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ABSTRACT 

 
First-ever a straightforward semi-empirical method is employed to compute elastic parameters (elastic wave 

velocities, elastic moduli, Debye temperature), thermodynamic parameters (molar heat capacities at constant 

volume and pressure, Debye temperature, electronic contribution to molar heat capacity, lattice potential 

energy), and optical parameters (refractive index, optical energy bandgap, dielectric, electronic and ionic 

polarizabilities) for pyrochlore-type yttrium-titanate (Y2Ti2O7) at 300 K. The results of our calculations are 

compared with the existing experimentally and theoretically determined data. The quite satisfactory agreement 

between the two validates the approach adopted. The value of molar heat capacity at constant volume computed 

based on the Einstein theory for pyrochlore is accordant with theoretically predicted value from the law of 

Dulong and Petit while the Debye theory fails to estimate the consistent value at 300 K. It appeared that 

electronic molar heat capacity contributes ~ 0.5 % to the total molar heat capacity and the electronic and lattice 

molar heat capacities are comparable at 14.5 K. The applicability of the oxide additivity rule is examined and 

found successful in predicting the dielectric, electronic, ionic polarizabilities and lattice potential energy of the 

complex oxide composition. The semi-empirical method used in the present investigation is found quite simple 

as compared to previous cumbersome evaluation methods.  

 

Keywords: Pyrochlore; elastic parameters; thermodynamic parameters; optical parameters; oxide additivity 

rule. 

 

1. INTRODUCTION  
 

In the pyrochlore family, yttrium titanate (Y2Ti2O7), is 

referred to as one of the salient members as it exhibits 

superior physical properties. Y2Ti2O7 and its 

isostructural materials possess other important 

characteristics such as optical nonlinearity, high 

radiation tolerance, good mechanical strength (due to 
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the short interatomic distances of Y-O (2.488 Å) and 

Ti-O (1.959 Å) bonds), chemical stability, low 

thermal conductivity, ionic conductivity, high optical 

bandgap, high up-conversion luminescence intensity 

in the visible wavelength [1,2]. Thus, these materials 

found a wide range of applications in various fields 

such as electrolytes in solid-oxide fuel cells, 

photocatalysts, high permittivity dielectrics, host 

material for optical emission, thermal barrier coating 

material for safe disposal of actinide containing 

nuclear waste, a potential inert matrix for 

transmutation, as a buffer layer on superconductor 

substrates, etc. [1-3]. Y2Ti2O7 has a high melting 

temperature (TM ~ 1873 K (experimentally determined 

value) [2], TM = 2160 K  300 K (theoretically 

calculated value) [4]), high refractive index (2.0  η  

2.2) [5], and ability to accept transition metal dopants 

in its structure including lanthanides and actinides 

make them a suitable candidate for ceramic pigments 

[2]. 
 

He et al. [6] have systematically investigated 

mechanical properties of Y2Ti2O7 polycrystalline 

ceramic by employing different experimental 

methods, while Luan et al. [7] have performed elastic 

properties study on single-crystalline Y2Ti2O7. On the 

other hand, theoretically predicted G0 value using a 

generalized gradient approximation (GGA-92) is 

found to be 57 GPa only [4]. Scott et al. [8] have 

reported B0 = 204  3 GPa determined from high-

pressure synchrotron X-ray diffraction study, this 

value is quite consistent with the reported value of B0 

= 205  4 GPa by Panero et al. [9]. The B0 value for a 

single crystal of Y2Ti2O7 is found to be 243.3  5.2 

GPa [1]. The predicted values of B0 by employing 

density functional theory based on different 

approximations are found in the range of 181 GPa – 

209 GPa [10]. Besides, Turki et al. [4] have estimated 

E0 = 156 GPa based on theoretical calculations. The 

E0 value for a single crystal of Y2Ti2O7 is found to be 

321.1  6.9 GPa [1]. Interestingly, the estimated E0 

value for Y2Ti2O7 monofilaments was 345 GPa [6] 

but experimentally such a high value could not be 

proved. Johnson et al. [2] have reported Debye 

characteristic temperature (θ0) of 970 K and molar 

heat capacity at constant pressure (Cp) ~ 210 J/mol.K 

at T = 300 K. Terki et al. [4] have reported 

theoretically estimated value θ0 = 784.1 K and Cv ~ 

210 J/mol.K at 300 K. The linear thermal expansion 

coefficient (a) at 300 K is reported to be 4.8 x 10
-6

 K
-

1
 [3] and 10.6 x 10

-6
 K

-1
 by Farmer et al. [11] while 

Terki et al. [4] have reported an average a = 9.1 x 10
-

6
 K

-1
 and volume expansion coefficient (v) = 27.3 x 

10
-6

 K
-1

 calculated from 300 K to 1273 K data. The 

elastic parameters computed based on a first-

principles calculation by the two different groups 

demonstrate huge differences. According to Pruneda 

and Artacho [12], the E0 = 447 GPa, G0 = 190 GPa 

and B0 = 229 GPa. On the other hand, the estimated 

Hill's average modal values based on Voigt and Reuss 

approximation to random polycrystalline aggregates 

for Y2Ti2O7 by Jiang et al. [10] are E0 = 221.3 GPa, 

G0 = 85.2 GPa and B0 = 183.5 GPa and 0 = 0.30. 

Very recently, more realistic values of various elastic 

parameters have been reported in [13] based on 

density functional theory using local-density 

approximation (LDA) and GGA. Shimamura et al. 

[14] have carried out a systematic experimental 

investigation on a set of Zr-pyrochlores (M2Zr2O7, 

where M = Sm, Y, La, Dy, Gd, and Nd) and found a 

general range of E0 ~ 225 GPa to 275 GPa, G0 ~ 90 

GPa to 110 GPa and 0 ~ 0.27 to 0.30. Most recently 

Karthick et al. [15] have synthesized nanocrystalline 

Y2Ti2O7, Y2 Zr2O7, Y2Hf2O7 pyrochlores through 

mechanically activated annealing and reverse co-

precipitation (RCP) techniques. The structural, 

microstructural, vibrational, and mechanical 

properties have been investigated systematically. 

Finally, regarding the optical parameters, Y2Ti2O7 is 

known to have a high refractive index (2.0  η  2.2) 

[5]. Nanocrystals of Y2Ti2O7 synthesized by sol-gel 

method have η = 2.34 at λ = 563 nm [16] while for 

thin films of Y2-xErxTi2O7 (x = 0.0 – 2.0) series, η is 

found to vary between 2.20 to 2.09 [17]. On the other 

hand, optical energy bandgap (Eg) values are found to 

be 3.7 eV for nanocrystalline Y2Ti2O7, 4.11 to 4.07 

eV for Er
3+

 - substituted Y2Ti2O7 system [17], and Eg 

= 3.44 eV for single crystallineY2Ti2O7 [1]. 

 

Availability of countable research reports on 

theoretical and experimental studies on optical, 

elastic, and thermodynamic properties of Y2Ti2O7 and 

observed large discrepancies in elastic moduli values 

determined from such cumbersome evaluation 

methods [1-18] suggest the need to re-evaluate the 

values. This leads to the present study. In this 

communication, instead of adopting complex 

theoretical and experimental approaches, a very 

simple semi-empirical method based on a very 

primary structural parameter, X-ray density, has been 

employed to determine highly important optical, 

elastic, and thermodynamic parameters from the 

applications point of view for pyrochlore compound, 

Y2Ti2O7 at 300 K in a systematic manner. To the best 

of our knowledge, this is a novel and first ever 

attempt in the field. 

 

2. EXPERIMENTAL DETAILS 
 

A stoichiometric amount of yttria (Y2O3) and titania 

(TiO2) was used to synthesize the microcrystalline 

pyrochlore compound, yttrium titanate (Y2Ti2O7), by 

a standard double sintering ceramic technique. The 

analytical reagent grade (purity > 99.5 %) powders 
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were thoroughly mixed in agate pestle and mortar for 

four hours using acetone as a milling medium. The 

homogeneous powder was pelletized for improving 

solid-state reaction. The pelletized sample was pre-

sintered at 900 C for 12 hours in a programmable 

furnace and slowly cooled to room temperature at a 

rate of 2 C per minute. In the final sintering process 

regrinded and repelletized sample of Y2Ti2O7 was 

kept at 1300 C for 12 hours and then cooled to room 

temperature by keeping the same rate of cooling. The 

sample was characterized for phase formation and 

structural parameters determination by X-ray powder 

diffractometry using CuK radiation (λ = 1.5418 Å). 

Dielectric permittivity against frequency (20 Hz – 1 

MHz) measurement was performed on HP4284A 

precision LCR meter at T = 300 K.  

 

3. RESULTS AND DISCUSSION 
 

The name pyrochlore comes from the mineral, 

NaCaNb2O6F pyrochlore. The stoichiometry or 

general chemical formula of the pyrochlore system is 

A2B2O7, which is ternary metallic oxide where the 

cations A and B have charges of +3 and +4 

respectively. It is a well-established fact that 

polycrystalline yttrium titanate (Y2Ti2O7) adopts a 

pyrochlore structure that has a high symmetry (space 

group Fd3m, Oh
7
, no. 227).  

 

Fig. 1 depicts a powder X-ray diffraction pattern 

recorded for Y2Ti2O7. The refinement, indexing, and 

lattice parameter determination have been carried out 

by Rietveld refinement software, Fulprof 2k (version 

6.20-Jan 2018-ILL JRC) program. Observed Bragg 

reflections in this diffractogram are found to be 

consistent with the pyrochlore structure (JCPDS – 

4222-0413). That confirms the monophasic nature of 

the synthesized composition. The diffraction lines 

were found to be sharp, indicative of the 

polycrystalline nature of the sample. The lattice 

constant value (a = 10.046  0.002 Å) thus resolute is 

in agreement with the values reported earlier 

[3,4,10,13,15] and that in turn used for further 

calculations. 

 

The X-ray density (ρx) of the sample was determined 

by adopting the relation given by Smith and Wijn 

[19]:  

 

ρx = (Z. Mw)/(NA. a
3
)                                           (1)  

 

where Mw is the molecular weight of the composition 

(385.612 g/mol), NA the Avogadro´s number, and a is 

the lattice constant (Table 1). As there is 8 formula 

unit in the unit cell, Z=8 is taken into account. The 

bulk density () and corresponding value of pore 

fraction (f) (f = 1 - /x) are summarized in Table 

1.The corresponding value of molar volume (Vm) is 

computed using the relation [20]׃ 

 

(Vm (cm
3
/mol

 
)) = Mw/ρx                                    (2) 

 

These structural parameters are further used to 

facilitate calculations, analysis, and discussion on 

thermodynamic and optical parameters.  

 

 
 

Fig. 1. Rietveld fitted room temperature (T = 300 K) X-ray powder diffraction pattern recorded for 

Y2Ti2O7 pyrochlore 
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Table 1. Structural, elastic, thermodynamic, and optical parameters for Y2Ti2O7 pyrochlore at 300 K 

 

No. Parameter Value 

1 Chemical formula Y2Ti2O7 (yttrium titanate) 

2 Molecular weight (Mw) 385.612 g/mol 

3 Total number of atoms in the molecule (p) 11 

4 Mean atomic weight (m) 35.06 g/mol 

5 Lattice constant (a) 10.046 Å 

6 Number of formula unit in the unit cell (Z) 8 

7 X-ray density (ρx) 

Bulk density (ρ) 

Pore fraction (f) 

5.053 g/cm
3
 

4. 303g/cm
3
 

0.148 

8 Molar volume (Vm) 76.31 cm
3
/mol 

9 a(m) (-8.703) km/s 

10 Longitudinal wave velocity (Vl0) 8022.4 m/s 

11 Shear wave velocity (Vs0) 4631.7 m/s 

12 Mean sound velocity (Vm0) 5142.1 m/s 

13 Longitudinal modulus (L0) 325.2 GPa 

14 Rigidity modulus (G0) 108.4 GPa 

15 Bulk modulus (B0) 180.7 GPa 

16 Poisson's ratio (σ0) 

Poisson's ratio (σ0f) 

0.250 

0.274 

17 Young 's modulus (E0) 271.0 GPa 

18 Lame's Constant (λL0) 108.4 GPa 

19 Vickers hardness (Hv0) 18.02 GPa 

20 Debye temperature (θ0) 678.1 K 

21 Lattice potential energy (ULP) (-316.9) eV (Eq. (5)) 

22 Lattice potential energy (ULS) (-382.1) eV (Eq. (6)) 

23 Lattice potential energy (ULS) (-412.7) eV (Eq. (7)) 

24 Lattice potential energy (ULS) (-377.34) eV (Eq. (8)) 

25 Molar heat capacity (Cv) 274.36 J/mol.K (Eq.(9)) 

26 Molar heat capacity (Cv) 182.26 J/mol.K (Eq.(10)) 

27 Debye temperature (θD) 245.7 K (Eq. (12)) 

28 Molar heat capacity (Cv) 38839.63 J/mol.K (Eq.(13) 

29 Molar heat capacity (Cv) 267.77 J/mol.K (Eq.(14)) 

30 Molar heat capacity (Cp) 182.73 J/mol.K 

31 Fermi energy (EF) 4.317 x 10
-19

 J 

32 Molar heat capacity Cv (electronic) 1.0 J/mol.K (Eq. (21)) 

33 Molar heat capacity Cv (total) 183.26 J/mol.K 

34 Molar heat capacity Cv (electronic) 0.393 J/mol.K (Eq.(23)) 

35 <η> 2.046 

36 Eg 2.49 eV and 3.28 eV 

37 αe 15.60 Å
3
 

38 αD 29.58 Å
3
 

39 αi 13.98 Å
3
 

40 αe
T
 18.06 Å

3
 

41 αD
T
 30.28 Å

3
 

42 αi
T
 12.22 Å

3
 

 

3.1 Elastic Properties 
 

In the instance of a wide range of silicates and oxides 

including chromites, aluminates, spinels, ferrites, and 

garnets having the same mean atomic weight (m), the 

velocity of longitudinal waves (Vl0) is directly 

proportional to the ρx [21]. In the present investigation 

for Y2Ti2O7 composition, m = Mw/p = 35.06 g/mol, 

(where p is the total number of atoms in the molecule 

i.e., 11). Following the work, the Vl0 (km/s) in terms 

of ρx (g/cm
3
) and a(m) (km/s), the function of m is 

given by [21]: 
 

Vl0 = a(m) + 3.31. ρx                                                                  (3)  
 

In the process of approximating the value of a(m) for 

a given value of m we have contemplated the values 
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of m and corresponding values of a(m), (for m = 21, 

a(m) = (-2.55) km/s, for m = 25, a(m) = (-5.7) km/s, 

and for m = 30, a(m) = (-8.6 ) km/s) [21]. For the 

multicationic oxide composition, Y2Ti2O7, with m = 

35.06 g/mol, the function a(m) is estimated to be (-

8.703) km/s. The calculated values of Vl0 and ρx are in 

turn used to deduce other elastic parameters, shear or 

transverse wave velocity (Vs0), mean sound velocity 

(Vm0), longitudinal modulus (L0), rigidity modulus 

(G0), bulk modulus (B0), Young´s modulus (E0), 

Poisson's ratio (σ0), Lame´s constant (λL0), Vickers 

micro-hardness (Hv0) and characteristic Debye 

temperature (θ0) in a void-free state using following 

standard formulae [22,23]׃  

 

Vs0    Vl0/ 3 

 

Vm0 = [(3 (Vl0
3
. Vs0

3
))/ (2 Vl0

3
 + Vs0

 3
)]

1/3
 

L0 = ρx Vl0
2
 

G0 = ρx Vs0
2
 

B0 = L0 – (4/3) G0 

σ0 = (3B0 – 2 G0)/( 6B0 + 2 G0) 

E0 = 2 (1 + σ0) G0 

λL0 = L0 – 2 G0 

Hv0 = [(1 – 2 σ0) E0]/ 6 (1 + σ0) 

 

and,  

 

θ0 = (h/kB) [(3. NA . p. ρx (g/cm
3
)/ 4 π Mw (g/mol) 

]
1/3

 Vm0 (cm/s)  (4) 

 

where h is Planck´s constant, kB is Boltzmann´s 

constant. 

 

The calculated values of the elastic parameters are 

summarized in Table 1. The values of Vl0 Vs0, and Vm0 

(Table 1) are in excellent agreement to those values, 

Vl0 = 8415 and 8066 m/s, Vs0 = 4668 and 4500 m/s, 

and Vm0 = 5200 and 5011 m/s computed based on 

LDA and GGA [13], respectively. The semi-

empirically determined values of L0, G0, B0, and E0 

(Table 1) for Y2Ti2O 7 are in reasonable agreement 

with those computed based on density functional 

theory, L0 = 374 and 313 GPa, G0 = 113 and 99 GPa, 

B0 = 216 and 186 GPa, and E0 = 288 and 252 GPa, 

using LDA and GGA, respectively [13]. In the 

literature regarding the pyrochlore compound, 

Y2Ti2O7, the experimental values of rigidity modulus 

(G0) are reported to be 101 GPa (resonance method), 

103 GPa (ultrasonic method), 104 GPa (cube 

resonance method) [6]. The bulk modulus (B0) values 

determined experimentally are found to vary from 170 

GPa (resonance method), 190 GPa (ultrasonic 

method) to 192 GPa (cube resonance method [6] and 

171 GPa for a single crystalline Y2Ti2O7 (resonant 

ultrasound spectroscopy) [7]. The experimentally 

determined Young's modulus (E0) values are reported 

to be 253 GPa (resonance method), 262 GPa 

(ultrasonic method), and 265 GPa (cube resonance 

method) [6], and 263 GPa (resonant ultrasound 

spectroscopy) [7]. The value of σo for a stable, 

isotropic, and linear elastic material is greater than (-

1) and less than 0.5 because of the requirement for 

Young´s modulus, shear modulus, and bulk modulus 

to have positive values. The σo is found to be ~ 0.25 

(Table 1), in conformity with the theory of isotropic 

elasticity and the values, σo = 0.278 (LDA) and 0.274 

(GGA), predicted by the first principle study [13]. The 

values of σo have also corresponded with the 

experimentally determined values, σo = 0.25 

(resonance method) and σo = 0.27 (ultrasonic and 

cube resonance methods) [6]. The presently found 

value of σo is too small as compared to the calculated 

value of Poisson´s coefficient (0.365) [4]. On the 

other hand, data analysis turnout the following 

equation for the dependence of σ0 as a function of 

pore fraction (f) given by σ0f = 0.324(1-1.043f) [22]. 

The calculated value σ0f is found to be 0.274, 

consistent with the value calculated from elastic 

moduli (Table 1). Young´s modulus, among all the 

elastic moduli, is of particular attentiveness since it is 

the key factor for the most frequently employed core 

shapes viz. rings and rods [24]. The parameter, λLo, 

has no physical interpretation, but it assists in 

sampling the stiffness matrix in Hooke´s law. The two 

parameters, λLo and Go, together constitute a 

parameterization of the elastic moduli for 

homogeneous isotropic media and are related to the 

other elastic moduli. The Vickers hardness (Hv0) 

determined from the nanoindentation test method for 

Y2Ti2O7 composition is found to be 12.1  0.1 GPa 

[6] and 11.4 GPa [1]. For monocrystalline Y2Ti2O7, 

Hv0 are found to be 10.77 GPa and 16.4  0.4 GPa [1] 

while Hv0 = 18 GPa has been reported for Y2Ti2O7 

prepared by reverse co-precipitation route [15]. The 

hardness at low load (15 gf) for single crystal Y2Ti2O7 

monofilaments is reported to be 24.06 GPa [6]. The 

presently found value of Hv0 = 18.02 GPa (Table 1) is 

laying in the range of reported values. To understand 

solid-state problems that involve lattice-vibrations, 

such as electrical resistivity, scattering of the thermal 

neutron, and thermal conductivity, θ0 is a salient 

parameter. The temperature at which maximum 

vibrations occur is known as θ0. The θ0 value (678.1 

K) (Table 1) is consistent with the values, 691 K 

(LDA) and 653 K (GGA) [13]. 

 

The values of B0 and G0 are further used to calculate 

Pough´s ratio (B0/G0) and Frantesvich´s ratio (Go/Bo). 

Accordingly, if B0/G0 is less than 1.75 and G0/B0 is 

greater than 0.571, the material becomes brittle while 

if B0/G0 is greater than 1.75 and G0/B0 is less than 

0.571, the material becomes ductile. On the other 

hand, if Poisson´s ratio is higher than 0.33, the 
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material possesses ductile nature while it is brittle 

with σ0 < 0.33 [25]. In the present case, B0/G0 is found 

to be ≈ 1.67, G0/B0 is found to be ≈ 0.6, and σ0 = 0.25 

for .Y2Ti2O7. The B0/G0 values, 1.92 (LDA) and 1.88 

(GGA), [13] match well with the present value. The 

calculated values of ratios lead to conclude that the 

sample exhibit brittle nature under ambient 

conditions. In general, the difference between present 

semi-empirically determined values, and theoretically 

estimated values [13], and empirically experimentally 

found values [6,7,14] of elastic parameters is less than 

5%. That validates the applicability of the present 

approach. 

 

The elastic moduli and their pressure derivatives are 

suggestive of the short-range contributions to the 

lattice energy. Consequently, the parameters 

influencing the magnitude of elastic moduli are also 

concomitantly accountable for controlling the lattice 

energy (strength of bonding). In ionic solids, the 

strength of bonds present can be estimated from the 

lattice energy determination. The lattice energy of 

such ionic compounds can be calculated from the 

most conventional Kudriavtsev´s approach [26]. With 

certain assumptions, well discussed in [24,27,28], this 

can be further simplified and used to calculate lattice 

energy for microcrystalline materials (ULP). The 

resultant equation is given by ׃ 
 

ULP (eV) = (- 3.108 x 10
-5

) (Mw (kg/mol) x Vm0
2

 

(m
2
/s

2
))                                                               (5) 

 

The calculated value of ULP for Y2Ti2O7 composition 

is found to be (-316.9 eV) and is given in Table 1.  
 

The lattice energy determination for single crystals by 

Kapustinskii´s equation [29] is referred to as one of 

the most successful approaches to calculate lattice 

energies for a wide range of monocrystalline materials 

(ULS). 
 

Accordingly,  

 

ULS (kJ/mol) = [(-1202.5 x q x | Z
+
| |Z

 ˉ
|)/ (r

+ 
+ r

ˉ 
)] 

x [ 1 – (0.345)/(r
+ 

+ r
ˉ 
)]                                     (6) 

 

Here, Z
+
 is the weighted mean of cationic charge, Z

 ˉ
 

is the mean ionic charge of the anion (i.e., oxygen), r
+ 

is the weighted mean ionic radius of metallic cations 

involved (0.75 Å) (Y
3+

(0.89 Å) and Ti
4+

 (0.61 Å), 

coordination no.6) and r 
ˉ
 is the ionic radius of oxygen 

(1.32 Å). The ULS in the present case is found to be (-

37275.6 kJ/mol) (- 382.1 eV).  
 

The lattice potential energy of complex ionic solids 

has also been determined employing the limiting 

relation between ULS, Mw, and ρx suggested by Glasser 

and Jenkins [30]׃ 

ULS (kJ/mol) = (ρx x NA x 2I
4
 x A

3 
/ 10

21 
x Mw) 

1/3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          

(7) 

 

where A is the standard electrostatic conversion term 

equals 121.39 kJ/mol/nm, I ( = 39) is the ionic 

strength-related term. The factor 10
21

 converts cubic 

nanometer to cubic meter. In Table 1 the calculated 

value of ULS is found to be (-40266.96 kJ/mol) and 

presented in eV (-412.7 eV) for the comparison 

purpose. 

 

To compute the lattice energy of Y2Ti2O7 oxide 

composition we have to diversify the relevancy of the 

oxide additivity rule employed to approximate the 

dielectric and electronic polarizability for complex 

oxide compositions [31], by taking into consideration 

the lattice energy of constituent oxides [32], Y2O3 and 

TiO2 (ULS (Y2O3) = -12705 kJ/mol, and ULS (TiO2)) = 

-12054 kJ/mol). Accordingly,  

 

ULS (Y2Ti2O7) = [(1) ULS (Y2O3) + (2) ULS (TiO2)]  

(8)  

 

When lattice energies of complex compounds are not 

obtainable oxide lattice energies are found applicable. 

The lattice energy value thus calculated is found to be 

(-36813 kJ/mol) = (-377.34 eV). The value is in good 

agreement with those calculated based on the other 

models and validates the present approach. No lattice 

potential energy values for polycrystalline and single-

crystalline pyrochlore compositions in general and 

Y2Ti2O7, in particular, are available in the literature for 

comparison purposes. This methodology was 

successfully employed earlier for lattice energy 

determination for many spinel ferrites, garnets, and 

superconducting oxide systems [33] and maybe 

extended to other complex oxide systems also. 

 

It is found that the lattice energy value (ULP) for a 

polycrystalline sample of Y2Ti2O7 composition is 

much lower than their single crystalline counterpart 

(ULS) computed based on three different approaches. 

The observed difference between the two (ULP, ULS, 

and ULS > ULP) can be explained as follows. 

Microcrystalline materials possess several small 

crystals or grains. The neighboring grains with 

distinct crystallographic orientations are separated by 

a grain boundary, which is a certain atomic distance 

wide region. It is possible to have varying degrees of 

crystallographic misalignment among adjoining 

grains. The atoms along a grain boundary are less 

regularly bounded as bond angles are large and that 

results in grain boundary energy. The degree of 

disorientation decides the magnitude of grain 

boundary energy, being larger for high angle 

boundaries [34]. The long-range range interactions are 

obstructed by these grain boundaries. This is the most 



 
 
 
 

Lila et al.; AJOAIR, 4(1): 1340-1351, 2021 

 
 

 
1346 

 

probable cause, the lattice energy value for 

microcrystalline materials is smaller than its 

monocrystalline counterpart (Table 1). 

 

3.2 Thermodynamic Properties 
 

Following the law of Dulong and Petit [20], we can 

work out the theoretically expected value of isochoric 

molar heat capacity (Cv) using the equation [20]:  

 

Cv (J/mol.K) = 3pR                                            (9) 

 

where p is the number of atoms in the chemical 

formula, A2B2O7 (Y2Ti2O7), (i.e., 11), R is the 

universal gas constant (8.314 J/mol.K). Consequently, 

the calculated value of Cv is found to be 274.36 J/mol 

K, which is the limiting value of heat capacity at T ~ 

θ0. In the present investigation 0 is much greater than 

300 K (Table 1), thus, Cv at T = 300 K turns up 

anomalously low.  

 

The Cv values in the temperature range of T = 0 - 900 

K (well above θ0) were computed based on the 

Einstein theory of heat capacity of solids [20] using 

equation (10) and graphically displayed for a Y2Ti2O7 

in Fig. 2. 
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


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




T

T

T
pRCv





      (10)

 

 

It is found that for a Y2Ti2O7 , Cv = 182.26 J/mol.K at 

T = 300 K. At T = 30 K ( 0.1 0), Cv is found to be 

2.139 x 10
-5

 J/mol.K. The Cv values at 300 K are 

consistent with the limiting value as derived                    

from Dulong and Petit law and reported by Terki et al. 

[4].  

 

According to the Debye theory of the heat capacity of 

solids, the Debye temperature (D) is related to the 

maximum phonon frequency (fD) by [20]: 

 

D = (h/kB) fD                                                  (11) 

 

Recalling the definition of D as the temperature 

corresponding to fD, and thus the minimum phonon 

wavelength (λmin), one can re-write the above equation 

as [35]: 

 

D = (h/kB) (Vm0/λmin)                                       (12) 

 

Here, Vm0 is the mean sound velocity (Table 1). The 

unit cell puts constrain on the λmin of the vibration. 

Thus, λmin is equal to the length of the unit cell, (λmin = 

10.046 x 10
-10

 m (Table 1)). Thus, D can be 

calculated as: 

D = (4.8 × 10
-11

 (s.K)) (5142.1 (m/s)) / (10.046 × 

10
-10 

(m)) 

 

The D is found to be 245.7 K  

 

Besides, the Debye theory anticipates that at 

temperatures less than  0.1D, Cv should vary as T
3
 

according to [20]: 

 

Cv = [1939.7 p] (T/θD)
3 
J/mol.K                       (13) 

 

The computed value of Cv at T = 30 K is found to be 

38.84 J/mol.K. The observed difference in Cv values 

at a low temperature determined from the Debye and 

Einstein predictions is because in the Debye model 

(and in reality also) there is a continuum of low 

energy vibrational modes that can be excited at low 

temperature. On the contrary, as expected at T = 300 

K, the value is found to be 38839.63 J/mol.K. This 

value is much higher than those calculated from the 

Einstein theory and limiting value of 274.36 J/mol.K 

computed from the Dulong and Petit law. It is worth 

mentioning that the experimentally (empirically) 

determined Cv values and signature of Cv (T) in the 

temperature range T = 0 – 900 K including the 

maximally possible value of Cv discussed in [2,4] are 

in good agreement with those computed based on the 

Einstein theory (Fig. 2) and limiting value of Cv 

theoretically predicted from the Dulong and Petit law 

as discussed above. This indirectly validates our semi-

empirical approach of 0 determination. The 0 value 

678.1 K is quite consistent with the reported values, 

691 K and 653 K, computed using the density 

functional theory [13]. Eventually, an effort has been 

made to compute Cv by using the Debye function (fD) 

as follows [35]:  

 

Cv = 3 p R fD                                                     (14) 

 

Introducing the Debye function (fD): fD = 3 

 
 

  
 
 

   
  
 

    

       
   , where, x = 

  

 π   
 and xD = 

   

     
 = 

 

  
 and  D is the Debye frequency. The values 

fD have been determined by considering T/D ratio = 

1.221 at T = 300 K , while T/D ratio is found to be 

0.122 at T = 30 K. The corresponding values of fD are 

found to be 0.976 J/mol.K at T = 300 K while fD = 

0.14087 J/mol.K at T = 30 K. It is found that, Cv = 

267.77 J/mol.K at T = 300 K and Cv = 38.65 J/mol.K 

at T = 30 K. The Cv value at low temperature T = 30 

K is consistent but at T = 300 K the value differ much 

from those determined from the Debye T
3 
law. The D 

value, 245.7 K, is near to T = 300 K thus the 

calculated Cv value at T = 300 K is likely to approach 

the limiting value of Cv (= 274.36 J/mol.K) as 

expected at T ~ D.  
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Fig. 2. Thermal variation of molar heat capacity curve generated based on the Einstein theory (Eq. (10)) 

with θ0 = 678.1 K and T = 0 - 900 K. The horizontal l ine represents the limiting value from the Dulong 

and Petit law (Eq. (9)) for Y2Ti2O7 

 

The Debye T
3
 law fails and the Einstein theory was 

found successful in the determination of consistent Cv 

values at T = 300 K is the subject of interest. This can 

be explained considering the following facts: (i) The 

Einstein theory considers the thermal component of 

the internal energy of a solid to be held by atoms 

vibrating independently in identical simple harmonic 

potentials. In contrast, the Debye theory considers the 

thermal component of the internal energy to be held 

by displacement (sound) waves. (ii) In the Debye 

theory, the quantum states of the solid are considered 

to be wave-like states that are occupied by phonons 

while in the Einstein theory, the quantum states of the 

solid are the quantum states of each simple harmonic 

potential. However, for phonons, there are two key 

differences in the Debye analysis. First, there is only 

one quantum state for each value of k. Second, for 

phonons, the energy is directly proportional to |k| 

since the energy of a phonon is E = ħ  = ħV|k|. This 

expression has assumed that the speed of sound (V) 

that relates the frequency to the wavelength is 

independent of wavelength. This is not quite correct 

for wavelengths of the order of lattice spacing or so, 

but this is neglected in the Debye theory [20]. Further, 

this also suggests that the Einstein theory is suitable to 

estimate the molar heat capacity of materials with 

high values of Debye temperature (θ >> 300 K). 

 

The Kieffer model can successfully approximate the 

isobaric molar heat capacity (Cp), Cv, and vibrational 

entropy for a wide range of oxides and silicates [36]. 

Accordingly, Cv can be computed by modeling a 

simplified phonon density of state of a crystal [37] 

while Cp is determined using the relation:  

Cp = Cv + (a
2
 . Bo. Vm. T) (15) 

 

where a is the coefficient thermal expansion, very 

recently it is reported to be 10.6 x 10
-6

 K
-1

 at T = 300 

K for Y2Ti2O7 [9], is used to calculate Cp at 300K. 

 

Cp = (182.26) + (10.6 ×10
-6

 )
2
 (180.7 × 10

9
) 

(76.31 × 10
-6

) (300) 

   

Cp = 182.73 J/mol.K 

 

The well-established approximation, Cp – Cv = 

0.0011T [38], holds reasonably well for the 

composition under study. 

 

It is possible to estimate the electronic contribution, 

Cv (electronic), to the total molar heat capacity, Cv 

(total), by using the following relation [20]: 

 

Cv (electronic) = (π
2
 kB

2
 g(EF) T)/3                 (16) 

 

where kB is Boltzmann's constant (= 1.38 × 10
-23

 J/K), 

T = 300 K and the density of states function, g(EF), is 

given by : 
 

g(EF) = [Vm (2 me
3
 EF) 

½ 
] / π

2
 ħ

3
                      (17) 

 

Here, me is the mass of the electron (9.1 x 10
-31

 kg), 

and EF is the Fermi energy. The EF is given by: 
 

EF = ħ
2 
kF

2 
/ 2 me                                               (18) 

 

where the Fermi wave vector, kF, is given by: 
 

kF = (3 n π
2
) 

1/3
                                                  (19) 
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here, n = N/V is the electron density. The n can be 

estimated in different ways but the easiest way is to 

divide the x by the mass of the cubic pyrochlore 

composition. By taking into account, the average 

valence of the composition, Y2Ti2O7, n can be 

estimated as: 
 

n = (2.545) (5.053 x 10
3
) / (385.612) (1.66 x 10

-

27
) 

 

n = 2.009 x 10
28

 electrons/m
3 

 

Thus, kF = [3 (1.19 x 10
28

) (3.14)
2
] 

1/3 

 

 kF = 0.841 x 10
10 

m
-1 

 

By substituting the value of kF in equation (18), the 

value of EF can be found: 

 

EF = [(1.054 x 10-34)2 (0.841 x 1010)2] / ((2) (9.1 x 

10-31))  

 
EF = 4.317 x 10

-19
 J = 2.7 eV                           (20) 

 

Substituting the values of Vm and EF into the g(EF) 

yields: 

 

g(EF) = [76.31 x 10
-6

] [2 (9.1 x 10
-31

)
3
 (0.4317 x 

10
-18

)]
1/2 

/ (3.14)
2
 (1.054 x 10

-34
)

3  

 

g (EF) = 5.325 x10
42

 states/ J. mol 

 

which predicts an electronic heat capacity of :

 

 

 

CV (electronic) = [(3.14)
2
 (1.38 × 10

-23
)

2
 (7.215 × 

10
42

) (300)] / 3                                                 (21) 

 

CV (electronic) = (1.0) J/mol.K 

 

This is to be compared with the contribution due to 

the lattice (i.e.,182.26 J/
 
mol.K). To put it another 

way, the electronic contribution to the total heat 

capacity is only around 0.55 %. This can be 

understood from the following facts. The electrons 

contributing to the conduction are very close to the 

Fermi energy. However, to contribute to bulk specific 

heat all the valence electrons would have to receive 

energy from the nominal thermal energy, kBT. But, the 

Fermi energy is much greater than kBT and the large 

majority of the electrons cannot receive such energy. 

Since there are no available energy levels within kBT 

of their energy, the small fraction of electrons that are 

within the kBT of the Fermi level does contribute a 

small specific heat and hence the electron                   

specific heat is significant only at very low 

temperatures.  

Thus, the total molar heat capacity at T = 300 K is 

given by: 

 

Cv (total) = Cv (lattice) + Cv (electronic)          (22)  

 

= (182.26 +1.0) J/mol.K   

 

Cv (total) = (183.26) J/mol.K 

 

For a quenched sample, Cv (total) is found to be 

316.43 J/mol.K. 

 

Alternatively, it is possible to calculate Cv (electronic) 

for a sample at T = 300 K using the Debye expression: 

 

Cv (electronic) = (π)
2
 (R kB T) / (2. EF)            (23)  

 

= 1.696 × 10
-19

/ EF  

 

= 0.393 J/mol.K 

 

Eventually, an attempt has been made to approximate 

the temperature at which Cv (electronic) and Cv 

(lattice) are commensurate by equating respective 

Debye equation [31]:  

 

Cv (electronic) = ([(π)
2 
R kB T] / 2. EF) = ([12 (π)

4 

R (T/0)
3
] / 5) = Cv ( lattice)                                             (24) 

 

Therefore, (T
3
/T) = [(π)

2
 R kB ( 0)

3
 5]/[24 EF R 

(3.14)
4
]  

 

and T
2
 = 5 kB ( 0)

3
 / 24 (π)

2
 EF,  

 

that results in [39],  

 

T = [5 kB (0)
3 
/ 24 ( π)

2
 EF]

1/2
                          (25) 

 

It is found that Cv (lattice) and Cv (electronic) are 

comparable at T = 14.5 K. 

 

3.3 Optical Properties 
 

The factors that affect the refractive index (η) of the 

material are the wavelength of light (λ) used, density 

and polarizability of the substance, and crystalline 

form (micro-crystalline, nanocrystalline, amorphous, 

thin-film, etc.) [31,40]. Ellipsometry is a widely used 

experimental technique that simultaneously 

determines η and optical absorption coefficient for 

bulk materials and optically thick films. The η can 

also be measured by the dual-arm Z-scan method, 

dark-field Z-scan imaging technique, and prism 

refractometry [37]. Anderson and Schreiber 

corroborate the functionality of the η and density 

relationship. The outcomes confirmed that the laws of 

Gladstone-Dale and Drade are well-grounded with 
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adequate correctness for oxide minerals with m ~ 21 

g/mol [40]. Consequently, the mean value of η in 

terms of ρx is given by the following empirical 

relation [41]׃ 

 

<η> = 1 + 0.207 ρx                                                                  (26) 

 

The <η> value computed for mineral spinel, 

magnesium aluminates (MgAl2O4), having ρx = 3.57 

g/cm
3
 and m = 20.30 g/mol [42], is found to be 1.739. 

This value is in excellent agreement with the reported 

one, η = 1.72 [33]. Besides, for a monocrystalline 

yttrium iron garnet (Y3Fe5O12) with moderate values 

of ρx and m (ρx = 5.17 and m = 36.48 g/mol), < η > is 

found to be 2.07. This value is sufficiently close to the 

value η = 2.168 ± 0.003 at λ = 3 μm with a variation 

of 5 % between 1 μm to 6μm [43]. The well known 

ferroelectric material, BaTiO3 possess very high value 

of ρx = 6.006 g/cm
3
 [44] and m = 46.64 g/mol has 

shown η = 2.41 at λ = 632.8 nm and for the thin films 

with different crystalline forms, η = 2.0 (amorphous), 

η = 2.07 (microcrystalline), η = 2.51 (crystalline) at λ 

= 5000 Å [45]. The computed value of <η> is found 

to be 2.243. The successful application of the above 

equation (26) for a large class of oxide ceramics 

prompted and allow us to extend this approach for η 

and other related optical parameters determination for 

Y2Ti2O7 pyrochlore. The <η> value is found to be 

2.046, agrees well with the suggested range of η (2 < 

η < 2.2) for Y2Ti2O7 composition [5].  

 

The optical energy bandgap (Eg) has been calculated 

from the corresponding η value using the relations 

 ׃[46]
 

Eg = (4.16 - η)/0.85  

 

and  

 

Eg = (4.084- η)/0.62                                          (27) 

 

The Eg values are tuned out to be 2.49 eV and 3.28 

eV, respectively. These values are following the 

theoretically computed Eg values (2.85 eV (LDA) and 

2.81 eV (GGA)) reported in [13] and experimentally 

determined values for nanocrystalline Y2Ti2O7 (3.7 

eV) [17] and single-crystalline Y2Ti2O7 (3.44 eV) [1] 

materials. 
 

The following Lorentz-Lorenz equation [47] 

correlates the η, Vm and aggregate molar refraction for 

an isotropic material (Rm)׃ 
 

Rm (m
3
/mol) = [(η

2
 - 1)/ (η

2
 + 2)] Vm               (28) 

 

Rm is related to the material´s structure and is directly 

proportional to the molar electronic polarizability (αe) 

of the material, through the following relation [40]: 

αe = (3/4 π NA) Rm = Rm/2.52                           (29) 

 

The value of αe is found to be 15.6 Å
3
. The Clausius-

Mossotti relation expresses the real part of complex 

dielectric permittivity (ε´) in terms of the dielectric 

polarizability (αD) given by [40]׃ 

 

αD = 23.89 x 10
-2

 [(a
3
 (Å

3
)

 
/Z) ( (ε´ - 1) / (ε´ + 2))]  

(30)  

 

The value of ε´ (= 131) registered at T = 300 K and 

frequency of ~ 1 MHz (Fig. 3) is taken into 

consideration. Though, this relation is stringently 

applicable to the compounds in which ion or 

molecules has cubic symmetry nevertheless is roughly 

well-founded for many non-cubic crystals. The factor 

(3/4 π = 23.89 x 10
-2

) hinges on the presumption of 

point dipole ions and cubic symmetry. A composition 

Y2Ti2O7 under investigation belongs to cubic structure 

thus this formula is quite applicable. The value of αD 

is found to be 27.85 Å
3
. The αD includes both αe and 

ionic polarizability (αi) (αD = αe + αi). The αD, αe, and 

αi values are summarized in Table 1. 

 

In keeping with the oxide additivity rule, the 

molecular polarizability of a complex substance can 

be divided into the molecular polarizabilities of 

simpler substances. This rule is found appropriate for 

αD and αe determination. Previously, it has been found 

that, this rule estimates polarizabilities values with an 

accuracy of 5 – 10%. Nevertheless, investigations on 

yttrium and other rare earth aluminates, spinels, 

chrysobery, phosphate , etc manifest that these 

compounds belong o a group of well-behaved oxides 

whose αD values follow the additivity rule to 0.5 – 

1.5% [40]. According to the oxide additivity rule, as 

suggested by Shannon and Rossman [40], it is 

possible to approximate the dielectric polarizability 

(αD
T
) and electronic polarizability (αe

T
) of any 

complex oxide system say Y2Ti2O7 by taking into 

account αD
T 
and αe

T
 of the ingredient oxides, Y2O3 and 

TiO2 (αe
T
 (Y2O3) = 8.20 Å

3
, αe

T
 (TiO2) = 4.93 Å

3
, αD

T
 

(Y2O3) = 13.81 Å
3
, and αD

T
 (TiO2) = 8.48 Å

3
) [48]. 

Then 

 

αe
T
 (Y2Ti2O7) = αe

T
 (Y2O3) + 2 × αe

T
 (TiO2) 

 

and  
 

αD
T
 (Y2Ti2O7) = αD

T
 (Y2O3) + 2 × αD

T
 (TiO2) (31) 

 

This methodology was found useful when αe
T
 and αD

T
 

of the complex compounds are not accessible. The 

computed values of αD
T
, αe

T
, and αi

T
 are comprised in 

Table 1 for juxtaposing. The percentage deviation 

between the observed and computed values is found 

to be negative. These negative deviations from 

additivity are presumed to have the outcome of cubic  
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Fig. 3. Dielectric permittivity (') versus applied signal frequency (f) plot registered at T = 300 K for 

Y2Ti2O7 

 

pyrochlore structural constraints [49]. Importantly, 

observed deviations are relatively small when 

compared with other oxide systems [36,49]. This 

suggests that Y2Ti2O7 belongs to normal dielectric 

materials. Further work is in progress. 
 

4. CONCLUSIONS 
 

It is inferred that the X-ray density-based semi-

empirical method is simple and successful for various 

elastic, thermodynamic, and optical parameters 

determination for a yttrium-titanate (Y2Ti 2O7). The 

value of molar heat capacity at constant volume 

computed based on the Einstein theory for pyrochlore 

is accordant with theoretically predicted value from 

the law of Dulong and Petit while the Debye theory 

fails to approximate the consistent value at 300 K. 

The key physical differences between the two theories 

are found accountable. It is found that electronic 

molar heat capacity contributes ~ 0.5 % to the total 

molar heat capacity and the electronic and lattice 

molar heat capacities are comparable at 14.5 K. The 

oxide additivity rule was found successful in 

predicting the dielectric, electronic, ionic 

polarizabilities, and lattice potential energy of the 

complex oxide composition. 
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