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ABSTRACT 
 

Most landcover (LC) studies employ physical characteristics involving spectral reflectance. This 
study employs the concept of energy and entropy for LC classification. Satellite imageries from 
Landsat-8, the Operational Land Imager (OLI) and the Thermal Infra-Red Sensor (TIRS) captured 
at 100 m for three years (2013, 2015 and 2017) and resampled to a spatial resolution of 30 m for 
multispectral measurements were acquired. The normalized difference vegetation index (NDVI) of 
the study area was computed for both the wet (September/October) and dry (March) seasons of 
years 2013, 2015 and 2017, respectively; and the vegetation cover maps and landcover 
classification of the area based on the NDVI values were generated. Land surface temperature 
(LST) and net radiation of the surface area were computed and used as inputs for computing the 
surface entropy flux (SEF) of the study area. Overall, the dry season of 2017 had the highest 
vegetation cover while the wet season vegetation cover was highest in 2015. The high dry season 
vegetation cover in 2017 is attributable to higher level of living biomass than previous years. NDVI-
based LC classification of the area showed an overlap in distinguishing between built-up areas and 
vegetation cover as well as between bare (land) surface and free water bodies. This is attributable 
to skewed measure of centrality for the sample distribution possibly resulting from the quality 
(resolution) of data used or sampling techniques. Free water bodies had the highest SEF values 
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that fall within expected behavior for bodies of such state (liquids). The vegetation covers had the 
second highest SEF values for the entire site and the highest on land surface, which could be 
attributed to higher latent heat fluxes of such covers resulting from the evapotranspiration 
processes. The bare surfaces and built-up area of the study area were observed to have the lowest 
SEF values. The LC of the study area was reclassified based on SEF values via ground truthing 
i.e., by taking statistical distribution of well-known surface classes across the years under study. 
This was successful in distinguishing vegetation cover, surfaces of free water bodies and bare 
surfaces. A regression analysis revealed that LST influences SEF by up to 69 – 75% while 
vegetation cover has no appreciable influence on SEF.  A two-sample t-test showed a significant (P 
= 0.05) difference between the SEF for bare surfaces and that for vegetation cover. All these 
presents SEF as a reliable natural metric for LC classification. 
 

 

Keywords: Thermodynamic entropy; landcover classification; natural metric; entropy Flux. 
 

1. INTRODUCTION 
 

In very simple terms, thermodynamics is the 
quantitative treatment of relationships between 
different forms of energy. In this treatment, the 
thermodynamic system under study is usually 
separated from the rest of the universe by a 
boundary, real or imaginary. The nature of the 
boundary is very critical in this treatment and 
determines the type of thermodynamic system 
being considered. A boundary that neither 
energy nor matter can be transferred to and from 
its surroundings presents an isolated 
thermodynamic system. If the boundary is such 
that energy in form of heat, work and radiation 
can be transferred to and from its surroundings 
but not matter, a closed thermodynamic system 
is in place. When both energy and matter can be 
transferred to and from the surroundings of a 
system, such is an open system. 
 

The biosphere in which life exists is made up of 
the atmosphere, lithosphere and hydrosphere, 
each having their respective ecosystems. The 
biosphere, as a thermodynamic system, presents 
two relatively independent subsystems: 
subsystem that is responsible for the absorption 
of incoming solar energy, exergy and exergy 
conversion into heat flux and informational 
subsystem that is defined by entropy, information 
increment and biological productivity [1]. The 
lithosphere is a complex mixture containing 
minerals, soil (important for plants and other 
living organisms), organic compounds, etc. 
constituting the earth crust. The interface 
(boundary) between the atmosphere and 
lithosphere, hydrosphere and lithosphere; and 
biosphere and lithosphere is the soil (land) 
surface. This interface is the location of large 
transformations of energy i.e., energy exchange 
between the atmosphere and the land (earth) 
surface. The solar radiation absorbed by the land 

surface is transformed into sensible heat (heat 
exchange that results in change of body 
temperature and other thermal properties without 
change of state), latent heat or stored in the soil 
as ground heat with significant implications to the 
environment [2]. Thus, the solar radiation warms 
the land surface and provides energy to drive 
weather and climate; the land surface also 
contributing to the energy budget of the 
environment.  
 
By nature of the land surface, the atmosphere, 
lithosphere, hydrosphere combination is 
considered an open [1] thermodynamic system. 
Turbulent mixing of air causes the exchanges of 
sensible and latent heat between land surface 
and the atmosphere, which results in heat and 
moisture conveyance influenced by topography, 
vegetation, landforms and structure of the 
environment [3]. 
 
One of the key parameters in the study of climate 
change is land surface temperature (LST),              
which plays a key role in the interaction           
between atmosphere and land (lithosphere).                     
It is influenced by a combination of natural and 
anthropogenic factors like altitude, precipitation, 
ground moisture, landcover type, urbanization 
and use. LST is a major factor that controls most 
physical, chemical and biological processes in 
the biosphere and has an inverse relationship to 
vegetation [4]. When the land surface is 
impacted with energy exchange and temperature 
changes, not only are ground thermal properties 
dynamic, but superimposed on these complex 
relationships are annual and diurnal patterns of 
solar radiation, including irregularities in weather 
patterns [5]. 
 

In the Sudano-Sahelian region for instance, 
considerable land surface changes occur 
annually. The predominance of annual grasses 
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makes the land surface vary from bare during the 
dry season to luxuriant vegetation during the 
rainy season [6]. Therefore, measurements of 
the magnitude and variability of surface sensible, 
latent and specific (ground) heat fluxes (the sum 
of which is the total energy flux i.e., net radiation) 
becomes important because of the significance 
of local processes and the kind and intensity of 
weather experienced in a region [3]. The kind 
and intensity of weather impacts sustainable 
agriculture. 
 

Entropy, denoted S, is a thermodynamic state 
quantity that measures the degree of 
randomness or disorder of the molecules 
(constituents) of a system. For a reversible 
change taking place at a fixed temperature (T), 
the change in entropy (∆S) is equal to the heat 
energy absorbed or evolved (q) divided by the 
temperature, 
 

   
 

 
 

                                                         

Positive ∆S value implies heat is absorbed and 
corresponds to increase in entropy while a 
negative value shows heat is evolved and 
entropy decreases. Equation (1) is generally 
referred to as the Second Law of 
Thermodynamics, according to which non-
stationary nonequilibrium processes that are far 
from thermodynamic equilibrium, adapt to stable 
states in which they dissipate energy and 
produce entropy at the maximum possible level 
[1].  
 

Entropy can be used to form a framework in 
studying the environment, understanding and 
identifying regions that indicate an inefficient use 
of the energy radiated to land surface from the 
sun. An efficient utilization of this energy 
(resulting in low entropy) would imply a healthy 
environment that supports sustainable 
agriculture, whereas high entropy would suffice 
as a warning to impending or occurring 
environmental degradation. The use of entropy to 
prioritize which impacts to avoid and which to 
mitigate/remediate, as well as approaches to 
climate change, seems rational. This research, 
therefore, aims at using surface entropy flux 
(SEF) techniques to determine landcover classes 
of the study area. 
 

2. MATERIALS AND METHODS 
 

2.1 Research Design 
 

Largely, landcover (LC) studies employ physical 
characteristics involving spectral reflectance. 

This study applies the concept of energy and 
entropy for LC classification. The general 
framework of the research involved the 
acquisition of data, primarily, satellite imageries 
for a period of three years: 2013, 2015 and 2017. 
These years were chosen because they had the 
most complete and valid corresponding climatic 
data from the local weather station. The data 
used for the research was acquired from 
Landsat-8, the Operational Land Imager (OLI) 
and the Thermal Infra-Red Sensor (TIRS) which 
is captured at 100 m but resampled to a spatial 
resolution of 30 m for multispectral 
measurements [7]. The spectral structure of the 
reflected radiation in comparison with the 
structure of the incoming solar radiation per 
every elemental area (pixel, element of 
thermostatic system) allows estimation of the 
thermodynamic parameters of ecosystems at the 
moment of measurements [1]. The required 
images were from the month of March (which 
had the minimal cloud cover and were captured 
at the time when the region experienced high 
temperatures to represent the dry season) and 
September/October (to represent the wet 
season). September/October were selected 
because they are months with minimal cloud 
cover during the wet season in the study area. 
The satellite images were downloaded from the 
archives of the United State Geological Survey 
(USGS).   
 
The acquired data was preprocessed, using the 
DOS1 (Dark object Subtraction 1) technique, to 
correct for the influence of top-of-atmosphere 
interference. DOS 1 is an image-based method 
[8] for converting Landsat images from digital 
number (DN) to surface reflectance without 
requiring any information about atmospheric 
conditions. The net radiation and land surface 
temperature (LST) were computed from the 
acquired data and used to compute the SEF of 
the area. 
 

2.2 Study Area 

 
The study area (Fig. 1) was chosen for its 
proximity and as one with all the major land 
surfaces like free water, vegetation, rock outcrop 
and grassy farmlands; hence suitable for testing 
of a parameter as a classification metric. Also, 
given that LC and land use (LU) composition 
strongly influences future development potential 
in terms of sustainability and economy [9], the 
rapid suburbanization of the study area resulting 
from the siting of a Federal University beside it, 
makes its choice essential and needful. It is 

(1) 
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bordered by the following coordinates, 09.500
o
 

N, 12.400
o
 E at the upper left corner and 09.300

o
 

N, 12.6500
o
 E, at the bottom right corner and 

encompasses the following villages; Galrole, 
Langire, Wuro Medi, Wuro Dole, Wuro Mbonara, 
Gokra, Dagri, Kofare and Girei. The area falls 
between the northern Guinea Savannah 
vegetative zone, characterized by high 
grasslands with shrubs and fewer trees. 
Common grasses in this region include; Cassia 
species, Chlorispilosa, Tridax precumbe, 
Euphopia species, Leucas martiniesis, 
Eroggrostremulla, Pennisetum sepcies and 
common trees such as the Viteelara paradoxa, 
Tamarindus indica, Tamalinia species, 
Accasialbida and Adosomnia digitata. Human 
activities such as cultivation for many years, 
have changed the ecosystem and characteristic 
features of the area to a dry Sudan Savannah. 
Common crops grown are maize, groundnut, 
cowpea and sorghum. The area is trademarked 
with gently sloping terrain to steeply sloped 
region of the Bagalle hills. These hills are in the 
south-east quadrant, occupying the entire 
quadrant. Rock outcrops and/or rocky surfaces 
appear at the south-west quadrant and extend 
near the banks of the River Benue. 
 

2.3 Geology and Soils of the Study Area 
 

Settlements of Wuro Medi, Darware, Langire to 
Gogra are suitated on sandy loam to sandy clay 
soils, with no or few iron concretions, mostly over 
sandstones. The Dagri and Kaffare settlements 
are situated on rock outcrops and have shallow 
skeletal soil on Bima sandstone ridges with 
sandy loam soil in the valleys. The Girei 
settlement is situated on shallow skeletal soil 
over granite, basalt, sandstone and ironstone. 
The soils appear yellowish brown in color, and 
are poorly drained due to the prevalence of 
mottling in the horizon. The river Benue is 
situated in sandy, loamy and clayey soils of 
alluvial areas. The soil’s pH is acidic (range of 
6.5 – 6.9), cation exchange capacity (CEC) is low 
in organic carbon, total nitrogen and available 
phosphorus.   
 

2.4 Developing Vegetation Index Map 
 
 Vegetation indices are mathematical 
transformations, usually ratios or linear 
combinations of reflectance measurements in 
different spectral bands (or channels), 
particularly the visible and near infrared bands. In 
developing the vegetation index map, the NDVI 
of the study area was computed via equation (2) 

for both the wet and dry season of the years 
2013, 2015 and 2017 using data from the 
Landsat-8 (OLI/TIRS) satellite; the red and near 
infrared bands being the bands of interest [10]. 
 

      
       

       

 

 
where      and    = reflectance in the near 
infrared and red bands, respectively.  
 
 

2.5 Land Surface Temperature 
 
The approach already reported [3,11] was 
adopted in computing LST from the Landsat-8 
TIRS data. The emissivity (rate of emission of 
heat from the surface of a heated body) of the 
land surface of the study area was computed 
(equations 3 and 4) from the NDVI [8] of the wet 
and dry seasons of the years under study for use 
in generating a land surface temperature map of 
the study area as an input for estimating SEF. 
The thermal infrared band of the Landsat 8 level 
1 product acquired with a resampled spectral 
resolution of 30 m [7] was converted to radiance 
and to brightness temperature. The brightness 
temperature and emissivity raster were then 
used as inputs in computing the land surface 
temperature (in Kelvin) of the study area. 
 

                
 

given that 
 

      
              

                 

   

 
 
where   = emissivity,   = function of leaf 

orientation distribution canopy,          is the 
NDVI value for maximum (complete) landcover, 
         is the NDVI value for study area and 

      is the NDVI value for point (location) i. 
 

2.6 Conversion of Digital Number to 
Radiance 

 
Digital numbers (DN) were converted [4] to 
radiance using equation (5). 
 

    
           

   
          

 
 
where    is the spectral radiance at the sensor.  

(2) 

(3) 

(4) 

(5) 
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2.7 Conversion of Radiance to Brightness 
Temperature  

 
The Planck’s inversion function (equation 6) was 
applied in converting the radiance value to 
brightness temperature. 
 

  
  

             
 

 
 
where T is brightness temperature (in Kelvin),    

and    (1331 and 775, respectively) are 
calibrated thermal constants 1 and 2, and    is 
the cell radiance value. 
 

2.8 Conversion of Brightness to Land 
Surface Temperature  

 
The already developed model [10,12] for 
compensation of spectral surface emissivity and 
vegetation cover in the derivation of land surface 
temperature was employed in converting from 
brightness temperature to land surface 
temperature (equation 7) based on Agone and 
Bhamare approach [13]. 

 

    
 

             
 

       
or 
 

    
 

       
 

 
where LST is the land surface temperature (K), T 
is the brightness temperature (K),   is the 
wavelength of emitted radiance (10.8 µm), k is 
Boltzmann constant, h is Plank’s constant, c is 

velocity of light,   is emissivity and        
        . 
 

2.9 Computing Surface Energy Flux  
 
The net radiation (i.e., the energy that is 
available to influence the local environment) for 
the study area was computed at the time of 
satellite overpass using the SEBAL model [14] as 
defined and simplified [2,15]: 
 

                       
  

 
where    is the net radiation in Wm

-2
,   is the 

albedo,   is the emissivity of the surface,   is the 

Stefan-Boltzmann constant,   is the land surface 
temperature,      is the downward shortwave 

radiation and      is the downward longwave 
radiation. 
 

2.10 Computing Surface Entropy Flux  
 
SEF was computed, in line with equation (1), as 
the ratio of net radiation approximation at the 
time of satellite overpass and the land surface 
temperature. Net radiation (Wm

-2
) is an energy 

flux depicted as sum of sensible, latent and 
ground heat fluxes [16]. Since the energy flux is 
measured at the time of satellite overpass, 
     and Wm

-2
 = Jm

-2
. The energy budget 

equation defines the net radiation as, 
 

            
 

where H is sensible heat,     is latent heat of 
evapotranspiration and    is the energy utilized 
in heating the soil. Thus, q (equation 1) is equal 

to   , T equals LST and analogous of equation 
(1) becomes, 
 

    
  

   
 

 
 

2.11 Entropy Flux and Biophysical 
Properties   

 

A regression analysis was conducted to 
determine the relationship between NDVI and 
SEF, and between LST and SEF. The SEF 
values for water bodies, built areas and 
vegetation cover were randomly sampled and 
tabulated for comparison. Similarly, SEF values 
for the various landcover classes in the study 
area were randomly sampled and tabulated for 
comparison. 
 

3. RESULTS AND DISCUSSION 
 

3.1 Climatic Conditions of Study Area 
 

The climatic conditions of the area are fairly 
constant. Temperature is high during most parts 
of the year because of the radiation influx which 
is relatively high and distributed throughout the 
year. The highest maximum temperature of 
49.73

 o
C and minimum temperature of 7.75 

o
C 

(Table 1) was recorded during the period of 2013 
through to 2017. The average temperature 
recorded for the period of the observation was 
38.32 

o
C. The monthly average revealed that the 

lowest ambient temperature (24.5±4.5 
o
C) are in 

August while the highest (about 44 
o
C) was 

recorded in March (Fig. 2).  

(6) 

(10) 

(11) 

(7) 

(8) 

(9) 
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The rainfall is the most variable element with the 
highest precipitation of 99.19 mm. The average 
observed was 2.09 mm. The rainfall starts in 
April and ends in October with August having the 
highest precipitation (Fig. 3). The maximum 
relative humidity of 0.9 fractions, with an average 
of 0.47 fractions was observed. The highest 
relative humidity (about 0.82 fractions) was also 
observed in August like precipitation (Fig. 3). The 
observed precipitation and the relative humidity 
agree with reported findings [17]. The maximum 
wind speed of 3.25 m/s was observed with an 
average of 1.55 m/s. Monthly average show that 
the wind speed is high at the onset of the wet 
season (Fig. 3). The solar radiation flux for the 
region is relatively high. Maximum solar radiation 
observed was 27.99 MJ/m

2
 (22.31 MJ/m

2
 

average) and tends to be distributed during most 
parts of the year (Fig. 2). 
 
The soil of the region is characterized as sandy 
loam underlain by sand to silt clay. The soil 
appears yellowish-brown and is poorly drained 
due to the prevalence of mottling in the horizon 
(Table 2). The soil’s pH (6.5 – 6.9) is acidic with 
CEC low in organic carbon, total nitrogen and 
available phosphorus. 
 

3.2 Normalized Difference Vegetation 
Index (NDVI)  

 
Table 3 presents the NDVI-based landcover 
classification for the study area. It shows an 
overlap in distinguishing between built-up areas 
and vegetation cover on one hand, and bare 
surface and water surface on the other; as a 
result of reasons alluded earlier. The computed 
NDVI for the study area (Tables 4 & 5) show 
average values of 0.1996, 0.2443, and 0.3322 
for the dry season (i.e., March) for years 2013, 
2015 and 2017 while that of the wet season (i.e., 

September/October) for the same years were 
0.5786, 0.6019 and 0.5196 respectively. The dry 
season of 2013 showed the lowest NDVI value. 
This suggests the volume of water bodies was 
higher (and deeper) than the same month in 
other years. Same was observed in the wet 
season for year 2015. In general, the quality and 
density of vegetation [4,18,19] cover for the study 
area on an average, was higher in 2015 and 
2017 for the wet and dry seasons, respectively. 
 
The dry season (March) vegetation maps 
generated show that most parts of the study area 
were bare (i.e., no significant vegetation cover) in 
March of 2013, with patches of vegetation 
covering parts of the Bagale hills (lower right 
quadrant of map) and extending into Girei, Wuro 
Dole and Wuro Medi settlements. Granular 
patches of vegetation cover were observed 
between Galrole and Langire villages, extending 
more towards Galrole   than Langire village.  
Patchy vegetation is also observed around 
Kaffare village, extending left ward (i.e., the 
bottom left quadrant of the map) just above the 
River Benue.  This vegetation cover above the 
river is situated on lands that get fed with water 
from the river (Fig. 4).  This pattern of vegetation 
cover distribution changed in the dry season of 
2015 but the bare nature of the land   remained. 
Patches of vegetation cover were observed 
bordering the settlements around the Modibbo 
Adama University of Technology (MAUTECH), 
Yola, towards the upper left and bottom right. 
The vegetation cover around the Bagale hills 
were patchy and sparing at the top of the hills 
(i.e., in the bottom right corner of the map).  
Vegetation cover was also observed around the 
Wuro Dole village and between Galrole and 
Langire villages as well as to the left of Kaffere 
village (Fig. 5) 

 

Table 1. Statistical Summary of observed weather conditions of study area, 2013 – 2017 
 

 Maximum 
Temperature 
(
o
C) 

Minimum 
Temperature 
(
o
C) 

Precipitation 
(mm) 

Wind 
Speed 
(m/s) 

Relative 
Humidity 
(frac.) 

Solar 
Radiation 
(MJ/m

2
) 

Minimum  24.32 7.75 0.00 0.65 0.09 2.53 
1

st
 Quantile  34.86 16.64 0.00 1.29 0.28 21.50 

Median  38.77 21.34 0.00 1.51 0.45 23.20 
Mean  38.32 20.02 2.09 1.55 0.47 22.31 
3

rd
 Quantile  41.97 23.43 0.93 1.78 0.66 25.18 

Maximum  49.73 28.34 99.19 3.25 0.93 27.99 

 
 
 



 
 
 
 

Myina and Myina; Asian J. Res. Agric. Forestry, vol. 9, no. 4, pp. 91-109, 2023; Article no.AJRAF.102513 
 

 

 
97 

 

 
 

 
(a)        (b) 

 
Fig. 1. Map of Nigeria (a) showing state (Adamawa State) where study area is located and Map 

of Adamawa State (b) showing location of study area 
 

 
 

Fig. 2. Monthly averages of temperature (Minimum and Maximum) and solar radiation 
 

 
 

Fig. 3. Monthly averages of precipitation, wind speed and relative humidity 
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Table 2. Listing of five classes of soils in the study area 
 

Label Name Description 

FC Concretionary Leached Ferruginous Tropical 
Soils 

Sandy loam to sandy clay loam with 
concretionary iron-pan over granite or 
sandstone 

RWE Rock outcrops, Raw Mineral Soils and 
Weakly Developed Soils of erosion 

Shallow, skeletal soils over granite, basalt, 
sandstone and ironstone 

FL Leached Ferruginous Tropical Soils, without 
iron concentrations 

Sandy loam to sandy clay soils, with no or 
few iron concretions, mostly over 
sandstone 

R-FL Sandy loam to sandy clay soils, with no or 
few iron concretions, mostly over sandstone 

Rock outcrops and shallow skeletal soils 
on Bima Sandstone ridges and sandy 
loam in valley 

YWD Weakly Developed Soils of deposition and 
Hydromorphic Soils 

Sandy, loamy and clayey soils of alluvial 
areas 

 
Table 3. NDVI-based landcover classes 

 

NDVI Range Class Name 

0.0001 – 0.2814 Bare Surface 
0.2815 – 1.0000 Vegetation 
-1.0000 – 0.0000 Others (mostly Free Water Surface) 

 
Table 4. The NDVI values for dry season (March) of 2013, 2015 and 2017 

 

 2013 2015 2017 

Maximum  0.6015 0.3986 0.7315 
Mean  0.1996±0.0530 0.2443±0.0170 0.3322±0.0457 
Minimum  -0.4465 0.1496 0.0991 

 
Table 5. The NDVI values for wet season (September/October) of 2013, 2015 and 2017 

 

 2013 2015 2017 

Maximum  0.8484  0.8844 0.7837 
Mean  0.5786±0.1204  0.6019±0.1454 0.5196±0.0991 
Minimum  0.3088  -0.5926 -0.2124 

 
The vegetation cover map of March 2017 was 
observed to differ significantly to that of the 
previous years (2013 and 2015). A greater 
portion of the study area was covered with 
vegetation and only significantly larger 
settlements reflected no vegetation cover, 
particularly regions around Kaffere and Girei 
settlements.  A trail of bare surfaces from Wuro 
Dole through Girei to Gogra is observed from the 
map (Fig. 6). These are portions of the stream 
that runs from the Bagale hills through Girei 
downwards. 
 
Overall, it was observed that the dry season 
(March) of 2017 had the highest vegetation cover 
with almost the entire map surface of the study 
area covered with vegetation. This could be 
attributed to higher levels of living biomass than 

the previous years [20], resulting to the high 
NDVI values observed (Table 4). The water 
bodies were also observed to appear as bare 
surface rather than water. This is due to the fact 
that the NDVI values for water are usually below 
zero unlike the minimum (0.0991) observed [21]. 
Also, the resolution of the acquired image may 
aggregate portions of narrow waterways with 
nearby lands; thus, recording such aggregated 
values as lesser than expected. In the dry 
season of 2013, a large surface of the study area 
was covered with vegetation and the water body 
was properly represented. However, in the same 
season of 2015, there was a drop in the 
vegetation cover, most especially around the 
Bagale hills extension. Vegetation cover around 
the Kaffare settlements appeared statistically (P 
= 0.05) consistent between the dry seasons of 
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2013 and 2015. The wet season 
(September/October) of years 2013, 2015 and 
2017 were observed to generally have high NDVI 
values with maximum values ranging from 
0.7837 to about 0.8844 (Table 5) reflecting a 
higher density of living biomass [22] consequent 
upon high levels of precipitation. Surfaces 
around settlements like Girei and MAUTECH, 
Yola, were marked as patches of bare land. The 
stream path, running from the Wuro Dole village 
through Girei to Gogra village, was also marked 
as bare surface. 
 

3.3 Surface Entropy Flux (SEF) 
 
The entropy flux at the surface of free water 
bodies (e.g., River Benue) yielded the highest 
SEF values in the study area. This is so because 
bulk of the solar energy reaching such surfaces 
is used for evaporation (change the state of such 
bodies) and the remaining fraction is used to 
heat the surrounding air. Since no significant 
portion of the energy is absorbed, the net 
radiation (  )  observed is high. In using up the 

energy for evaporation (   ) and heating of the 
surrounding air (H), little or no energy is left to 

increase the temperature gradient between the 
surface and deeper parts of such bodies. Thus, 
no downward flow of energy and no significant 
increase in temperature of such bodies. Given 
that entropy is seemly a measure of how energy 
is dissipated, the dissipation of energy at the 
surface of free water bodies is higher with 
consequent higher SEF values. Land surface 
covered by vegetation had the next high values 
for SEF given the inverse relationship between 
vegetation and LST [4]. The observed LST in 
regions of the study area with significant 
vegetation cover was low, since energy reaching 
such surfaces is used by the vegetation (and 
induces transpiration) but never absorbed by the 
soil (    ) due to canopy effect and sometimes 
mulching. The resultant energy (   ) dissipated is 
significantly high with attendant low surface 
temperature and high SEF. Although, SEF over 
vegetated surfaces would always be lower than 
those observed over free water body surfaces; 
exceptions exit for regions (or periods) with very 
high relative humidity. In such regions, the SEF 
values for vegetated surfaces may appear same 
with those observed over free water body 
surfaces.

 

 
 

Fig. 4. Vegetation cover map of study area for dry season (March) of 2013 
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Fig. 5. Vegetation cover map of study area for dry season (March) of 2015 
 

 
 

Fig. 6. Vegetation cover map of study area for dry season (March) of 2017 
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Fig. 7. Vegetation cover map of study area for wet season (September) of 2013 
 

 
 

Fig. 8. Vegetation cover map of study area for wet season (September) of 2015 
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Fig. 9. Vegetation cover map of study area for wet season (September) of 2017 
 

Table 6. Dry season (March) surface entropy fluxes of study area in Jm
-2

K
-1

 
 

 2013 2015 2017 

Maximum  2.861  3.060 2.747 
Mean  2.380 ± 0.067  2.592 ± 0.102 2.364±0.0599 
Minimum  2.102  2.418 1.990 

 
Bare surfaces and built-up regions of the study 
area were observed to have the lowest SEF 
values. This is expected (equation 10) since a 
large portion of the net radiation reaching such 
surfaces is absorbed as ground heat, making the 
negative    larger and    smaller, and resulting 
in lower SEF. However, when such surfaces are 
moist or wet, a larger portion of the    is used in 

   , which significantly reduces the surface 
temperature until evaporation is no longer 
possible. The increase in     increases the    
and results to larger SEF values. This suggests 
that, though the SEF values of bare surfaces are 
lowest, surfaces that can absorb moisture would 
yield higher SEF values than dry surfaces. Year 
2017 had the lowest SEF value while 2015 had 
the highest value (Table 6). 
 
The wet season (September/October) of years 
2013 and 2017 showed almost same lower 
average SEF values of 2.587 and 2.563 Jm

-2
K

-1
 

respectively, while the highest average SEF 
value of 2.633 Jm

-2
K

-1
 was recorded in 2015.  

The surface entropy flux map of the study area 
for the dry season (March) of 2013 reveal the 
highest SEF values on water surface (i.e., River 
Benue) at the bottom left corner of map while the 
Bagale hill and strips to the left of Kaffare village 
had higher SEF values than most surfaces of the 
study area. Settlements like Girei, Wuro Dole 
and Daware had moderately low SEF                
values (Fig. 10). The dry season of 2015 
presented a different pattern. The highest             
SEF value was recorded around the Bagale hills. 
Girei and Wuro Dole settlements also had       
higher SEF values than other regions of the 
study area. 
  
The dry season (March) of 2017 was observed to 
have the highest SEF values around regions 
above the Gogra village. River Benue was also 
one of the surfaces with the highest SEF values. 
The Bagale hills were observed to have high 
SEF values but not as high as those for River 
Benue. Settlements like Daware and Girei (the 
entire right side of the map) presented as regions 
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of the study area with average SEF values with 
some patches of moderately high SEF values 
(Fig. 12). 
 
The SEF maps for the dry season of 2013 and 
2015 revealed that water bodies tend to have the 
highest SEF values than land surfaces or 
vegetation cover. This is expected since the 
entropy (level of disorder) of such bodies (liquids) 
are higher than solid bodies [22] and in line with 
the 2

nd
 law of thermodynamics.  

 
The SEF values for vegetation covers were 
observed to be higher than values for regions 
with bare surface (no vegetation cover). This is 
consistent with reported observations [23] in 
quantification of thermodynamic entropy budget 
of land surfaces. They observed that latent heat 
flux (   ) caused the largest entropy transfer and 
it approximately doubled those of sensible (H) 

and ground heat (  ) flux. Therefore, entropy 
transfer increases with vegetation. Thus, 
vegetation has a significant role in increasing the 
entropy production by altering the absorption of 
solar radiation and decreasing the surface 
temperature. The role of vegetation in decreasing 

land surface temperature has also been reported 
[4]. 
 
SEF map of the study area in the wet season 
(September) of 2013 presents high SEF values 
along the upper boundary while most of the 
settlements had low SEF values. Villages like 
Wuro Dole, Wuro Medi, Langire, Galrole, Gogra 
and Kaffare all showed low SEF values. River 
Benue has the highest SEF value (Fig. 13). The 
year 2015 map for wet season presents River 
Benue surface and the bowl of Langire, Wuro 
Medi and Daware settlements with the highest 
SEF values. Settlements on the diagonal of 
Kaffare and Girei have lower SEF values (Fig. 
14). The wet season (October) of 2017 recorded 
its highest SEF values on the River Benue and 
regions of the Bagale hills extension. A larger 
portion of the study area was observed to have 
average to slightly high SEF values (Fig. 15). 
Generally, therefore, the generated SEF maps 
for the wet season had larger portions of the 
study area covered by above-average SEF 
values, typically, due to the latent heat flux as a 
result of vegetation and high soil moisture 
[23,24]. 
 

 
 

Fig. 10. Dry deason (March) 2013 surface entropy flux map of study area (Jm
-2

K
-1

) 
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Table 7. Wet season (March) surface entropy fluxes of study area in Jm
-2

K
-1 

 

 2013 2015 2017 

Maximum  2.874  2.887 2.822 
Mean  2.587 ± 0.073  2.633 ± 0.053 2.563 ± 0.067 
Minimum  2.230  2.034 2.130 

 

 
 

Fig. 11. Dry season (March) 2015 surface entropy flux map of study area (Jm
-2

K
-1

) 
 

 
 

Fig. 12. Dry season (March) 2017 surface entropy flux map of study area (Jm
-2

K
-1

) 
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Fig. 13. Wet season (September) 2013 surface entropy flux map of study area (Jm
-2

K
-1

) 
 

 
 

Fig. 14. Wet season (September) 2015 surface entropy flux map of study area (Jm
-2

K
-1

) 
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Fig. 15. Wet season (October) 2017 surface entropy flux map of study area (Jm
-2

K
-1

) 
 

3.4 Relationship between SEF and LST  
 
Regression analysis is about determining how 
changes in the independent variables are 
associated with changes in the dependent 
variable. A regression analysis of the SEF and 
LST of the study area showed that in the dry 
season of 2013, about 59.34 % of the variation in 
SEF was influenced by the variation in LST 
within a 4.3 % margin of uncertainty. However, in 
the wet season of the same year, the value 
increased to about 71.74 %, accounted for by 
variations in LST within a 3.9 % margin of error. 
In the dry season of 2015, 92.54 % of the 
variation in SEF was accounted for by LST 
variation within a 2.8 % margin of uncertainty. In 
the wet season of the same year, only 46.67 % 
of the variation in SEF was influenced by 
variations in LST within a margin of error of 3.9 
%. In the dry season of 2017, it was observed 
that about 73.16 % of the variation in SEF was 
influenced by LST within a 3.1 % margin of error. 
The wet season of the same year was observed 
to have 86.81 % of the variation in SEF 
influenced by LST within a margin for error of 3.1 
%. These suggests, therefore, that LST has a 
strong influence on SEF. On the average, LST 
influences SEF by 75 % in the dry season and 69 

% in the wet season, all within 3.5 % margin of 
error. 
 

The average regression coefficient (  )  for the 
dry season of these years is 0.75 while that for 
the wet season is 0.69. Thus, influence of LST 
on the variation of SEF within these two seasons, 
on the average, differ by 6.34 %. Table 8 shows 
that the level of influence of LST over SEF in the 
dry season of 2015 was significantly (P = 0.05) 
greater than that of 2013 by a factor of 1.6. 
Regardless of the fact that average regression 
coefficient is higher in the dry seasons, the 
influence of LST over SEF was generally higher 
in the wet seasons, except for year 2015. This is 
attributable to the higher levels of moisture 
during the season, which translates to high latent 
energy.  
 
3.5 Relationship between SEF and NDVI 
 
The relationship between SEF and NDVI reveal 
that only 2.2 % of the variation in SEF was 
influenced by vegetation within an error margin of 
6.7% for the dry season of 2013. The level of 
influence was higher (11.63 %) during the wet 
season within a similar (6.8%) error margin. The 
dry season of 2015 was observed to have 0.9 % 
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variation in SEF influenced by vegetation within a 
10% margin of error, 1.2 % variation within a 5.3 
% margin of error in the wet season of same 
year. Year 2017 dry season show 23.3 % 
variation in SEF influenced by vegetation within a 
5.2 % margin of error whereas the wet season of 
the year shows 31.9 % variation in SEF 
influenced by vegetation with a 5.5 % error 
margin. The low regression coefficient values of 
the dry season compared to the wet season 
(Table 10 and 11) as well as the relatively large 
error margins indicate that vegetation by itself 
has no influence on the variations in SEF. This 
suggests that variation in SEF is greatly 
influenced by moisture rather than vegetation 
(directly i.e., canopy), given the increased 
influence during the wet season. Thus, 
regression analysis between SEF and NDVI 
reveals that vegetation cover has no appreciable 
influence on SEF. 
 

3.6 Comparison of Bare Surface and 
Vegetation Cover SEF  

 
A two-sample t-test was conducted between 
randomly sampled SEF values from bare 
surfaces across the three years and vegetation-
covered surfaces. This revealed a significant 
difference between the mean of the two samples 
at a 5 % significance level. The sample mean for 
bare surface SEF values was lower at 2.4942 
Jm

-2
K

-1
 than that of vegetation-covered surface 

at 2.6081 Jm
-2

K
-1

. 
 
Table 8. Regression between SEF and LST for 

dry season (March) 
 

 2013 2015 2017 

   0.593440  0.925424 0.736625 

    
  0.593439  0.925424 0.736624 

    
  0.042923  0.027931 0.030717 

 

3.7 SEF for Land Cover Classification 
  
SEF values for vegetative surfaces and water 
bodies were presented at the upper end of the 
varying SEF values as 2.618 ± 0.174 Jm

-2
K

-1
 and 

2.766 ± 0.063 Jm
-2

K
-1

 respectively (Table 12). 
This information was used to develop land cover 
classes presented in Table 13. A SEF land cover 
map of the study area was generated based on 
this new classification (Fig. 16). It was observed 
that free water bodies such as the River Benue 
(lower left quadrant of map) and large streams in 

the Bagale hills (lower right quadrant of map) 
were properly classified. Bare surfaces around 
the Kaffare settlements were also classified. It 
was also observed that a larger portion of the 
built-up areas was at the lower left quadrant of 
the study. Thus, the overlap between built-up 
areas and vegetation on one hand, and that 
between bare surface and free water bodies 
experienced with NDVI-based classification is 
non-existent with SEF-based classification     
(Table 13). 
 
Table 9. Regression between SEF and LST for 

wet season (September/October) 
 

 2013 2015 2017 

   0.717387  0.466719 0.868121 

    
  0.717387  0.466718 0.868120 

    
  0.038522  0.038645 0.024209 

 
Table 10. Regression between SEF and NDVI 

for dry season (March) 
 

 2013 2015 2017 

   0.022004  0.009247 0.232485 

    
  0.022002  0.009245 0.232484 

    
  0.066573  0.101805 0.052436 

 
Table 11. Regression between SEF and NDVI 

for wet season (March) 
 

 2013 2015 2017 

   0.116308  0.012534 0.318786 

    
  0.116306  0.012532 0.318785 

    
  0.068118  0.052587 0.055022 

 
Table 12. Average SEF values for land cover 

classes of study area 
 

  Vegetation Built-
Up 

Bare 
Surface 

 Water 
Bodies 

Mean  2.618  2.487 2.388 2.766 
STDV 0.174  0.126 0.084 0.063 

 
Table 13. SEF Land cover classification 

 

 Boundaries 

 Lower Upper 

Bare Surface < 2.361 
Built-Up >2.361 2.444 
Vegetation >2.444 2.703 
Water  >2.703 > 
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Fig. 16. SEF reclassified land cover map of study area 
 

4. CONCLUSION 
 
A pragmatic approach was used to measure 
surface entropy flux (SEF) using the net radiation 
at the time of satellite overpass and the land 
surface temperature (LST) of the Landsat 8 data. 
SEF values successfully distinguished surfaces 
of free water bodies, built-up areas, vegetation 
cover and bare surfaces from one another. This 
result demonstrates that, thermodynamic entropy 
is a natural metric that could be used for 
landcover (LC) classification. While LST has 
considerable influence on SEF, vegetation cover 
has no appreciable influence on SEF. 
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