
________________________________________ 
 
*Corresponding author: Email: oladayoe2000@yahoo.com; 

 

Asian Res. J. Math., vol. 19, no. 11, pp. 61-68, 2023 

 
 

 

Asian Research Journal of Mathematics 

 
Volume 19, Issue 11, Page 61-68, 2023; Article no.ARJOM.107515 
ISSN: 2456-477X 

 

 
_______________________________________________________________________________________________________________________________________ 

 

A Numerical Approximation of the 

Stochastic Ito-Volterra Integral Equation 
 

Emmanuel Oladayo Oduselu–Hassan a*, Ignatius N. Njoseh a  

and Jonathan Tsetimi a 
 

a Department of Mathematics, Delta State University, Abraka, Nigeria. 

 

Authors’ contributions 

 

This work was carried out in collaboration among all authors. All authors read and approved the final 

manuscript. 

 

Article Information 
 

DOI: 10.9734/ARJOM/2023/v19i11753 

 

Open Peer Review History: 

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review 

comments, different versions of the manuscript, comments of the editors, etc are available here: 

https://www.sdiarticle5.com/review-history/107515 

 

 
Received: 12/08/2023 

Accepted: 17/10/2023 

Published: 25/10/2023 

__________________________________________________________________________________ 
 

Abstract 

 
A stochastic differential equation (SDE) is a differential equation in which one or more of the terms and the 

solution are stochastic processes. Numerous studies have employed orthogonal polynomials, however most of 

them focus on deterministic rather than stochastic systems. This is the reason why in this study, we looked 

into a numerical solution for the stochastic Ito-Volterra integral equation using the explicit finite difference 

scheme and Bernstein polynomials as trial functions. The equidistant collocation procedure was used to 

calculate the unknown constant parameters in between and reach the desired approximation. The method was 

evaluated and contrasted with the Block Pulse method for approximate answers based on the aforementioned 

method, which were obtained and compared with others in the literature. 

 

 

Keywords:  Process; Ito-Volterra integral equation; Stochastic Ito-Volterra integral equation; explicit finite 

difference scheme; Bernstein polynomials. 
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1 Introduction 

 
A stochastic differential equation (SDE) is a differential equation that has one or more stochastic processes as 

terms, with the solution being another stochastic process. SDEs typically include a variable that is calculated as 

the Wiener process or Brownian motion derivative and represents random white noise. However, Bachelier is 

credited with one of the early works on Brownian motion in his thesis titled "Theory of Speculation" [1]. This 

work was followed upon by Langevin. Later Itô and Stratonovich put SDEs on more solid mathematical footing. 

Itô in 1944 [2], laid the foundation of a stochastic calculus known today as the Itô calculus. This represents the 

stochastic generalization of the classical differential calculus, which models various phenomena in continuous 

time such as the dynamics of stock prices, physical systems or the motions of a microscopic particle subject to 

random fluctuations. The corresponding stochastic differential equations (SDEs) generalize the ordinary 

deterministic differential equations (ODEs) [3]. 

 

In general, 1-dimensional Ito stochastic differential equation has the form [4] 

 

𝑑𝑋𝑡 = 𝛼(𝑋𝑡)𝑑𝑡 + 𝛽(𝑋𝑡)𝑑𝑊𝑡 , 𝑡 ≥ 0, 
 

where 𝛼(𝑋𝑡) is called the driff coefficient (which varies slowly), and 𝛽(𝑋𝑡) is the diffusion coefficient (a rapidly 

varying component). 𝑊𝑡  is a Wiener process 𝑊 = {𝑊𝑡 , 𝑡 ≥ 0}  that defines the randomness of the physical 

system, and it is often called the white noise. The subscript 𝑡 in the white noise represents time-dependence. 

 

The origin of Ito stochastic integral was an outcome of intense investigation of properties/ conditions under 

which the localized properties of a Markov process may be applied to examine this process. By localized 

properties, we mean the drift and diffusion coefficients of an Ito process. This idea had been used by Kloeden 

and Platen [5,6] to implement his derivatives of differential equations (particularly, the stochastic differential 

equation) governing the characterization of the transition properties of an Ito process.  

 

An ordinary differential equation is defined as a degenerate form of a stochastic differential equation, which is 

defined in a non chaotic dynamical system. 

 

Thus,   

 
𝑑𝑢

𝑑𝑡
= 𝛼(𝑡, 𝑥)                                                                                                          (1) 

 

Rewriting (1) in its symbolic differential form, we have  

 

𝑑𝑢 =  𝛼(𝑡, 𝑥)𝑑𝑡                                                                                                            (2) 

 

Now integrating (2) in the interval 𝑡 ∈ [𝑡0, 𝑡], we have  

 

𝑢(𝑡) = 𝑢0 + ∫ 𝛼(𝑠, 𝑢(𝑠))𝑑𝑠 
𝑡

𝑡0
                                                                                            (3) 

 

where 𝑢(𝑡) = 𝑢(𝑡; 𝑢0, 𝑡0] is a function satisfying the initial condition 𝑢(𝑡0) = 𝑢0. 
 

During the first decade, Einstein and others such as Largevin offered an explanation of Brownian motion to the 

formulation of classical dynamics in terms of stochastic differential equation. Thus, the resulting stochastic 

equation can be written as  

 

 𝑑𝑢𝑡 = 𝛼(𝑡, 𝑢𝑡)𝑑𝑡 +  𝛽(𝑡, 𝑢𝑡)𝜉𝑡                                                                                            (4) 

 

where 𝛼(𝑡, 𝑢𝑡) is a deterministic drift coefficient been perturbed by a noise term, 𝛽(𝑡, 𝑢𝑡)𝜉𝑡 , where   𝜉𝑡 defines 

a standard Wiener process for each variables and 𝛽(𝑡, 𝑢𝑡) is a space – time (dependent) intensity term. Equation 

(4) can be reformulated as an integral equation of the form 

 

𝒖𝒕(𝝎) = 𝒖𝒕𝟎
(𝝎) + ∫ 𝜶(𝒔, 𝒖𝒔(𝝎)𝒅𝒔 +

𝒕

𝒕𝟎
∫ 𝜷(𝒔, 𝒖𝒔(𝝎)𝝃𝒔(𝝎)𝒅𝒔

𝒕

𝒕𝟎
 ,                                                                            (5) 
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defining each trajectory or sample path. 

 

Now a special case for (5) with 𝛼 = 0 𝑎𝑛𝑑 𝛽 = 1, we see that  𝜉𝑡 is a bounded real Brownian motion, thus (5) 

can be alternatively be written as  

 

𝑢𝑡(𝜔) = 𝑢𝑡0
(𝜔) + ∫ 𝛼(𝑠, 𝑢𝑠(𝜔)𝑑𝑠 +

𝑡

𝑡0
∫ 𝛽(𝑠, 𝑢𝑠(𝜔)(𝜔)𝑑𝑊𝑠(𝜔),

𝑡

𝑡0
                                                                                                          (6) 

 

where 𝑊𝑡 is a white noise process. 𝑊𝑡 is not completely dependent on t since it is nowhere differentiable. This 

implies that the second integral in (6) can be Lebesgue or Riemann integral. In fact, the second integral in (6) 

cannot be even interpreted as Riemann – Stieltjes integral since the 𝑊𝑡  is unbounded at any bounded                       

time interval for each trajectory or sample path. For 𝛽(𝑡, 𝑢) =  𝛽(𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡), we expect the second integral in 

(6) to be defined and equal to 𝛽 {𝑊𝑡(𝜔) −  𝑊𝑡𝑜
(𝜔)} .This is the origin for definition of an Ito stochastic            

integral. 

 

There is a wide applicability of stochastic integral equations (SIE) in oceanography, physical sciences, 

engineering, etc, which are noise driven such as the white noise [7] and [8]. Most SIEs do not have an exact 

solver due to the presence of the noise, thus the role of numerical methods for computing an accurate and 

reliable numerical approximation have become imperative [9].  

 

In this research, we shall consider the Stochastic Ito-Volterra integral equation of the form [8] 

 

𝑈(𝑡) = 𝑔(𝑡) + ∫ 𝑦(𝑠, 𝑡)𝑈(𝑠)𝑑𝑠 + ∑ ∫ 𝐵𝑗(𝑠, 𝑡)𝑈(𝑠)𝑑𝐵𝑗(𝑠)𝑑𝑠
𝑡

0
,𝑛

𝑗=1
𝑡

0
                                                                          (7) 

 

where 𝑡 ∈ Ω = (0, 𝑇], 𝑈, 𝑔, 𝑦 and 𝐵𝑗 , 𝑗 = 1(2)𝑛, 𝑠, 𝑡 ∈ Ω are stochastic processes enclosed on the probability 

space (Ω, F, P) and 𝑈 is unknown. Also, ∫ 𝐵𝑗(𝑠, 𝑡)𝑈(𝑠)𝑑𝐵𝑗(𝑠)𝑑𝑠
𝑡

0
,   𝑗 = 1(2)𝑛,  is the Itô integral and 𝐵𝑗(𝑡), 𝑗 =

1(2)𝑛 are the Brownian motion processes. 

 

In recent years, there are few different numerical techniques for solving most stochastic Ito-Volterra integral 

equations (SIVIE), such as, the wash series method, polynomial method, block pulse method, hat function 

method, triangular method and orthogonal basis method. For instance, Maleknejadet al.[4] solved the m-

multidimensional SIVIE using the block pulse method via the operational matrix scheme. Also, the convergent 

of the method was shown to be 𝑜(ℎ)𝑜(ℎ). Bentol et al. [10] solved the solution of linear stochastic SIVIE driven 

by fractional Brownian motion with Hurst parameter 𝐻 ∈ (0,1) via the operational matrix block pulse method 

with hat functions as basis. Khodabin et. al. [11] applied the triangular functions to numerical solution of 

stochastic Volterra integral equations.  

 

However, there is a major gap in literature. The use of orthogonal basis via a discretization scheme such as the 

finite difference method for seeking the solution of stochastic Ito-Volterra integral equations has not been 

exploded. Thus, this research will adopt the Bernstein polynomials as orthogonal basis in a finite difference 

discretization approach to solve the Stochastic Ito-Volterra integral equations.  

 

2 Materials and Methods 

 
2.1 Preliminaries 

 
Definition 2.1 (Bernstein Polynomials). These are polynomials defined as [12-20] 

 

𝐵𝑖,𝑛 =
𝑛!

𝑖(𝑛−𝑖)!
(1 − 𝑡)𝑛−𝑖𝑡𝑖 , 𝑖 = 0(1)𝑛.                                                                                           (8) 

 

Some basic properties of the Bernstein polynomials include; 

 

i. Positive definiteness: 𝐵𝑖,𝑛(𝑡) ≥ 0, 𝑡 ∈ [0,1], 𝑖 = 0(1)𝑛. 

ii. Partition of unity: 𝐵𝑖,𝑛(𝑡) = ∑ 𝐵𝑖,𝑛
𝑛
𝑖=0 (𝑡) = 1. 
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iii. Symmetry: 𝐵𝑖,𝑛(𝑡) = 𝐵𝑛−𝑖,𝑛(1 − 𝑡). 

iv. Linear precision: 𝑡 = ∑
𝑖

𝑛
𝐵𝑖,𝑛

𝑛
𝑖=0 (𝑡). 

v. Recurrence relation: 𝐵𝑖,𝑛(𝑡) = (1 − 𝑡)𝐵𝑖,𝑛−1(𝑡) + 𝑡𝐵𝑖−1,𝑛−1(𝑡), 𝐵𝑖,𝑛(𝑡) = 0, 𝑖 < 0, 𝑖 > 0, 𝐵0,0(𝑡) = 1.  
 

Definition 2.2 (Ito stochastic Formula) 

Let 𝑒 and 𝑔 be two arbitrary functions into |𝜌|
1

2 and 𝑔 ∈ 𝐿𝑇
2 , so that e and g are well defined in 𝐿𝑇

𝑊  with all 

satisfactory properties except if 𝑒(𝑡, 𝑧) is replaced by (Farnoosh, et al., 2015)  

 

∫ |𝑒(𝑠, 𝑧)|𝑑𝑠 < ∞
𝑇

0
. 

 

By SDE, we mean an expression of the form 

 

𝑑𝑢𝑡 = 𝑒(𝑡, 𝑧)𝑑𝑡 + 𝑔(𝑡, 𝑧)𝑑𝑊𝑡(𝑧), 
 

which can be written as  

 

𝑢𝑡(𝑧) − 𝑢𝑠(𝑧) = ∫ 𝑒(𝑥, 𝑧)𝑑𝑥 + ∫ 𝑔(𝑥, 𝑧)
𝑡

𝑠

𝑡

𝑠
𝑑𝑊𝑥(𝑧)                                                                             (9) 

 

for 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇. Here, the first integral is termed Lebesgue or an ordinary Riemann integral for all 𝑧 ∈𝝮, and 

the second is an Ito integral. 

 

3 Finite Difference Method 

 
The principle of finite difference methods is close to the numerical schemes used to solve ordinary differential 

equations. It majors in approximating the differential operator by replacing the derivatives in the equation using 

differential quotients. The domain is partitioned in space and in time and approximations of the solution are 

computed at the space or time points. The error between the numerical solution and the exact solution is 

determined by the error that is committed by going from a differential operator to a difference operator. This 

error is called the discretization error or truncation error. The term truncation error reflects the fact that a finite 

part of a Taylor series is used in the approximation [21]. 

 

For the sake of simplicity, we shall consider the one-dimensional case only. The main concept behind any finite 

difference scheme is related to the definition of the derivative of a smooth function f at a point ∈ R, 

 

𝑓 ′(𝑥) = lim
ℎ→∞

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
 

 

and to the fact that when h tends to 0 (without vanishing), the quotient on the right-hand side provides an 

“appropriate” approximation of the derivative. In other words, h should be sufficiently small to get a good 

approximation. It remains to indicate what exactly a good approximation, in what sense is. Actually, the 

approximation is good when the error committed in this approximation (i.e. when replacing the derivative by the 

differential quotient) tends towards zero when h tends to zero. If the function u is sufficiently smooth in the 

neighborhood of 𝑥, it is possible to quantify this error using a Taylor expansion. 

 

3.1 Finite difference method for stochastic Ito-Volterra integral equations with 

Bernstein polynomials 

 
Given the Stochastic Ito-Volterra Integral Equations (SI-VIE) 

 

𝑈(𝑡) = 𝑔(𝑡) + ∫ 𝑦(𝑠, 𝑡)𝑈(𝑠)𝑑𝑠 + ∑ ∫ 𝐵𝑗(𝑠, 𝑡)𝑈(𝑠)𝑑𝐵𝑗(𝑠)𝑑𝑠
𝑡

0
,𝑛

𝑗=1
𝑡

0
                                                                            (8) 

 

where 𝑡 ∈ Ω = (0, 𝑇], 𝑈, 𝑔, 𝑦 and 𝐵𝑗 , 𝑗 = 1(2)𝑛, 𝑠, 𝑡 ∈ Ω are stochastic processes enclosed on the probability 

space (Ω, F, P) and 𝑈(𝑠) is unknown. Rewriting (8) in its differential form yields, 
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𝑈′(𝑡) = 𝑔′(𝑡) + [𝑦(𝑡, 𝑡)𝑈(𝑡) − 𝑦(0, 𝑡)𝑈(0)] + ∑ [𝐵𝑗(𝑡, 𝑡)𝑈(𝑡)𝑑𝐵𝑗(𝑡) − 𝐵𝑗(0, 𝑡)𝑈(0)𝑑𝐵𝑗(0)𝑛
𝑗=1 ]                   (9) 

 

Now, using a forward difference at time 𝑡𝑛on (9), we get the recurrence equation: 

 
𝑈𝑗

(𝑛+1)
−𝑈𝑗

(𝑛)

𝑘
= 𝑔′(𝑡) + [𝑦(𝑡, 𝑡)𝑈𝑗(𝑡) − 𝑦(0, 𝑡)𝑈𝑗(0)] + ∑ [𝐵𝑗(𝑡, 𝑡)𝑈𝑗(𝑡)𝑑𝐵𝑗(𝑡) − 𝐵𝑗(0, 𝑡)𝑈𝑗(0)𝑑𝐵𝑗(0)𝑛

𝑗=1 ]           (10) 

 

This is an explicit method for solving the Stochastic Ito-Volterra Integral Equations.  

 

Let  

 

𝑈𝑗
(𝑛)(𝑡) = ∑ 𝑐𝑖𝐵𝑖,𝑛,𝑛

𝑖=0                                                                                            (11) 

 

be an approximate solution of (10), where 𝑐𝑖 ′𝑠 are constants, and 𝐵𝑖,𝑛 uniquely defined by (8). 

 

Thus, (10) becomes 

 

∑ 𝑐𝑖𝐵𝑖,𝑛+1,𝑛+1
𝑖=0 = ∑ 𝑐𝑖𝐵𝑖,𝑛,𝑛

𝑖=0 + 𝑘(𝑔′(𝑡) + [𝑦(𝑡, 𝑡)𝑈𝑗(𝑡) − 𝑦(0, 𝑡)𝑈𝑗(0)] + ∑ [𝐵𝑗(𝑡, 𝑡)𝑈𝑗(𝑡)𝑑𝐵𝑗(𝑡) −𝑛
𝑗=1

𝐵𝑗(0, 𝑡)𝑈𝑗(0)𝑑𝐵𝑗(0)]),                                                                                                                      (12) 

 

where 𝑈𝑗
(𝑛)(𝑡) ≅ 𝑈𝑗(𝑡) 𝑎𝑡 𝑛 = 0,  and 

 

d𝐵𝑗 = 𝐵𝛾𝑛+1
− 𝐵𝛾𝑛

  for 𝑗 = 0(1)(𝑗 − 1),                                                                                     (13) 

 

such that 0 = 𝛾0 < 𝛾1 < 𝛾2 < ⋯ < 𝛾𝑁 = 𝑡, 𝑗 ≥ 0,  over the time interval [0, 𝑡]  with  𝛿 =
𝑡

𝑗
,  being the 

equidistant step size.  

 

Evaluating (12) for 𝑛 ≥ 0, and collocating via equidistant step size procedure we arrive at system of (𝑛 + 1) 

equation with 𝑛 unknowns. Solving the resulting systems yields the unknown  𝑐𝑖 ′𝑠, which are substituted into 

(11) for the approximate solution. 

 

4 Numerical Simulations 
 

To illustrate the method, we consider the example of which the analytic solutions exist with the help of MAPLE 

18. 

 

Example  

 

Consider the Stochastic Ito-Volterra Integral Equations: 

 

𝑈(𝑡) = −
1

8
− ∫

1

4
𝑠 × 𝑈(𝑠)𝑑𝑠 − ∫

1

40
𝑈(𝑠)𝑑𝐵𝑗(𝑠), 𝑡 ∈ [0, 𝑇], 𝑇 < 1.

𝑡

0

𝑡

0

 

 

The analytic solution is as: 

 

𝑈(𝑡) = −
1

8
𝑒

(−
1

40
𝐵𝑗(𝑡)−

𝑡3

8
−

1
3200

𝑡2)
 

 

A comparison between the exact and approximation of the solution by methodology above is given in Table 1 

for 𝑡 = 0.05, 0.1, 0.15 and Fig. 1. for 𝑛 = 16.  

 

 

 

 

about:blank
about:blank
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Table 1. Comparison of results between exact and computed 

 

t Exact    Computed    Error 

0.1    -0.1249999    -0.1249999     6.2500e-08 

0.2    -0.1249998    -0.1249999     9.3700e-08 

0.3    -0.1249998    -0.1249999     1.2500e-07 

0.4    -0.1249997    -0.1249998     1.5630e-07 

0.5    -0.1249996    -0.1249998     1.8750e-07 

0.6    -0.1249996    -0.1249998     2.1870e-07 

0.7    -0.1249995    -0.1249998     2.5000e-07 

0.8    -0.1249994    -0.1249997     2.8130e-07 

0.9    -0.1249994    -0.1249997     3.1250e-07 

 

Table 2. Maximum absolute errors 

 

𝒕 Present error Block pulse method [9] error 

0.05 3.037852E-07 3.8000000E-05 

0.1 80.08524E-08 1.0450000E-04 

0.15 9.136447E-07 9.6500000E-04 

 

 
 

Fig. 1. Graphical view of the exact and approximate solution 

 

5 Conclusions 
 

We have considered in this paper the numerical approximation of the Stochastic Ito-Volterra Integral equation 

via the Bernstein polynomials as basic functions. Consequently, the numerical results showered in Table 1 and 2 

showing the comparison of Results between Exact and Computed with the maximum absolute errors shows the 

accuracy of the method which performs better than the Block Pulse method in Bentol et. al. [9] 
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