoto & Leung (2018), Bravo et al. (2019),
Boos et al. (2021), Gronow et al. (2021a, 2021b), and Neopane et al. (2022).
6 In this article metallicity [Fe/H] has its usual meaning, =[ ]Fe H

* -( ) ( )N N N Nlog log10 Fe H 10 Fe H , where NX are the logarithmic number
densities of atoms of an element X in a stellar photosphere and NH ≡ 12.
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Tolstoy et al. 2003; Kirby et al. 2009, 2010, 2011a, 2011b) and
the Magellanic Clouds (Pompéia et al. 2008; Van der
Swaelmen et al. 2013; Nidever et al. 2020) have lower
spectroscopically inferred ratios of the α-elements oxygen,
magnesium, silicon, and calcium to iron [α/Fe]7 than the
Milky Way (e.g., Wallerstein 1962; Luck & Bond 1981;
Peterson 1981; Gratton 1983; Luck & Bond 1985;
Magain 1985; Gratton & Ortolani 1986; Gratton &
Sneden 1988; Magain 1989; Ryan et al. 1991; McWilliam
et al. 1995a, 1995b) and its globular clusters (e.g.,
Cohen 1978, 1979, 1980, 1981; Pilachowski et al. 1983).
These offsets in [α/Fe] between the Milky Way field and
globular cluster populations and between its satellite classical
dSph galaxies and the Magellanic Clouds are usually under-
stood to indicate the longer durations of low-metallicity star
formation and therefore the relatively more important con-
tributions of thermonuclear supernovae to the chemical
evolution of the latter two environments at low metallicities
(e.g., Lanfranchi & Matteucci 2003, 2004; Lanfranchi et al.
2006; Marcolini et al. 2006; Lanfranchi & Matteucci 2007;
Lanfranchi et al. 2008; Kirby et al. 2011a; Bekki &
Tsujimoto 2012; Nidever et al. 2020; Reggiani et al. 2021).
If the Reggiani et al. (2023) interpretation of IRMP stars is
valid, then IRMP stars should be less common in the Milky
Way field and globular cluster populations than in its satellite
classical dSph galaxies and the Magellanic Clouds.

The nitrogen, sodium, and aluminum abundances of
individual stars in globular clusters have been found to be
anticorrelated with the carbon, oxygen, and magnesium
abundances in the same stars. These abundance anticorrelations
have been interpreted as evidence for multiple generations of
star formation in globular clusters (e.g., Sneden et al. 1992;
Gratton et al. 2001, 2004; Carretta et al. 2009; Bastian &
Lardo 2018). The Reggiani et al. (2023) interpretation of IRMP
stars also suggests the possibility that the occurrence of IRMP
stars in globular clusters can be used to constrain the time lag
between the formation of a globular cluster’s first and second
stellar generations. For Type Ia supernovae8 delay times
τIa 100Myr, the Type Ia supernova rate ΦIa has the value
ΦIa∼ 10−12 yr−1


-M 1 (e.g., Totani et al. 2008; Maoz et al.

2011, 2012; Graur et al. 2014; Maoz et al. 2014). Assuming
that rate and a typical first-generation initial globular cluster
mass MMWGC∼ 106Me (e.g., Conroy 2012), order 10 Type Ia
supernovae should occur in a newly formed globular cluster
every 10Myr after the Type Ia delay time has elapsed. While
the occurrence of the short-period binaries necessary to
produce most of the theoretically predicted thermonuclear
supernova progenitor systems is a factor of about three lower in
globular clusters’ first generations than in the field (Carney
et al. 2003; Lucatello et al. 2015), after the Type Ia supernovae
delay times have elapsed a few thermonuclear explosions
should occur every 10Myr during the formation of a globular
cluster. The Reggiani et al. (2023) interpretation of IRMP stars
therefore implies that if the time lag between the formation of
first- and second-generation stars in globular clusters was
shorter than the typical thermonuclear supernova delay time,

then the occurrence of IRMP stars in globular clusters should
be significantly lower than in the Milky Way field. If the time
lag between the formation of first- and second-generation stars
in globular clusters is longer than the typical thermonuclear
supernova delay time, then the occurrence of IRMP stars in
globular clusters and the Milky Way field should be
comparable.
We argue that if the Reggiani et al. (2023) interpretation of the

origin of IRMP stars is accurate, then the occurrence of IRMP
stars in the Milky Way field population ηMWF, the Magellanic
Clouds ηMag, and the Milky Way’s satellite classical dSph galaxies
ηdSph should be ordered ηMWF< ηMag∼ ηdSph. If the time lag
between the formation of the first and second generations in
globular clusters was shorter than the thermonuclear supernova
delay time, then the occurrence of IRMP stars in the Milky Way
globular cluster population ηMWGC should be ηMWGC
ηMWF< ηMag∼ ηdSph. If the time lag between the formation of
the first and second generations in globular clusters was longer
than the thermonuclear supernova delay time, then ηMWGC∼
ηMWF< ηMag∼ ηdSph. In this article, we calculate the occurrence
of IRMP stars in the Milky Way’s satellite classical dSph galaxies,
the Magellanic Clouds, the Milky Way field population, and the
Milky Way’s globular clusters. We describe in Section 2 the
assembly of our analysis samples and quantify in Section 3
the occurrence of IRMP stars in each environment. We review the
implications of those occurrences in Section 4 and conclude by
summarizing our findings in Section 5.

2. Data

To calculate the occurrence of IRMP stars in the Milky
Way’s satellite classical dSph galaxies, the Magellanic Clouds,
the Milky Way field population, and the Milky Way’s globular
clusters, we use data derived from spectra that were gathered
during the third and fourth phases of the Sloan Digital Sky
Survey (SDSS; Eisenstein et al. 2011; Blanton et al. 2017) as
part of its Apache Point Observatory Galactic Evolution
Experiment (APOGEE; Majewski et al. 2017). These spectra
were collected with the APOGEE spectrographs (Zasowski
et al. 2013, 2017; Wilson et al. 2019; Beaton et al. 2021;
Santana et al. 2021) on the New Mexico State University 1 m
Telescope (Holtzman et al. 2010), the Sloan Foundation 2.5 m
Telescope (Gunn et al. 2006), and the 2.5 m Irénée du Pont
Telescope (Bowen & Vaughan 1973). As part of SDSS Data
Release (DR) 17 (Abdurro’uf et al. 2022), these spectra were
reduced and analyzed with the APOGEE Stellar Parameter and
Chemical Abundance Pipeline (ASPCAP; Allende Prieto et al.
2006; Holtzman et al. 2015; Nidever et al. 2015; García Pérez
et al. 2016) using an H-band line list, MARCS model
atmospheres, and model-fitting tools optimized for the
APOGEE effort (Alvarez & Plez 1998; Gustafsson et al.
2008; Hubeny & Lanz 2011; Plez 2012; Smith et al. 2013;
Cunha et al. 2015; Shetrone et al. 2015; Jönsson et al. 2020;
Smith et al. 2021).
We use the CasJobs portal9 and the query described in the

Appendix to generate our initial sample of photospheric stellar
parameters and elemental abundances for giant stars with

<glog 3.8. As described in the Appendix, we use a carefully
curated set of data quality flags to ensure the accuracy and
precision of those photospheric stellar parameters and ele-
mental abundances. We set to null any elemental abundance/

7 In this article the α-element-to-iron ratio [α/Fe] has its usual meaning,
*a = -a a[ ] ( ) ( )Fe log N N log N N10 Fe 10 Fe , where α is the sum of some

subset of the elements oxygen, magnesium, silicon, and calcium.
8 In this article we use the phrase “Type Ia supernovae” to refer to the
electromagnetic transients empirically classified as Type Ia supernovae based
on their observed properties. 9 http://skyserver.sdss.org/casjobs/
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elemental abundance uncertainty pair that does not pass the
data quality checks described in the Appendix. Corrections for
departures from local thermodynamic equilibrium are usually
small for H-band elemental abundance inferences (e.g., Osorio
et al. 2020), and we choose not to apply them in our analysis.

Following Reggiani et al. (2023), we define an IRMP star as
a star with [Fe/H]<−1 and [O, Na, Mg, Al, K, Co/Fe]< 0.
Those elemental abundance ratios form the intersection of the
IRMP criteria defined in Reggiani et al. (2023) and the list of
elemental abundances reliably inferred for giant stars as part of
APOGEE DR17.10 For the purposes of the occurrence
calculation described in the next section, an IRMP star with
[Fe/H]<−1 must have at least one non-null abundance ratio
[O/Fe], [Na/Fe], [Mg/Fe], [Al/Fe], [K/Fe], or [Co/Fe] and
all abundance ratios [O, Na, Mg, Al, K, Co/Fe] either subsolar
or null.

To accurately label stars with their correct galactic environ-
ments, we first join the APOGEE data described above with
data from Gaia DR2 (Gaia Collaboration et al. 2016; Arenou
et al. 2018; Evans et al. 2018; Gaia Collaboration et al. 2018;
Lindegren et al. 2018; Luri et al. 2018; Riello et al. 2018) and
DR3 (Gaia Collaboration et al. 2016; Lindegren et al.
2021a, 2021b; Fabricius et al. 2021; Gaia Collaboration
et al. 2021; Riello et al. 2021; Rowell et al. 2021; Torra
et al. 2021). We use the apogee_id string to identify the
corresponding Gaia DR2 and DR3 source_id long integers
by joining with the gaiadr2.tmass_best_neighbour
and gaiadr3.tmass_psc_xsc_best_neighbour
tables available in the Gaia archive (Salgado et al. 2017;
Marrese et al. 2019). Occasionally multiple Gaia DR2 and DR3
source_id long integers are matched to the same object in
the Two Micron All Sky Survey (2MASS) Point Source
Catalog (Skrutskie et al. 2006). In those cases, we associate a
2MASS object with the closest Gaia DR2 and DR3 object that
has (1) an absolute 2MASS Ks-band magnitude MK< 2.31
assuming Gaia DR2- or DR3-prior informed geometric
distances (Bailer-Jones et al. 2018, 2021) and (2) Gaia–
2MASS colors 0.5<G− J< 2.3, 0.6<G−H< 3.3, and
0.6<G− Ks< 3.4 predicted by the MESA Isochrones &
Stellar Tracks (MIST) grid for metal-poor giants in the range
−2.5< [Fe/H]<−1.0 (Paxton et al. 2011, 2013, 2015; Choi
et al. 2016; Dotter 2016; Paxton et al. 2018).

We then use the Gaia DR2 source_id to identify Milky
Way satellite classical dSph galaxies or Magellanic Cloud
members using the Gaia DR2-based membership lists pub-
lished in Gaia Collaboration et al. (2018). We identify globular
cluster members using the Gaia DR3 source_id and the
Vasiliev & Baumgardt (2021) lists of stars with globular cluster
membership probability greater than 0.5, and this procedure
results in a sample with at least one star from 41 globular
clusters over the metallicity range −2.3 [Fe/H]−1.0.

Most stars observed as part of SDSS-III/APOGEE and
SDSS-IV/APOGEE-2 were selected for observation by a
procedure that sought to minimize age and metallicity biases
(e.g., Zasowski et al. 2013, 2017), and we use the targeting flag
extratarg = 0 in the table apogeeStar to select those
stars for our Milky Way field sample. To ensure the cleanest
Milky Way field sample possible, we then remove from this
sample any stars that are identified as dSph, Magellanic Cloud,
or globular cluster members in Gaia Collaboration et al. (2018)

or Vasiliev & Baumgardt (2021). Because the vast majority of
stars with [Fe/H]−1 observed as part of SDSS-III/
APOGEE and SDSS-IV/APOGEE-2 are on halo-like orbits
(e.g., Hayes et al. 2018), our Milky Way field sample can be
thought of as a Milky Way halo sample. We list in Table 1 our
entire analysis sample including IRMP status and galactic
environment. We report in Table 2 the number of stars
classified as IRMP stars in each environment, N*,IRMP, along
with the number of stars in our analysis sample in each
environment, N*,tot.
The typical elemental abundance inference uncertainties in

our analysis sample are (0.04, 0.23, 0.03, 0.04, 0.08, 0.16) dex
for ([O/Fe], [Na/Fe], [Mg/Fe], [Al/Fe], [K/Fe], [Co/Fe]). In
any case, elemental abundance inference uncertainties are
irrelevant for the occurrence analyses presented in Section 3 if
(1) the uncertainty distributions for each elemental abundance
inference for each individual star are symmetric and (2) the
uncertainty distributions have statistically indistinguishable
widths across all of the galactic environments we explored.
The individual elemental abundance inference uncertainties
presented in the SDSS DR17 version of the table aspcap-
Star are reported as symmetric. Additionally, we confirmed
that the individual elemental abundance uncertainty distribu-
tions for oxygen, sodium, magnesium, aluminum, potassium,
and cobalt have statistically indistinguishable widths across all
of the galactic environments we explored. Both of the
conditions listed above are therefore met in our analysis
sample. Likewise, we argue that our procedure to handle data
quality issues will not bias the occurrence analyses we present
in Section 3. The reason is that null values impact less than
about 0.2% of the magnesium abundance inferences in our
sample. Because we require all non-null elemental inferences
to meet our IRMP criteria, we are able to exclude essentially all
non-IRMP stars from our IRMP sample using magnesium
alone almost regardless of data quality issues.
The recent discovery of a very metal-poor star with

elemental abundances best explained by the nucleosynthesis
expected in a pair-instability supernova has focused attention
on that explanation for stars with significantly subsolar [Na/Fe]
and [α/Fe] abundance ratios (Xing et al. 2023). While the stars
in our analysis sample have subsolar [Na/Fe] and the α-
element abundance ratios [O/Fe] and [Mg/Fe], none of the
stars in our sample have the strong odd–even abundance ratios
predicted to be produced by pair-instability supernovae (e.g.,
Heger & Woosley 2002). We are therefore confident that
the IRMP stars we identify are related to thermonuclear
supernovae.

3. Analysis

We model the number of IRMP stars N*,IRMP in a sample of
N*,tot candidates using a binomial distribution. Following
Schlaufman (2014), we exploit the fact that a Beta(α, β)
distribution is a conjugate prior to the binomial distribution and
will result in a Beta distribution posterior for the occurrence of
IRMP stars in a sample. Bayes’s theorem guarantees

ò
q

q q
q q q

=( ∣ ) ( ∣ ) ( )
( ∣ ) ( )

( )y
y

y
f

f f

f f d
, 1

where f (θ|y) is the posterior distribution of the model parameter
θ, f (y|θ) is the likelihood of the data y given θ, and f (θ) is the
prior for θ. In this case, the likelihood is the binomial likelihood10 https://www.sdss4.org/dr17/irspec/abundances
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that describes the probability of a number of successes y in n
Bernoulli trials each with probability θ of success

q q q= - -( )( ∣ ) ( ) ( )f y
n
y 1 . 2y n y

As shown by Schlaufman (2014), in this situation using a Beta
(α, β) prior on θ with hyperparameters α and β results in a
Beta posterior for θ of the form Beta(α+ N*,IRMP,
β+ N*,tot−N*,IRMP).

The hyperparameters α and β of the prior can be thought of
as encoding a certain amount of prior information in the form
of pseudo-observations. Specifically, α−1 is the number of
successes and β−1 is the number of failures imagined to have
already been observed and therefore included as prior
information on θ. Taking any α= β= i where i� 1 could be
thought of as an uninformative prior in the sense that the
probabilities of success and failure in the prior distribution are
equally likely. However, if i is large, then there is imagined to
be a lot of prior information and the posterior distribution will
mostly reflect the prior when n� i. On the other hand, if n? i,
then the posterior will be dominated by the data. For that
reason, we take α= β= 1.

We provide the posterior median occurrence of IRMP stars in
each galactic environment in Table 2. We define the lower
uncertainty as the difference between the posterior median and its
16th percentile. Likewise, we define the upper uncertainty as the

difference between the posterior’s 84th percentile and its median.
For an environment with no IRMP stars, we report 1σ upper limits
as the 68th percentile of the posterior distribution. We find that
h = -

+0.07dSph 0.02
0.02, h = -

+0.037Mag 0.006
0.007, h = -

+0.0013MWF 0.0005
0.0006,

and a 1σ upper limit ηMWGC< 0.00057. In words, IRMP stars are
much more common in the Milky Way’s classical dSph satellites
and the Magellanic Clouds than in the Milky Way field or
globular cluster populations. IRMP stars are less common in
globular clusters than in any other galactic environment. We find
that the overlap probability between the IRMP occurrences we
observed in the Milky Way’s classical dSph satellites and the
Magellanic Clouds is about 1 in 91, equivalent to about 2.3σ. We
find that the overlap probabilities between the IRMP occurrences
we observe in the Milky Way’s classical dSph satellites and the
Magellanic Clouds and the occurrence of IRMP stars we observe
in the Milky Way field population are about 1 in 2.8× 1015 and 1
in 6.2× 1019, equivalent to about 8.1σ and 9.2σ. The overlap
probability between the IRMP occurrences we observe in the
Milky Way field and globular cluster populations is about 1 in 23,
equivalent to about 1.7σ. We summarize these occurrence
posterior overlap probabilities in Table 3.
The results presented in Table 2 are averaged over

metallicity. To investigate IRMP occurrence as a function of
metallicity, for each class of galactic environment we divide
into 10 equal intervals the metallicity range spanned by our
analysis sample for that environment. We then apply the same
occurrence formalism in each individual metallicity interval
and plot occurrence as a function of metallicity for each
environment in Figure 1. We find no significant dependence of
the occurrence of IRMP stars on metallicity in our analysis
sample.

4. Discussion

We find that the occurrences of IRMP stars in the Milky
Way’s satellite classical dSph galaxies, the Magellanic Clouds,

Table 1
Analysis Sample

APOGEE ID Gaia DR3 source_id Gaia DR2 source_id IRMP Environment

2M17165079−2422565 4111066558908989184 4111066558908989184 False Milky Way
2M17150296−2423503 4114045307692005632 4114045307692005632 False Milky Way
2M19154424−0604209 4211181280154376320 4211181280154376320 False Milky Way
2M19033822+1745138 4514220364269464832 4514220364269464832 False Milky Way
2M16574858−2156135 4126283868512500864 4126283868512500864 False Milky Way
2M18501947+2948368 2041393317228382848 2041393317228382848 False Milky Way
2M18132084+0112054 4275831399934633984 4275831399934633984 False Milky Way
2M17571005−3020262 4056215664653907456 4056215664653907456 False Milky Way
2M17415271−2715374 4060889448072712832 4060889448072712832 False Milky Way
2M19084424−0618527 4205916204326948736 4205916204326948736 False Milky Way

(This table is available in its entirety in machine-readable form.)

Table 2
Occurrence of IRMP Stars as a Function of Environment

Galactic Environment N*,IRMP N*,tot Occurrence

Milky Way 5 4247 -
+0.0013 0.0005

0.0006

Globular clusters sum 0 1998 <0.00057

LMC 4 203 -
+0.023 0.009

0.012

SMC 24 572 -
+0.043 0.008

0.009

Magellanic Clouds sum 28 775 -
+0.037 0.006

0.007

Sagittarius 0 27 <0.04
Ursa Minor 0 8 <0.12
Sextans 1 6 -

+0.2 0.1
0.2

Sculptor 8 70 -
+0.12 0.03

0.04

Draco 0 9 <0.11
Carina 1 31 -

+0.05 0.03
0.05

dSph galaxies sum 10 151 -
+0.07 0.02

0.02

Table 3
Occurrence Posterior Overlap Probabilities

Population Population P(Posterior Overlap)

dSph galaxies Magellanic Clouds 1.095 × 10−2

dSph galaxies Milky Way field 3.596 × 10−16

Magellanic Clouds Milky Way field 1.620 × 10−20

Milky Way field Milky Way globular clusters 4.300 × 10−2
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the Milky Way field population, and the Milky Way’s globular
cluster populations have the values h = -

+0.07dSph 0.02
0.02, h =Mag

-
+0.037 0.006

0.007, h = -
+0.0013MWF 0.0005

0.0006, and ηMWGC< 0.00057,
respectively. The probability that the IRMP occurrences in the
Milky Way’s satellite classical dSph galaxies and the
Magellanic Clouds overlap is about 1 in 91, equivalent to
about 2.3σ. The probabilities that the IRMP occurrence
posterior for the Milky Way field overlaps with the IRMP
occurrence posteriors for Milky Way’s satellite classical
dSph galaxies and the Magellanic Clouds are about 1 in
2.8× 1015 and 1 in 6.2× 1019, respectively, equivalent to
about 8.1σ and 9.2σ. The probability that the IRMP
occurrences in the Milky Way field and globular cluster
populations overlap is about 1 in 23, equivalent to about 1.7σ.
While the absolute values of IRMP star occurrences may be
difficult to interpret, as we argued in the introduction, their
ordering ηMWGC∼ ηMWF< ηMag∼ ηdSph has two important
implications.

The increased occurrence of IRMP stars in environments like
the Milky Way’s satellite classical dSph galaxies and the
Magellanic Clouds, where thermonuclear supernovae were
important contributors to chemical evolution, supports the
Reggiani et al. (2023) scenario for IRMP star formation in
molecular cores with metal contents dominated by the
thermonuclear supernova nucleosynthesis. The confirmation
of this Reggiani et al. (2023) prediction reinforces the idea that
the elemental abundances of individual IRMP stars can be used
to investigate the progenitor systems and explosion mechan-
isms responsible for the thermonuclear supernovae that
produced much of their metal contents.

The statistically indistinguishable occurrences of IRMP stars
in the Milky Way’s field and globular cluster populations

suggest that the time lags between the formation of globular
clusters’ first and second stellar generations were longer than
the thermonuclear supernova delay time. This is broadly
consistent with the idea from the asymptotic giant branch
(AGB) scenario for globular cluster multiple populations that
the explosions of thermonuclear supernovae associated with a
globular cluster’s first stellar generation quench the star
formation event that produced its second stellar generation
(e.g., D’Ercole et al. 2008; Calura et al. 2019; Lacchin et al.
2021). Given the suspected importance of thermonuclear
supernovae for quenching second-generation star formation in
globular clusters, it remains to be explained why globular
cluster second-generation stars that bear the imprint of
thermonuclear supernova nucleosynthesis are so rare as to
not appear in a sample of nearly 2000 globular cluster
members. Our result is also consistent with scenarios for
globular cluster multiple populations invoking a thermonuclear
supernova at the start of a cluster’s evolution (e.g., Marcolini
et al. 2009; Sánchez-Blázquez et al. 2012).
Contributions from both core-collapse and thermonuclear

supernovae, as well as s- and r-process nucleosynthesis, are
required to explain the solar abundance pattern. While the
progenitors of core-collapse supernovae are known to be
massive stars and the s-process takes place in AGB stars, the
progenitors of thermonuclear supernovae and the astrophysical
site of the r-process are more uncertain. Observational
constraints on either the progenitors of thermonuclear super-
novae or the astrophysical site of the r-process are therefore
valuable. The kilonova GW170817 confirmed that neutron star
mergers are at least partially responsible for r-process
nucleosynthesis (e.g., Abbott et al. 2017; Arcavi et al. 2017).
The relative occurrences of IRMP and r-process-enhanced stars

Figure 1. Occurrence of IRMP stars as a function of metallicity in different environments. For the Milky Way field, dSph, and Magellanic Cloud samples we plot the
posterior medians of occurrence as solid lines and the ranges defined by the 16th and 84th percentiles of the occurrence posteriors as transparent polygons. For the
globular cluster sample for which we infer an upper limit on iron-rich metal-poor (IRMP) occurrence, we plot the 68th percentile of the posterior as a solid line and the
range defined by the 0th and 68th percentiles of the occurrence posterior as a transparent polygon. There is no obvious dependence of IRMP occurrence on metallicity
in the Milky Way’s field population, its globular clusters, its classical dSph galaxies, or the Magellanic Clouds.
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in the same populations can be used to compare the relative
probabilities of the circumstances that lead to the formation of
IRMP and r-process-enhanced stars.

We find that the occurrences of IRMP stars are an order of
magnitude lower than the occurrence of r-process-enhanced
stars in both the Milky Way field and Magellanic Clouds. In the
Milky Way field, we find that h = -

+0.0013IRMP,MWF 0.0005
0.0006,

while Barklem et al. (2005) found ηrII,MWF≈ 0.03 according to
the definition of highly r-process-enhanced stars (i.e., r-II stars)
from Beers & Christlieb (2005).11 In the Magellanic Clouds,
we find that h = -

+0.037IRMP,Mag 0.006
0.007, while Reggiani et al.

(2021) found h = -
+0.38rII,Mag 0.13

0.14. We conclude that the
circumstances that lead to the formation of IRMP stars occur
an order of magnitude less frequently than the circumstances
that lead to the formation of r-process-enhanced stars.

5. Conclusion

We conclude that iron-rich metal-poor (IRMP) stars with
[Fe/H]−1 and [O, Na, Mg, Al, K, Co/Fe]< 0 are more
common in the Milky Way’s satellite classical dSph galaxies
and the Magellanic Clouds than in the Milky Way field or
globular cluster populations. Because thermonuclear super-
novae are thought to have been more important contributors to
the chemical evolution of the Milky Way’s satellite classical
dSph galaxies and the Magellanic Clouds than to the Milky
Way field and globular cluster populations in the range [Fe/
H]−1, our inferences confirm the interpretation of IRMP
stars put forward in Reggiani et al. (2023) proposing that IRMP
stars formed from molecular cores with metal contents
dominated by thermonuclear supernova nucleosynthesis. IRMP
stars can therefore be used to constrain the progenitor systems
and explosion mechanisms of the thermonuclear supernovae
responsible for their elemental abundances. We further find that
the occurrences of IRMP stars in the Milky Way’s field and
globular cluster populations are statistically indistinguishable.
This observation implies that the time lag between the
formation of a globular cluster’s first and second stellar
generations was longer than the thermonuclear supernova delay
time. It is also consistent with explanations for globular cluster
multiple populations that require early enrichment by thermo-
nuclear supernovae.
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Appendix

SDSS DR17 APOGEE data quality and targeting informa-
tion are stored as bitmasks.12 Since unreliable photospheric
stellar parameters will lead to unreliable elemental abundances,
we exclude from our analysis stars with the bits TEFF_WARN,
LOGG_WARN, VMICRO_WARN, M_H_WARN, STAR_WARN,
CHI2_WARN, COLORTE_WARN, ROTATION_WARN,
SN_WARN, TEFF_BAD, LOGG_BAD, VMICRO_BAD,
M_H_BAD, STAR_BAD, CHI2_BAD, COLORTE_BAD, ROTA-
TION_BAD, or SN_BAD set in the column aspcapflag in
the table aspcapStar. These flags correspond to binary
digits 0, 1, 2, 3, 7, 8, 9, 10, 11, 16, 17, 18, 19, 23, 24, 25, 26,
and 27. Note that though the bit corresponding to STAR_WARN
should be set if any of the bits TEFF_WARN, LOGG_WARN,
CHI2_WARN, COLORTE_WARN, ROTATION_WARN, or
SN_WARN are set, we choose to include all of these bits in
our data quality checks. Likewise, though the bit corresponding
to STAR_BAD should be set if any of the bits TEFF_BAD,
LOGG_BAD, CHI2_BAD, COLORTE_BAD, ROTATION_BAD,
or SN_BAD are set, we choose to include all of these bits in our
data quality checks. We remove duplicate observations from
our analysis sample by rejecting objects with binary digit 4 set
in the column extratarg in the table apogeeStar.

We exclude from our analysis any elemental abundances that
are indicated as suspect. We set to null all elemental
abundances with the final value −9999 or with any of the bits
GRIDEDGE_BAD, CALRANGE_BAD, OTHER_BAD, FERRE_-
FAIL, PARAM_MISMATCH_BAD, TEFF_CUT, GRIDEDGE_-
WARN, CALRANGE_WARN, OTHER_WARN, PARAM_MIS
MATCH_WARN, ERR_WARN, or PARAM_FIXEDset in a column
*_fe_flag in the table aspcapStar. These flags corre-
spond to binary digits 0, 1, 2, 3, 4, 6, 8, 9, 10, 12, 14, and 16.
We ultimately use the following query in the CasJobs portal to
generate our analysis sample:

SELECT a.apogee_id, b.ra, b.dec, b.glon, b.
glat, b.snr, b.extratarg,
CASE WHEN (((a.teff_flag & 87903)=0) AND (a.
teff > -9999))
THEN a.teff ELSE null END AS teff,
CASE WHEN (((a.teff_flag & 87903)=0) AND (a.
teff > -9999))
THEN a.teff_err ELSE null END AS teff_err,
CASE WHEN (((a.logg_flag & 87903)=0) AND (a.
logg > -9999))
THEN a.logg ELSE null END AS logg,
CASE WHEN (((a.logg_flag & 87903)=0) AND (a.
logg > -9999))
THEN a.logg_err ELSE null END AS logg_err,
CASE WHEN (((a.m_h_flag & 87903)=0) AND (a.
m_h > -9999))
THEN a.m_h ELSE null END AS m_h,
CASE WHEN (((a.m_h_flag & 87903)=0) AND (a.
m_h > -9999))
THEN a.m_h_err ELSE null END AS m_h_err,
CASE WHEN (((a.fe_h_flag & 87903)=0) AND
(fe_h > -9999))
THEN fe_h ELSE null END AS fe_h,
CASE WHEN (((a.fe_h_flag & 87903)=0) AND
(fe_h > -9999))

THEN fe_h_err ELSE null END AS fe_h_err,
CASE WHEN (((a.o_fe_flag & 87903)=0) AND
((a.fe_h_flag & 87903)=0)
AND (a.o_fe > -9999) AND (a.fe_h > -9999))
THEN a.o_fe ELSE null END AS o_fe,
CASE WHEN (((a.o_fe_flag & 87903)=0) AND
((a.fe_h_flag & 87903)=0)
AND (a.o_fe > -9999) AND (a.fe_h > -9999))
THEN a.o_fe_err ELSE null END AS o_fe_err,
CASE WHEN (((a.na_fe_flag & 87903)=0) AND
((a.fe_h_flag & 87903)=0)
AND (a.na_fe > -9999) AND (a.fe_h > -9999))
THEN a.na_fe ELSE null END AS na_fe,
CASE WHEN (((a.na_fe_flag & 87903)=0) AND
((a.fe_h_flag & 87903)=0)
AND (a.na_fe > -9999) AND (a.fe_h > -9999))
THEN a.na_fe_err ELSE null END AS na_fe_err,
CASE WHEN (((a.mg_fe_flag & 87903)=0) AND
((a.fe_h_flag & 87903)=0)
AND (a.mg_fe > -9999) AND (a.fe_h > -9999))
THEN a.mg_fe ELSE null END AS mg_fe,
CASE WHEN (((a.mg_fe_flag & 87903)=0) AND
((a.fe_h_flag & 87903)=0)
AND (a.mg_fe > -9999) AND (a.fe_h > -9999))
THEN a.mg_fe_err ELSE null END AS mg_fe_err,
CASE WHEN (((a.al_fe_flag & 87903)=0) AND
((a.fe_h_flag & 87903)=0)
AND (a.al_fe > -9999) AND (a.fe_h > -9999))
THEN a.al_fe ELSE null END AS al_fe,
CASE WHEN (((a.al_fe_flag & 87903)=0) AND
((a.fe_h_flag & 87903)=0)
AND (a.al_fe > -9999) AND (a.fe_h > -9999))
THEN a.al_fe_err ELSE null END AS al_fe_err,
CASE WHEN (((a.k_fe_flag & 87903)=0) AND
((a.fe_h_flag & 87903)=0)
AND (a.k_fe > -9999) AND (a.fe_h > -9999))
THEN a.k_fe ELSE null END AS k_fe,
CASE WHEN (((a.k_fe_flag & 87903)=0) AND
((a.fe_h_flag & 87903)=0)
AND (a.k_fe > -9999) AND (a.fe_h > -9999))
THEN a.k_fe_err ELSE null END AS k_fe_err,
CASE WHEN (((a.co_fe_flag & 87903)=0) AND
((a.fe_h_flag & 87903)=0)
AND (a.co_fe > -9999) AND (a.fe_h > -9999))
THEN a.co_fe ELSE null END AS co_fe,
CASE WHEN (((a.co_fe_flag & 87903)=0) AND
((a.fe_h_flag & 87903)=0)
AND (a.co_fe > -9999) AND (a.fe_h > -9999))
THEN a.co_fe_err ELSE null END AS co_fe_err
FROM DR17.aspcapStar a
INNER JOIN DR17.apogeeStar b ON a.apstar_-
id=b.apstar_id
WHERE (a.aspcapflag & 261033871)=0
AND (b.extratarg & 16)=0
AND a.logg < 3.8
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