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Recurrent Neural Network to Forecast Sprint Performance
Kyle D. Peterson

Sports Science Department, University of Iowa, Iowa City, IA, USA

ABSTRACT
The present paper demonstrates that the performance of an
elite track and field sprinter can be predicted by means of the
dynamic, nonlinear mathematical method of recurrent neural
networks (RNNs). Dataset considers three years of National
Collegiate Athletics Association (NCAA) Division I competitions
where the student-athlete recorded heart rate variability two
days precedent to each competition. Input parameters were
selected by transfer entropy via permutation tests.
Subsequently, two RNN topologies, Elman and Jordan, were
trained with 32 competitions, validated with 7 competitions,
and tested against 6 held-out competitions. Resultant RNNs,
which possess a sense of time and memory, were able to learn
time-dependent sequence of acute adaptation and predict
race times with an error of 0.09–0.16 s on held-out test data.
Root mean sum of differences of successive R-R intervals
(RMSSD), an indicator of parasympathetic tone, and direct
current biopotentials, indicator of active wakefulness, were
most predictive toward competitive performance for an
NCAA Division I male sprinter.

Introduction

Sprinting performance, as with most individual sports, is more closely con-
nected to acute physiological readiness in comparison to the complexity of
team sport success. Consistent analysis of objective, internal athlete monitor-
ing can depict an athlete’s undulating physiological readiness in response to
external training stimuli (Halson 2014). Although coaches utilize this infor-
mation to examine retrospective adaptive behavior to augment the training
management process, there is potential for predictive methods that have
largely gone unnoticed for the preparation of competitions.

A common athlete monitoring tool to provide indication of physiological
readiness is heart rate variability (HRV). Beat-to-beat variability of the heart is
reflective of autonomic balance, which sport practitioners exploit in an effort to
delineate an organism’s adaptive capabilities (Buchheit 2014). For example,
increases in sympathetic tone are suggestive of early signs of overreaching, whereas
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extended periods of overreaching can be expressed by parasympathetic dominance
(Lehmann et al. 1998). HRV has traditionally been a tool for monitoring aerobic-
dominant sports (Buchheit 2014), but it has recently been a developing area of
research for the applicability for intermittent, team-based sports performance,
such as basketball (Fronso et al. 2012), Australian football (Cornforth et al.
2015), and badminton (Bisschoff et al. 2018). However, HRV for anaerobic
neuromuscular performance remains relatively unexplored (Buchheit 2014).

Another biological proxy that has influenced the sport fraternity is the esti-
mated functional state of the central nervous system (CNS) via direct current
biopotentials (DCPotential). Ilyukhina (1982) presented a noninvasive approach
to quantify the excitability of underlying cortical tissue via DC potential, termed
omegametry. DC potential was able to recognize alterations in CNS states, such
as exhaustion or tension, and was suggested that DC potential could detect
changes in an athlete’s functional state (Ilyukhina et al. 1982). Unfortunately,
empirical evidence substantiating omegametry with athletic performance in
competitive environments remains embryonic, leaving coaches to infer from
raw data with little guidance. More recently, Morris (2015) evaluated physiolo-
gical readiness with elite anaerobic athletes via HRV and omegametry. The
results illustrated improved adaptations in power expression when HRV and
omegametry guided the training versus a control group whose training was not
altered. However, this study, albeit invaluable, refrained from evaluating compe-
titive athletic environments and relied on linear methodology for analysis.

Linear methods fall short when modeling human performance from variables
that characterize nonlinear biological systems (De’arth and Fabricius 2000) and
is obligatory for models to be dynamic in order to appreciate how systems evolve
over time (Cook 2016). Such propositions invite researchers to explore the utility
of more sophisticated modeling strategies to forecast human performance.
Edelmann-Nusser, Hohmann, and Henneberg (2002) is an example of such
nonlinear methodology, who successfully predicted an Olympic swimmer’s
performance via artificial neural networks. Although their progressive efforts
are sincerely applauded, this study used time-lagged external load parameters as
inputs to a time-independent (static) network architecture andwas therefore not
dynamic. The authors highlight that the error of the particular Olympic compe-
tition was 0.05 s, but the overall model performance exhibited an error of 1.23 s,
which is hypothesized to shrink when appropriately incorporating the element
of time to the neural network framework. Recurrent neural network (RNN)
architecture, which adds a sense of memory to the network, is the sequential
(temporal) counterpart to standard neural networks seen in Edelmann-Nusser,
Hohmann, andHenneberg (2002). Therefore, the purpose of the present study is
to dynamically forecast elite track and field sprint performance by proper
inclusion of time via RNNs. Alternatively, the present study uses HRV and
omegametry as input parameters in order to forecast performance based on how
the athlete’s biological readiness evolves over time.
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Methods

Dataset

Retrospective case study was employed to assemble dataset. One male Division I
National CollegiateAthleticsAssociation (NCAA) track and field student-athlete
voluntarily monitored HRV (Omegawave Oy, Espoo, Finland) throughout his
competitive career as a part of routine health and well-being surveillance.
Student-athlete competed in 60mhurdles (indoor) and 110mhurdles (outdoor).
Final race times and competition dates are undisclosed to protect confidentiality.
The present study conforms to the ethical standards of the Helsinki Declaration.

In order for competition to be considered in dataset, three consecutive HRV
measurements were completed within two calendar days leading into competi-
tive event (two days prior: t-2, day before: t-1, morning of: t) where he success-
fully recorded a final race time (t). Conclusive dataset was randomly partitioned
into three segments: 32 competitions (71%) for training, 7 competitions (16%)
for validation, and 6 competitions (13%) set aside for terminal evaluation.

HRV and omegametry procedures

Omegawave technology allows comprehensive analysis of HRV and direct current
biopotentials through a number of linear and nonlinear techniques. Student-
athlete was issued an Omegawave heart rate strap which was adjusted according
to his respective chest size. Upon moistening with tap water, student-athlete tied
the heart rate strap aroundhis torso at the level of his xiphoid process ensuring that
the electrocardiogram pads were aligned with his midaxillary line. DC potential
was noninvasively recorded by means of small portable DC-amplifiers connected
to the frontal eminence of his scalp and thenar eminence of his right hand. To
ensure reliable measurements, student-athlete performed assessments antemeri-
dian (between the hours of 06:00 and 08:00) in a rested state while lying supine in a
room with minimal light and distraction. Duration of assessments was 4 min in
length to obtain time- and frequency-domain HRV indices and allow ample time
for omegametry to stabilize. Table 1 provides a glossary of numerical HRV and
omegametry parameters provided by Omegawave.

Preprocessing and feature selection

Germane data preprocessing was performed prior to modeling procedures.
Shapiro–Wilk test was applied to all features, which were appropriately
transformed when significance was encountered (denoted in Table 1).
Subsequently, all features were linearly transformed to normalize distance:
X � Xminð Þ= Xmax � Xminð Þ: Henceforth, race times are kept on normalized
scale (0 = fastest, 1 = slowest) and are therefore expressed as normalized
units (nu).
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With 24 candidate predictors, dimension reduction was performed with the
objective of establishing a subset of input variables that parsimoniously affect
output variable in a temporal fashion. However, feature selection directly from

Table 1. Glossary of numeric HRV and omegametry parameters.
Name Abbreviation Scale Units Interpretation

Adaptation reserve † AR O Scale
(1–7)

Reflects how long cardiac system can express
adaptability.

Aerobic index† Aerobic I N/A Reflects state of aerobic metabolic pathways.
Anaerobic index† Anaerobic I N/A Reflects state of anaerobic metabolic pathways.
Central nervous system
readiness †

CNS O Scale
(1–7)

Comprehensive indicator of central nervous
system readiness.

Direct current potential† DC‡ C mV Present activation of frontal brain system.
Reflects wakefulness.

Fatigue index † Fatigue O Scale
(1–7)

Reflects temporary state of cardiac system.

Heart rate at anaerobic
threshold

HR AN I bpm Overall indicator of endurance level.

High frequency HF*‡ C ms2 Power in high-frequency range. Reflects
parasympathetic activity.

High-frequency normalized
units

HF nu C N/A High-frequency power in normalized units.

Low frequency† LF* C ms2 Power in low-frequency range. Reflects
parasympathetic activity.

Low-frequency normalized
units

LF nu C N/A Low-frequency power in normalized units.

Low-frequency/high-
frequency ratio

LF/HF* R N/A Reflect sympathetic–parasympathetic balance.

Metabolic grade † Metabolic O Scale
(1–7)

Comprehensive indicator of metabolic system
coordination.

Metabolic reactive index † MRI* C N/A Estimate of overall coordination of metabolic
systems.

Parasympathetic activity † PNS C s Indicator of current level of parasympathetic
nervous system regulation.

Root mean sum of
differences of successive
intervals

RMSSD*‡ C ms Square root of sum of difference of sequential
cardio intervals. Reflects autonomic activity.

Share of aperiodic
influences

AI C s Reflects level of random activity that influences
heart rhythm.

Standard deviation of
aspirate waves

SDAW* C N/A Reflects level of automatization of heart rhythm
regulation.

Standard deviation of
normal-to-normal
intervals

SDNN* C ms Reflects autonomic regulation from full array of
cardio intervals.

Standard deviation of
successive differences

SDSD* C ms Standard deviation of differences between
adjacent intervals.

Stress index † Stress O Scale
(1–7)

Level of tension in cardiac system.

Sympathetic activity † SNS C % Indicator of current level of sympathetic
nervous system regulation.

Tension index † TI* C N/A Reflects level of centralization of heart rhythm
regulation.

Total power TP*‡ C ms2 Variance of all intervals to reflect level of
regulatory system.

C = continuous; I = interval; O = ordinal; R = ratio.
*Log-transformation applied to address positive skewness.
†Denotes proprietary Omegawave parameter.
‡Variable selected from ordered lasso regularization.
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RNNs has yet to be fully elucidated due to the complex arrangement of weights
(Guo, Lin, and Lu 2018), and therefore, a model-agnostic feature selection
approach was implemented precedent to RNN development. Thus, with the
training dataset, transfer entropy (TE) was calculated between each candidate
predictor and race time to identify the strength of interdependence within the
multivariate time series. TE, an asymmetric (directional) information-theoretic
measure, has popularized in time series feature selection (Mao and Shang 2017)
from its effectiveness to detect nonlinear, temporal dependencies via transitive
probabilities (Schreiber 2000). As suggested by Gomez-Herrero et al. (2015),
statistical significance of TE was assessed via permutation test with surrogate
data generated by randomly shuffled trials (5000 permutations each). Features
were thus selected for RNN inputs when permutation tests deemed significant
(p < 0.05).

Network topologies

RNNs are a division of feedforward neural networks enhanced by nodes that
connect back to other nodes, allowing the activation of nodes to flow in a
loop (Hochreiter and Schmidhuber 1997). Therefore, unlike standard multi-
layer perceptrons, RNN architecture has a sense of time and memory of
earlier network states which enables it to learn sequences that vary over time
(Cruse 2006). At time step t, nodes receive input activation from current
instance x(t) as well as from hidden node h(t−1) in network’s former state
(Haykin 2009; Lipton, Berkowitz, and Elkan 2015). Output ŷ (t) is calculated
given the hidden state h(t) at respective time step. Thus, input x(t−1) at time
step t-1 can impact output ŷ (t) at time step t by means of these recurrent
connections (Lipton, Berkowitz, and Elkan 2015).

Calculations for computing each time step in RNN are as follows:

h tð Þ ¼ σ Whxx
tð Þ þ Whhh

t�1ð Þ þ bh
� �

;

ŷ tð Þ ¼ softmax Wyhh
tð Þ þ by

� �
;

where the sigmoid (σ) represents the respective activation function, Whx

symbolizes the matrix of weights between input and hidden layers, and Whh

symbolizes the matrix of recurrent weights between hidden layers at adjacent
time steps. Vectors bh and by are biases which allow individual nodes to learn
an offset (Lipton, Berkowitz, and Elkan 2015).

The two RNN topologies explored, Elman and Jordan, represent a general
format for RNNdevelopment. Elman recurrent neural networks (ERNNs) provide
a model with an input layer, a hidden layer, and an output layer connected in a
feedforwardmanner (Elman 1990). However, the hidden layer is also connected to
a further layer called the context layer (Figure 1(a)). This recurrent connection of

696 K. D. PETERSON



the context layer provides themodel with a short-termmemory; the hidden nodes
are influenced by input nodes while obtaining information of their former state via
their context node (Elman 1990). Thereby, the model learns to attribute an output
directly from the temporal sequence of several subsequent input vectors. Jordan
recurrent neural networks (JRNNs) propose a similar model, but the induction of
memory states is from the context nodes being fed from the output layer
(Figure 1(b)), rather than the hidden layer (Jordan 1997). That is, a constant
input vector is given to the network, which the output layer then performs the
temporal sequence of vectors (Jordan 1997).

Model construction and evaluation

Features were transposed prior to training to properly invoke temporal
sequence preceding competitive event. Initial ERNN learning rate was set
at 0.10, and the number of training epochs was set to 100. Model complexity

Figure 1. Sample RNN topologies: (a) Elman and (b) Jordan.
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was manipulated by adjusting the number of hidden layers and nodes per
hidden layer. Training iterations (by tuning learning rate, epochs, layers, and
nodes per layer) were performed on validation set until most optimum error
was realized. JRNN began with same tuning parameters; however, JRNN only
allows one hidden layer (Jordan 1997). Therefore, model complexity was
simply adjusted by incrementally increasing the number of hidden nodes.
Once optimal tuning parameters were determined, respective models were
placed in production to test against held-out dataset.

To justly compare the time series prediction capability of RNN topologies,
a competitive time series regression equipped for dynamic systems (Keele
and Kelly 2006) was also calculated from training dataset as a separate
analysis. An ordered lasso (Tibshirani and Sou 2016) applied to a two-step
time-lagged regression was the chosen statistical model for two reasons: (1)
to leverage the feature selection property of ℓ1-regularized regression
(Tibshirani 1996) and (2) to preserve the temporal structure of original data.

To quantitatively evaluate the performance of all three models, two error
statistics were calculated: mean bias error (MBE) and root mean square error
(RMSE). MBE denotes average direction of estimate deviation from true
measured data (Stone 1993). In the present context, positive MBE indicates
magnitude of underestimation in predicted race times (due to minimization
objective of racing), whereas negative MBE indicates overestimation of sprint
performance. On the other hand, RMSE presents information of model
performance via an average measurement of variation in predicting the
dependent variable (Hyndman and Koehler 2006). Therefore, RMSE exhibits
the efficiency of trained model in predicting the future individual races. To
determine whether a model’s estimates were statistically significant, the
t-statistic was derived from RMSE and MBE (Stone 1993). Performance
indices were calculated as:

MBE ¼ 1
n

Xn
i¼1

IPi � Iið Þ;

RMSE ¼ 1
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

IPi � Iið Þ2;
s

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 1ð Þ MBE2

RMSE2 � MBE2

r
;

where IPi is predicted race time, Ii is true race time, and n is number of
instances. To be judged statistically significant, respective t-statistics were to
be smaller than t critical value (df = 5, α = 0.05; tcrit = 2.02).

To aid the comprehension of resultant RNNs, individual conditional expecta-
tion (ICE) plots were computed to approximate the functional relationship
between race time and most predictive features (Goldstein et al. 2015). ICE plots,
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an extension of Friedman’s (2001) partial dependence plots, unveil the estimated
distribution of n observations against the response function. Thus, ICE plots
elucidate the variants of conditional relationships estimated by statistical learning
algorithm (Goldstein et al. 2015). To help discern heterogeneity between curves,
ICE plots were centered at the minimum value of predictor variable to account for
differing intercepts. Additionally, partial derivatives of the model were plotted to
highlight the location and magnitude of hypothesized interaction effects.
Hereafter, ICE plots will be labeled c-ICE for centered and d-ICE for partial
derivative.

RStudio software (version 1.0.143) was used for all outlined statistical
procedures.

Results

Resultant subset of variables with non-zero coefficients from time-lagged
ordered lasso (TLOL) constraint is indicated in Table 1. Upon validation
iterations, TLOL converged with a lambda of 5.75, resulting in four non-zero
coefficients remaining. TLOL training performance concluded with
RMSE = 0.21 normalized units (nu).

RNN feature subset from TE reduced the dimensions from 24 to 9 variables, as
outlined in Table 2. Final ERNNmodel parameters from validation set arrived at a

Table 2. Pairwise transfer entropy (TE) against race time with permutation p-values.
Candidate feature TE (bits) p

RMSSD* 0.37 <0.001
DC* 0.31 <0.001
SDSD* 0.27 0.004
SDNN* 0.26 0.009
SDAW* 0.26 0.012
HF* 0.22 0.028
TP* 0.19 0.034
SNS* 0.19 0.036
LF* 0.17 0.041
TI 0.09 0.089
AI 0.09 0.116
Aerobic 0.07 0.220
HR AN 0.06 0.394
MRI 0.06 0.406
PNS 0.04 0.434
CNS 0.04 0.456
Stress 0.03 0.482
LF nu 0.03 0.488
HF nu 0.03 0.494
LF/HF 0.02 0.530
Metabolic 0.02 0.592
Anaerobic 0.02 0.622
AR 0.02 0.651
Fatigue 0.01 0.870

*Selected feature from permutation significance.

APPLIED ARTIFICIAL INTELLIGENCE 699



learning rate of 0.15, 500 training epochs, and 3 hidden layers with 12, 10, and 7
nodes per layer, respectively, achieving optimal RMSE = 0.06 nu. Final JRNN
model parameters fromvalidation set arrived at a learning rate of 0.20, 300 training
epochs, with 17 nodes in hidden layer, converged at RMSE = 0.04 nu.

Against terminal, held-out test data, TLOL regression model generated an
accuracy of RMSE = 0.38 nu, MBE = 0.28 nu, and t = 2.44 and ERNN model
generated an accuracy of RMSE = 0.14 nu, MBE = 0.09 nu, and t = 1.63, whereas
JRNN generated an accuracy of RMSE = 0.19 nu, MBE = 0.16 nu, and t = 3.49.
Figure 2 illustrates raw prediction performance against true measurement data on
normalized scale for each respective model. After race times were back-trans-
formed, TLOL error for the 60 m hurdles corresponds to RMSE = 0.24 s and
MBE = 0.17 s, whereas for the 110 m hurdles RMSE = 0.32 s and MBE = 0.23 s.
ERNN error for the 60mhurdles corresponds to RMSE= 0.09 s andMBE= 0.05 s,
whereas for the 110mhurdles RMSE=0.12 s andMBE=0.07 s. JRNNerror for the
60 m hurdles corresponds to RMSE = 0.12 s and MBE = 0.10 s, whereas for the
110 m hurdles RMSE = 0.16 s and MBE = 0.13 s.

Discussion

Results demonstrate that RNN framework was excellent at predicting elite
sprint performance on the basis of temporal HRV measurements. The vast
error improvement in both training and testing compared to TLOL regres-
sion showcases that the mechanics of neural memory were superior to
regularized autoregressive ordinary least squares when modeling adaptive
behavior. TLOL was able to mildly forecast performance in the correct
direction but witnessed large deviations from the true absolute observations

Figure 2. Terminal model accuracies against held-out test data. Solid black line indicates perfect
prediction.
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(vertical distance from diagonal line), whereas RNN topologies were able to
learn the correct direction with relative precision. Therefore, from a syner-
gistic point of view, a successful RNN crafted from biological indices may be
representative of self-organizing systemic deviations that influence certain
states of stable performance.

Between the two RNNs, it is of interest that JRNN slightly outperformed
ERNN amid validation process but fell behind when tested against held-out
data. Perhaps, JRNN overfit the validation set with too many hidden nodes,
which weakened the applicability to future instances. The multiple hidden
layers permitted by ERNN may have composed a proficient topology to learn
the underlying concept more advantageously. Though the mechanism for the
current ERNN dominance is unclear, ERNN would be the chosen model to
place in production for the present scenario, given the statistically significant
performance over JRNN.

To extrapolate the hypothesized feature space constructed by the network,
Figures 3 and 4 display the ICE plots from conclusive ERNN model, stratified
by time, of the two most predictive features found from transfer entropy.
Starting with c-ICE plot in Figure 3, the universal effect of the natural log (ln)
RMSSD is a positive trend, indicating that, on average, higher ln-RMSSD
values were associated with higher (slower) fitted race times. It is apparent
that, in general, effects seem to amplify when closer in chronological proxi-
mity to event; ln-RMSSD t-2 exhibits moderately noisy effects, whereas the
functional relationship of t-1 and t seems to sharpen with more pronounced
interactions.

When observing the shape and direction of individual curves from left
to right, ln-RMSSD t-1 and t express a stable system in the first third of
the range, with perhaps a slight decrease (positive) effect in t. Beyond this
point is where the cumulative effect of ln-RMSSD begins to negatively
influence race times. This suggests that the sprinter’s athletic performance
was generally unaffected until ln-RMSSD values were above roughly
4.4 ms, with the effect of adding nearly 0.4 normalized units to the fitted
race time, when considering ln-RMSSD t independently. That is, the
athlete experienced performance decrements when his autonomic nervous
system expressed parasympathetic dominance. Examining the d-ICE plot
in the bottom half of Figure 3 confirms the observations made above,
casting light on the region of interaction around 4.4 ms. A secondary, but
weaker, inference is that his most desirable ln-RMSSD range was poten-
tially 4.0–4.2 ms. Overall, these phenomena indicate that the predictive
power of ln-RMSSD toward sprint performance primarily manifested in a
negative fashion. It was essential for ln-RMSSD to reflect more balanced
autonomic regulation the morning of competition, perhaps to allow
greater acquisition of maximal sympathetic mobilization at race time
(Hedlin, Bjerle, and Henriksson-Larsen 2001).
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Shifting to DC Potential in Figure 4 seems to share similar properties regarding
chronological magnification, but stability conversely arises in second half of DC’s
range, which is clearly demonstrated from the partial derivatives. From right to left,
fitted race times are generally unaffected until roughly 20 mV where interactions
begin. Although heterogeneity exists between curves in t-1, a positive quadratic
functional relationship presents itself between 20 and 30mV. This local minimum
indicatesmost ideal DC range for the sprinter the day prior to a given competition.
Whereas on the day of competition (t), race times were only affected (negatively)
when below 20 mV, also suggesting optimal performance was more likely when
above 20 mV.

Figure 3. ERNN c-ICE and d-ICE plots of ln-RMSSD stratified by time.
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Ilyukhina (2013) physiologically substantiates low DC biopotentials (< 20 mV)
as the CNS exhibits attenuated levels of active wakefulness, suggesting that this
range may indirectly estimate adaptive limitations of central regulatory systems
and decreased functional reserves. Ilyukhina and Zabolotskikh (2000) demon-
strated that individuals who express resting biopotentials < 23 mV were less
resilient to physical exertion compared to individuals with elevated values.
Although the participants in Ilyukhina and Zabolotskikh (2000) were not elite
sprinters, it is worth emphasizing that the RNN in the present analysis inductively
detected a performance threshold parallel to prior DC literature.

Considering the relative variable importance in Table 2, among the
numerous HRV candidate variables, it appears that raw time domain indices

Figure 4. ERNN c-ICE and d-ICE plots of DC stratified by time.
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were generally more predictive compared to other meta-variables for the
particular athlete. This coincides with recommendations given by Buchheit
(2014), in that practitioners in the field should perhaps select parameters that
are more likely to directly reflect parasympathetic activity.

In practice, models trained per individual not only could predict
approaching competitions but may also serve as a simulation tool for
estimating prospective athletic performances when under differing phy-
siological states. Thus, a trained RNN may help coaches optimize athlete
training by enabling them to forecast physical aptitude prior to a given
training session. If perhaps a large discrepancy arises between an athlete’s
estimated physical capacity and a coach’s planned expectation, appropriate
modifications could be made in order to dovetail the training plan with
the athlete’s readiness, if desired.

Limitations

An apparent limitation of the present analysis is due to the sole incorporation
of internal parameters for model prediction. External training loads, which
inherently influences autonomic balance (Buchheit 2014; Halson 2014), were
not recorded and thus were unable to be included. Integrating more diverse
features (external training loads, environmental conditions, etc.) could per-
haps ameliorate predictive accuracy in future models.

It is also worth noting the innate limitation of the study design. While case
studies yield rich investigations, their granularity is offset by unsatisfactory
generalizability. Therefore, the precise order of relative importance of HRV
parameters, and the functional relationships portrayed in ICE plots, may not
hold true for different athletes. Thus, readers are encouraged to abstract the
utility of aforementioned modeling procedures for athletic performance pre-
diction rather than gleaning individual physiological constructs.

Conclusion

RNN infrastructure was used as a computational device to recognize adaptive
states that lead to athletic performance. ERNN model outperformed JRNN
against held-out test data, resulting in an error of 0.09–0.12 s and 0.12–16 s,
respectively. RMSSD, an indicator of parasympathetic tone, and direct cur-
rent biopotentials, indicator of active wakefulness, were most predictive
toward competitive performance for an NCAA Division I male sprinter.
Future investigations could explore modeling how internal readiness is
influenced by external training patterns and lifestyle habits leading up to
competition, as well as incorporating subjective readiness parameters.
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