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ABSTRACT 
 

Aims: A hybrid Nonlinear Programming–Simulated Annealing method has been applied to solving 
the constrained offline gasoline recipe optimisation problem using constraint partitioning. 
Methodology: The method was demonstrated by applying it to a small blending case study with 
eighteen independent variables where one of the variables was used as a link variable between the 
two sub-problems of the partitioned non-convex problem. It is noted that this can in theory be 
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extended to larger tightly constrained problems with more link variables e.g. whole refineries where 
the models involve huge numbers of nonlinear equations and many process units. 
Results: The approach exhibited good performance representing significant savings against both a 
derivative-based NLP method used alone and a Mixed Integer Non-Linear Programming method. 
This performance was examined by way of a sensitivity analysis of the simulated annealing 
parameters. 
Conclusion: The convergence times were in minutes and are realistic for short-term recipe 
optimisation. 

 
 
Keywords: Gasoline blending; simulated annealing; constraint partitioning; stochastic optimisation. 
 

1. INTRODUCTION 
 
Refineries are continuously faced with 
increasingly tighter constraints. Governments are 
enforcing more stringent legislation in order to 
ameliorate climatic change concerns and curtail 
environmental damage as a result of human 
activity. Be it emissions reduction targets or large 
demand for high octane rated fuels at reasonable 
prices, society is seemingly apathetic to the fact 
that these refineries are businesses that must 
turn out profits. Refiners, under the stated 
limitations, must optimise in order to thrive. 
 
A refinery is a vast petrochemical facility with 
thousands of interconnected units and 
processes. Realistic modelling for design and 
operation therefore gives rise to highly non-linear 
models. These are difficult problems and can be 
time-consuming to solve as a whole. Optimising 
one or several key processes such as the Crude 
Distillation and Fluid Catalytic Cracking Units, 
unfortunately do not automatically translate to 
optimal values for the whole complex [1]. Overall 
refinery optimisation is a difficult endeavour, 
nevertheless, this is done based on the major 
subdivisions as shown in Fig. 1. Product blending 
and recipe optimisation, the last of the 
subdivisions, is the closest to the consumer. 
Therefore, careful monitoring to meet quality and 
environmental regulations requires proper 
optimisation. This ensures that the products are 
“on-spec” and with minimal give-aways. 
 
Linear programming (LP) has been the dominant 
industry-wide practice. It has the obvious 
advantages of simplicity, fast convergence, and 
minimal computational requirements. This has 
proven satisfactory for long term planning. 
However, it is unsatisfactory in the short to 
medium term against the backdrop of tighter 
profit margins.  
 

Several techniques that approximate nonlinear 
behaviour have been used including Successive 

Quadratic Programming (SQP) and piecewise 
linearization [2-4]. These give rise to Mixed 
Integer Linear and Nonlinear Programs (MILPs 
and MINLPs). Mixed integer programs can result 
in huge models with large numbers of variables 
and constraints, therefore requiring long 
converging times. These may not be suitable for 
the day-to-day operations of a refinery. 
Commercial applications such as Aspen BlendTM 
and AspenPIMS-MBOTM from AspenTech are 
available for treating online and offline blending 
optimization problems. These are based on black 
box models that reduce the required intelligence 
by the engineer; the so-called engineering 
judgement and as such; they offer less in terms 
of flexibility. 
 
An approach was developed by [5] to coordinate 
non-linear recipe optimization and short-term 
scheduling of blending processes. They propose 
a two-level optimization approach that sets up a 
large scale NLP model to determine product 
quantities and recipes. Given the result from the 
NLP model, a MILP model based on a resource 
task network is used for the scheduling problem 
to optimize resource and temporal aspects. Both 
models are discrete time models. Whereas the 
NLP model maximizes profit, the MILP model 
minimizes deviations from given tank volume 
goals. Alternative strategies were also presented 
in [5] to handle situations where a given goal 
cannot be met.  
 
It has been observed that future work in refinery 
optimisation might focus on how to determine 
component values and the preferred product 
recipes, in order to optimize the combined 
performance of the short-term blending and 
product shipments and how to incorporate the 
scheduling decisions with long-term planning 
decisions [6]. Therefore, in the short-term, 
another recipe may be more profitable than the 
long-term optimal recipe, and the deviations from 
the long-term recipe may indicate that other 
blending recipes should be used. Ideally, it would 
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be possible to detect the values of components, 
and in order to more closely approximate the 
values of these components, there must be 
integration between short-term and long-term 
decision. Problem partitioning can be used to 
achieve these. 
 
Problem Partitioning has been used to solve 
problems in economics and logistics and has 
been proposed for efficiently solving large-scale 
planning and engineering nonlinear problems by 
exploiting the problem structure and partitioning 
the constraints [7-9]. The sub-problems become 
much more relaxed since they involve a smaller 
number of constraints, thus, the total time to 
solve all the sub-problems is greatly reduced. 
However, since there are global constraints 
which may be violated when multiple sub-
problems are combined, the efficiency in 
resolving inconsistent global constraints is a key 
factor for the overall performance of the 
proposed constraint partitioning approach. 
 
In recent years, the use of stochastic 
optimisation methods has gained prominence 

because hybrid algorithms permit the use of 
complete NLP models. Simulated annealing (SA) 
and Genetic Algorithms (GA) are examples of 
stochastic methods that produce high quality 
globally or near-globally optimal results. Their 
success however, hinges on high computational 
requirements but then this is becoming less and 
less of an issue with the rapid increase in 
computer memory capacity. Nevertheless, 
exploring the entire solution space can take 
impracticably long periods of time and there has 
to be a compromise in solution quality. 
 
In this paper, we present a constraint partitioning 
approach applied to tightly constrained offline 
optimisation of the refinery blend pool problem by 
combining simulated annealing with standard 
nonlinear programming. Secondly, after solving 
the problem, a sensitivity analysis is done on the 
simulated annealing parameters in order to give 
more insight on solution times. Finally, the 
solution a simple conventional MINLP 
formulation of the same problem is compared 
with the new method. 

 
 

 
Fig. 1. A simplified refinery flow sheet from crude oil to gasoline showing the position of 

product blending 
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2.  METHODOLOGY: OPTIMISATION BY 
PROBLEM PARTITIONING 

 
Highly constrained problems require conditioning 
before optimisation can be used to obtain 
acceptable solutions to them. A commonly used 
technique is using penalty functions whereby the 
constrained problem is converted to a problem 
with penalty terms to the objective function for 
violating the constraints.  
 

Using Problem partitioning, optimization 
problems can be converted to two sub-problems 
linked by one or more variables. These 
variable(s) are the decision variables for one 
sub-problem and parameters for the other sub-
problem. One of the sub-problems is an 
unconstrained problem with simple bounds and 
the other is a more complicated one with its 
normal constraints. Consider the following 
maximisation problem: 
 

Maximise 1 2( , ,..., )nf x x x                         (1a) 

Subject to: 1 1 2 1( , ,..., ) 0ng x x x                (1b) 

2 1 2 1( , ,..., ) 0ng x x x                                (1c) 

1 2( , ,..., ) 0N ng x x x                                 (1d) 

1 1x k , 2 2x k ,…, 1 1n nx k                   (1e) 
 

This is a general nonlinear problem in the 
objective function and the constraints with n+1 
variables. The solution, although easy to obtain 
with common NLP solvers, can unfortunately be 
locked up in local maxima. To escape the 
localisation issues, however, the problem can be 
reformulated so that it is partitioned into two 
optimisation problems. The variables are

1 2 1, ,..., nx x x  , making a total of n+1 variables so 

that any one of them can in theory be selected as 
the link variable between the two sub-problems. 
In selecting the link variable xi ∈ gi a rule of 
thumb is that the variable be of the lowest order 
present and that it appears in as few constraints 
as possible. This contributes to ease of 
convergence and convergence to acceptable 

solutions. Suppose the link variable ix  chosen 

using the rule of thumb is y, the problem is now 
partitioned as follows: 
 
Sub-problem 1:  
 

Maximise h(y)                                           (2a) 
 

l y u                                                   (2b) 

Sub-problem 2: 
 

Maximise 1 2( , ,..., )nf x x x                    (3a) 

Subject to: 1 1 2( , ,..., , y) 0ng x x x            (3b) 

2 1 2( , ,..., ) 0ng x x x                                  (3c)  

1 2( , ,..., ) 0N ng x x x                                 (3d) 

1 1x k , 2 2x k , …, n nx k                   (3e) 

 

Here, the link variable chosen reduces sub-
problem 2 from n+1 variables to n and is 
constrained between a lower and upper bound 
interval in sub-problem 1. It is instructive to note 
that this link variable in sub-problem 1 whose 
generated value (random or otherwise) in each 
iterative run is passed on to sub-problem 2 and is 
hence not included as one of the constraints in 
equations (3e). Sub-problem 1 is such that a 
stochastic global optimisation method (Tabu 
Search, Genetic Algorithm, Simulated Annealing, 
etc.) can be applied while in sub-problem 2 is 
solved for each sampled y∈ [l, u] using NLP until 
convergence based on the criteria set in sub-
problem 1. Fig. 2 illustrates this solution 
structure. The method is formally described in 
[10] and they note its ability to handle non-
convex problems. [11] used the method to solve 
an operations research air transport problem, 
observing its remarkable efficacy in simplifying 
large-scale problems to simple continuous and 
mixed integer NLPs.  

 

A general Simulated Annealing pseudo-code is 
as follows as described by [12]: 

 

 Choose an initial solution x, an initial 
temperature T, a lower limit on 
temperature TLOW, and an inner 
iteration limit L 

 While (T > TLOW), do 

 For k = 1, 2, …, L, do (Markov Chain 
Length) 

 Make a random choice of an element x’ 
∈ N(x). 

 MoveValue = f(x’) – f(x) 

 If MoveValue ≤ 0 (downhill move), set x 
= x’ 

 If MoveValue > 0 (uphill move), set x = x’ 
with probability  

 exp(−MoveValue/T)  

 End inner (Markov Chain Length) loop 
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 Reduce temperature according to an 
annealing schedule. An example is new 
T = cT, where 0 < c < 1. 

 End temperature loop 

Fig. 3 is a flowchart showing the SA programme 
structure for the case study which is based on 
the Metropolis algorithm: 
 

 
Fig. 2. Partitioned problem solution structure 

 

 
 

Fig. 3. Flowchart of hybrid SA-NLP solution procedure 
 

Simulated Annealing 

(Sub-problem 1) 

ijv   Link variable, 1aAv  

NLP solver  

(Sub-problem 2) 
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3. RESULTS AND DISCUSSION 
 
3.1 Case Study 
 
To demonstrate the proposed method, 
unpublished refinery data (Tables 1, 2, 3, 4 and 
5) collected by (13) was used. The system 
consists of refinery products from the crude 
distillation unit (Straight run gasoline, SRG and 
naphtha), catalytic cracker, thermal cracker, 
steam reforming, and naphtha hydro-treating 
units. Clearly, this is a refinery without an 
alkylation unit as alkylate has to be externally 
procured as an additive as it has high octane 
number relative to SRG. Butane, obtained from 
overhead refinery gases, is also blend 
component. It possesses good Octane Number 
(ON) rating; however it has exceptionally high 
Reid Vapour Pressure (RVP) responsible for 
vapour lock in vehicles and this is controlled so 

that the gasolines only contain optimal amounts. 
The product specification is based on two grades 
of unleaded premium grade gasolines with RON 
94 and 96 respectively (here termed Gasoline 89 
and Gasoline 91 named after their Anti-knock 
Index as shown in Fig. 4). For both gasolines, 
their RVP and aromatics content must be within 
the restrictions defined earlier. 
 
Table 2 shows the RON, MON, RVP and 
aromatics content of refinery streams 1 to 5, n-
butane obtained as overhead distillate gas, 
ethanol, and alkylate. Collected data also include 
the open market cost of ethanol and alkylate 
externally procured for use as additives. 
 
Table 2 displays data collected for product 
specifications and market price of two grades of 
gasoline with AKI 89 and 91 respectively. 

 

 
 

Fig. 4. Gasoline pool blending problem for two grades of gasoline 
 

Table 1. Collected data on available feedstock properties and information about additives† 

 

  RON MON AKI RVP (psi) Aromatics (%) Availability (kbbl) Price($) 
CCP* 97.2 86.6 91.9 1.1 78.1 190 - 
Reformate 93.8 84.4 89.1 1.4 64.3 100 - 
TCP** 100.7 89 94.9 0.92 89.9 125 - 
SRG

††
 97.6 86.6 92.1 1.28 85.5 90 - 

Naphtha 89.3 81.9 85.6 2.7 15.2 600 - 
n-Butane 93 92 92.5 52 - 70 - 
Ethanol 107 89 98 9.6 - - 4.50/gal 
Alkylate 93 90 91.5 5 - - 2.95/gal 
Kbbl – 1000 barrels, CCP* – Catalytic cracker product, TCP** – Thermal cracker product, SRG†† – Straight run 

gasoline †Source: [13] 

 



 
 
 
 

Aliyu et al.; BJAST, 10(1): 1-15, 2015; Article no.BJAST.18348 
 
 

 
7 
 

Table 2. Product specifications for different grades of gasoline 
 

  RON MON AKI RVP (psi) Aromatics (%) Price 
Gasoline 89 94 84 89 6.9 35 $2.75/Gallon 
Gasoline 91 96 86 91 6.9 35 $2.90/Gallon 

†
Source: [13] 

 
Table 3. Detailed product distribution 

 

  Gasoline 89 
(kbbl) 

Gasoline 91 
(kbbl) 

CCP 147.7 42.3 
Reformate 100 - 
TCP - 125 
SRG 90 - 
Naphtha 467.3 132.7 
n-Butane 53.9 16.1 
Ethanol 115.5 47.3 
Alkylate 180.2 109.5 
Total 1154.6 472.9 

†
Source: [13] 

 
Gupta’s optimisation results of maximising 
product sales revenue are as presented in         
Table 3. It shows the optimal product distribution 
of each component in each product and the 
predicted product properties based on the Ethyl 
RT-70 model for MON and RON, Chevron RVPI 
model and linear blending for Aromatics. 
 
The information in Table 3 above was then used 
to verify the model developed for this work. 
 

3.2 Optimisation Problem Formulation 
 
3.2.1 Modelling blend properties 
 
Blending blend properties is mixing rule-based. 
The simplest and practical mixing rule applicable 
to most physical properties is linear [14]:    
 

1

N

j i ii
P x P




   

(4) 

 
Where xi is the volume/weight/molar fraction of 
the blending component i, Pi is a property for the 

blending component i and jP is property of the 

product with N blending components. The 
application of Equation 4 can be made for any 

property so that the volumetric fraction ix  can be 

more explicitly expressed with ijv which is the 

volume of blend component i  in gasoline blend

j which is a fraction of the total available 

feedstock. 
 

 

i ij
i

j

ij
i

Pv

P
v





  

 
(5) 

 

Where iP  is the property under consideration of 

gasoline blend j  and iP   is the property of 

blend component of stream i . Equation (2) was 
applied for the blend calculation of ethanol 
(oxygenate) content, aromatics, and butane 
content. Some properties however, such as 
sulphur content, density, that are usually quoted 
in wt% or ppm are modelled gravimetrically, 
using a revised form of Equation 2.  
 






i
iij

i
iiji

j
SGv

SGvP

P
)(

)(

 

 
(6) 

 

Where iSG  is the specific gravity of component 

.i  
 

3.2.2 Modelling octane number  
 

Octane number does not blend linearly. Several 
non-linear models are widely available in open 
literature for octane number modelling with 
varying degrees of accuracy. While the Blending 
Octane number method is easy to use, its 
accuracy is impaired by its range of application 
as “Blending Octane Numbers” are obtained by 
regressing a limited number of data; the 
Interaction and Transformation methods have 
issues of complexity of use without 
commensurate increase in accuracy. As a result, 
the Ethyl RT-70 model, proposed by Healy et al. 
(1959) was used. Despite its age, it has the 
advantage of relative ease of use while 
maintaining a great deal of accuracy. Non-
linearity in blending is explicitly accounted for as 
a function of component sensitivity (RON minus 
MON), aromatic and olefin content. 
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     2 22 2
1 2 3R r a rS rS a O O a A A      

  

(7a) 

   
222

22
1 2 3

100

A A
M m a mS mS b O O b

 
      
 
   

 
(7b) 

 

Where r  and m are volumetric average RON 
and MON respectively, S is the ON sensitivity 
(RON–MON), O is olefin content (% by volume) 
and A is the aromatic content (% by volume). 
The Equations contain a total of six parameters   

( 1 2 3 1 2 3, , , , ,a a a b b b ) given in Healy (1959). All 

quantities denoted with an over bar represent 
volumetric averages. 
 
3.2.3 Modelling Reid Vapour Pressure (RVP) 
 
RVP is defined by the ASTM D-323-56 and gives 
an indication of the volatility of a gasoline blend. 
RVP may be considered as the vapour pressure 
of the gasoline (or blend component) at 100°F 
(38°C). The RVP of a gasoline blend affects the 
gasoline performance in internal combustion 
engines’ ease of starting, engine warm-up, and 
rate of acceleration. Many attempts exist to 
accurately model RVP of blends. One of them is 
the interaction method. The method is identical to 
that for octane numbers. Singh (1997) and Gupta 
(2007) noted however that many of such 
methods have huge computational requirements 
with large numbers of parameters to be 
determined. For the present study, the method 
used is the enduring Chevron Blending Index 
method where the RVP blending index was 
estimated for each stream using the non-linear 
mixing rule [15]: 
 

  25.1RVPRVPI   
(8) 

 
With the RVP of the gasoline blend j being: 
 

   8.0 iijj RVPIvRVP
 

(9) 

Where vij is the available volume of stream i , 

distributed to blend j .  

 
3.2.4 Objective function 
 
Here we formulate the objective function as an 
economic potential of sales revenue less additive 
costs. In this case the net revenue is obtained 
from the sale of the two gasoline products, less 
the costs of required amount of additives, is to be 

maximised and takes no account of capital or 
other costs.  
 

 
m

mma
a

aj
j

j skAvCV 2Pr
 

(10) 

Where Ava is the volume of additive that is 

required to maximise profit, Prj is the market 

price of each gasoline, Ca is the cost of market 
additive. The third term is the penalty term 

comprising of slack variables ms and a penalty 

factor mk  usually a large number. The penalty 

term is subtracted from the objective function to 
minimise violations in certain equality constraints 

of interest. Slack variable ms is squared to 

accelerate convergence since for this problem it 
is observed that the slack variables are rather 
small and of order less than one. It should be 
noted that if the direction of optimisation is to 
minimise, the penalty term will be added to the 
objective function. For this problem, four slack 
variables were used each added to the 
constraints for RVP, ethanol content, and blend 
tank material balances. An alternative method for 
penalising given tank volume goal deviations is 
an MINLP approach as presented by (5). 
 
3.2.5 Variables 
 
The problem contains a total of eighteen 
independent variables to be determined by 
optimisation. These are in two groups. The first 
group has the volumes of each blending 
component i  that distributes into gasoline 

product j , i.e. ijv . The set i of components 

contains eight elements (Stream 1–Stream 5, 
alkylate, ethanol and n-butane). The set j of 

gasoline products contained 2 elements – 
Gasoline 89 and Gasoline 91. As such the blend 

volume fractions ijv optimised were sixteen in 

number. The second group of independent 

variables is the volume of market additives adv   

required to optimise the objective function. 
Butane is an additive that boosts RVP of 

gasoline, but it is not included in adv as it is 
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already assumed to be produced as an overhead 
product in refinery crude distillation columns. 
Hence the set ad contains two elements (alkylate 
and ethanol). This set however, is a subset of set 

i  the set of blending components. 
 
3.2.6 Inequality constraints 
 
3.2.6.1 Research and Motor Octane Number 

(RON & MON) 
 
The lower bounds for octane numbers were 
included to ensure that minimum market 
specifications were met, while the upper bounds 
ensured that octane number giveaway is 
curtailed. These are: 
 
94 ≤ RON ≤ 96 for gasoline 89 
96 ≤ RON ≤ 98 for gasoline 91 
84 ≤ MON ≤ 86 for Gasoline 89 
86 ≤ MON ≤ 88 for Gasoline 91 
 
3.2.6.2 Reid Vapour Pressure (RVP) 
 
Reid vapour pressure constraints were imposed 
as being 0 ≤ RVP ≤ 6.9 psi for both gasolines. 
This is based on the UK’s minimum summer 
gasoline vapour pressure of 6.53 kPa [16]. 
 
3.2.6.3 Aromatics Content 
 

European Union regulations specify that all 
gasolines produced in Europe from 2005 
onwards must have aromatics content ≤ 35% by 
volume [17]. 
 
3.2.6.4 Ethanol Content 
 
Ethanol is added as an oxygenate in gasoline as 
it is a cleaner burning fuel. It acts as an octane 
enhancer and EU regulations stipulate that there 
must be at most 10% ethanol by volume in 
gasoline [18,19]. 
 
3.2.7 Equality constraints 

 
These are the material (volume) balances over 
blend and component tanks. Equation (12) 
imposes that the availability of all blend 
components (without additives) must equal their 
respective distribution to the gasolines. 
 


j

jrr vAv ,

 

(11)

,0rj rj rv v Av  
  

 
Similarly, the availability of all additives must be 
equal to their respective distribution to the 
gasolines. 
 


j

jadad vAv ,

 

(12) 

, ,,0ad j ad j rv v Av  
 

 

Both adAv
 and ,ad jv

are positive variables and 
are constrained appropriately. The volume of 
each gasoline produced is the sum of component 
streams and additives distributed to it as shown 
in constraint below. 
 

 
r ad

jadjrj vvV ,,

 

(13) 

 

The total volume of gasolines produced must 
equal the available components fed to the blend 
tanks 
 

  
r ad

adr
j

j AvAvV
 

 

(14) 

3.3 NLP Solution of Blending Model 
 
An NLP solution was obtained of the blending 
model described. This was done in GAMS 23.9 
and solved with the CONOPT solver. The 
solution time was 0.881 seconds. For a minimum 
production of 500 kbbl of Gasoline 89 from the 
available feed stock, Table 5 shows the product 
distribution after optimisation. 
 
The objective was to maximise net revenue and 
the optimal value was $112,248,183.06. Without 
putting a lower bound of 500 kbbl on Gasoline 
89, the optimisation results give a product 
distribution as shown in Table 6.  
 
The value of the objective (Net revenue) 
maximised was $112,248,183.06. In Table 6, 
both gasoline blends were on specification. It 
should however be noted that this is only a 
locally optimal NLP solution and this was used as 
a base case for obtaining a globally optimal 
solution using simulated annealing in the next 
section. 
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Table 4. Independent optimisation variables 
 

  Variables vrj 
Variables adv  

Gasoline 89 Gasoline 91 Availability (kbbl*) 

CCP 1 9  
Reformate 2 10  
TCP 3 11  

SRG 4 12  
Naphtha 5 13  
n-Butane 6 14  

Ethanol 7 15 
17.  1adv   (ethanol) 

Alkylate 8 16 
18. 2adv

  (alkylate) 
 

3.4 Search for a Global Optimum 
 
3.4.1  Solving the problem by constraint 

partitioning 
 
The method outlined in Section 2.1 is 
demonstrated here to solve the formulated 
problem in Section 3.2 above. The problem was 
split in two so that it forms a hybrid deterministic–
stochastic problem. Each of these forms the 
partitioned sub-problems.  While NLP was used 
to solve the first sub-problem to obtain a solution 
from which the second sub-problem was 
initialised and proceeds iteratively (as earlier 
shown in Fig. 3). The second sub-problem was 
solved using Simulated Annealing with 
successive results compared until the final 
annealing temperature is reached according to 
an annealing schedule of 0.95. 
 
In this work, the overall blending model contains 
eighteen independent variables and the link 
variable between the SA and NLP model is the 
volume of the additive ethanol required to 
maximise the net revenue of the blending 
process. This was a made parameter in the NLP 
model and a univariate search was conducted by 
randomly choosing from the uniform distribution 
[100, 500]. The choice of interval was informed 
by the NLP solution of the system previously 
obtained gave values ethanol additive volume of 
380.162 kbbl respectively, and the SA was given 
a reasonably large search space which makes 
the search for a globally optimal value more 
probable. 
 
Initial annealing temperature was set at 1.3 × 
108. This value is an estimate chosen to be 
approximately the value of the objective function 
obtained in the local solution which was 

$112,248,183.06.  Subsequent values of 2.6 × 
10

9
, 3.9 × 10

9 
were allocated to the temperatures 

to gauge the computational performance of the 
procedure. These temperatures were allowed to 
drop to a final value of 0.01 according to an 
annealing schedule of 0.95 of the annealing 
temperature (i.e. for each iteration, T= 0.95T). 
For the Markov chain length (inner while loop), 
values of 10, 40, and 60 were used. The 
Boltzmann probability was employed as the bad 
move acceptance probability and is a function of 
the annealing temperature.  
 

Table 5. Detailed NLP solution product 
distribution (kbbl) 

 

  Gasoline 89 Gasoline 91 

CCP 0.00 190.00 
Reformate 0.00 100.00 
TCP 0.00 125.00 
SRG 20.40 69.60 
Naphtha 196.13 403.87 
n-Butane 0.00 70.00 
Ethanol 73.43 306.73 
Alkylate 210.03 823.26 
Total 500.00 2088.46 

 
The NLP model was integrated into a hybrid 
NLP-Simulated annealing to directly search for a 
global solution. The NLP solver used was 
CONOPT in GAMS 23.9. A Metropolis based 
search algorithm employing the Boltzmann 
probability as described earlier was used as the 
move rejection criterion. It should be noted that 
results are not exactly reproducible as 
successive iterations proceed based on uniformly 
distributed random number generation of ethanol 
additive volume, as shown in Fig. 5. 
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Table 6. Results of gasoline product specifications from NLP 
 

  RON MON AKI RVP Aromatics (vol%) Ethanol (vol%) 
Gasoline 89 94 86 90 4.763 9.451 306.73 
Gasoline 91 96 88 92 6.836 21.354 73.43 

 

 
 
Fig. 5. Uniform Random number distribution in [100, 500] with iteration for ethanol volume 
 

 
 

Fig. 6.  Plots of objective value against number of iterations for annealing temperatures of 
1/10, 1, and 10 times the objective value and Markov chain lengths of 10, 30, and 50 

respectively 
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The results obtained as shown in Fig. 6 reveal 
how the optimisation proceeds by varying the 
Markov chain length for each of three initial 
annealing temperatures (i.e. 1/10, 1 and 20 times 
the locally optimal objective value). This is to 
examine the consistency of successive solutions.  
As is seen in Table 7, computational time is 
affected by both annealing temperature and 
Markov chain length. The higher the temperature 
and the larger the Markov Chain Length the 
longer the CPU time for a single run. A chain 
length of 50, which is the largest used, produced 
the highest best objective value regardless of 
initial annealing temperature. In theory, infinitely 
large chain lengths can be used for more refined 
solutions, but in practice the refinements have to 
be balanced with solution time which must be 
realistic for day-to-day plant operations. 
 

Similarly, increasing annealing temperature has 
an effect on the quality of the best objective 
found. The Metropolis search algorithm 
guarantees that the search will yield a good 
quality result when large annealing temperatures 
are used as the solution space is properly 
combed. However, this increases the solution 
time. Fig. 6 shows the progression of the search 
with iteration number. They show that lower 
objective values are also accepted 
(characterized by peaks as well as troughs). This 
helps the optimization escape local optima. For 
an initial temperature of 1.3×106 (approximately 
one-tenth the objective value) which dropped to 
10-3 by an annealing schedule of 0.95 
Temperature, there were 410 iterations (Figs. 6a, 
b and c). When temperature was increased to 
exactly the objective value, the number of 

iterations increased to 455 and to 513 when 
increased to 50 times the objective (Figs. 6g, h 
and i). 
  
These confirm that the initial NLP solution of 
$112,201,183.06 was a local maxima and 
attempting a basic global search gives an 
estimated increase of $20,000,000. This was 
achieved in reasonable time suitable for plant 
operation (less than 15 minutes, see Table 7 and 
Fig. 6a). However, a further $700,000 was saved 
by fine-tuning the SA parameters from those in 
Fig. 6a to those obtained in Fig. 6i but with a ten-
fold increase in computational time at 112 
minutes. The flat sections of the profiles indicate 
lack of improvement in the search within the 
given interval. It is instructive to note that the 
values of best objectives may not necessarily be 
the true optimum and there is no way to tell an 
optimal solution has been found unless it is 
known in advance [20]. Also, since each run 
yields a slightly different best objective, an 
advantage is that the engineer is provided with a 
solution space rather than a single point solution 
and various options can be explored. 
 

The flat sections of the profiles indicate lack of 
improvement in the search within the given 
interval. It is instructive to note that the values of 
best objectives may not necessarily be the true 
optimum and there is no way to tell an optimal 
solution has been found unless it is known in 
advance [20]. Also, since each run yields a 
slightly different best objective, an advantage is 
that the engineer is provided with a solution 
space rather than a single point solution and 
various options can be explored. 

 

Table 7. Sensitivity of SA parameters on best objective value 
 

Annealing Temperature 1/10 × Objective value 
Markov Chain Length  10 30 50 

adAv , best (ethanol volume) 382.1 386.78 390.5 

Best Objective ($) 132,076,648 132,786,104 132,786,103 
CPU Time (minutes) 14.43 44.19 90.36 

Annealing Temperature 1 × Objective value 
Markov Chain Length 10 30 50 

adAv , best (ethanol volume)  383.16 386.78 390.5 

Best Objective ($) 132,550,889 132,786,103 132,786,103 
CPU Time (minutes) 31.58 55.33 91.51 

Annealing Temperature 20 × Objective value 
Markov Chain Length   10 30 50 

adAv , best (ethanol volume)  382.1 386.8 390.5 

Best Objective ($) 132,076,649 132,825,104 132,825,103 
CPU Time (minutes) 39.04 79.08 112.02 



3.4.2 MINLP solution of the problem
 

An MINLP solution of the problem (Table 8) was 
obtained in GAMS 23.9 with th
solver. The formulation differs from that of t

NLP except that the variable Av

volume) was used as an integer variable here 
rather than a continuous one. This can be a 
disadvantage in that good solutions may hide 
within the decimal places. It is noted that the 
objective value of $112,201,400.00 obtained is 
remarkably close to the NLP solution and 
generally inferior to that obtained by the hybrid 
procedure. However, the solution time was better 
(just over 5 minutes) even though it was obtained 
at the expense of a reduced economic potential. 
Again, the proposed method ensures that huge 
financial savings can be made. 
 
Table 8. Product distribution obtained by an 

MINLP solution of the problem
 

  Gasoline 89 Gasoline 91
CCP 0.00 190.00
Reformate 0.00 100.00
TCP 0.00 125.00
SRG 20.33 69.67
Naphtha 195.11 404.89
n-Butane 0.00 70.00
Ethanol 73.70 307.30
Alkylate 210.87 817.89
Total 500.00 2084.76

 

 
Fig. 7. Comparison of net revenue obtained 

and solution times using NLP, MINLP and the 
proposed partitioned problem method. 

*Based on average computational times of 3 
Markov chain lengths at annealing 

temperature of 1 x objective function
 

3.5 Discussion 
 

Are the savings worth it? This has to be 
answered within the context of the whole plant 
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of the problem 

An MINLP solution of the problem (Table 8) was 
obtained in GAMS 23.9 with the AlphaECP 
solver. The formulation differs from that of the 

1adAv  (ethanol 

volume) was used as an integer variable here 
rather than a continuous one. This can be a 

tions may hide 
within the decimal places. It is noted that the 
objective value of $112,201,400.00 obtained is 
remarkably close to the NLP solution and 
generally inferior to that obtained by the hybrid 
procedure. However, the solution time was better 

over 5 minutes) even though it was obtained 
at the expense of a reduced economic potential. 
Again, the proposed method ensures that huge 

Product distribution obtained by an 
MINLP solution of the problem 

Gasoline 91 
190.00 
100.00 
125.00 
69.67 
404.89 
70.00 
307.30 
817.89 
2084.76 

 

Comparison of net revenue obtained 
ution times using NLP, MINLP and the 

proposed partitioned problem method. 
*Based on average computational times of 3 

Markov chain lengths at annealing 
temperature of 1 x objective function 

Are the savings worth it? This has to be 
within the context of the whole plant 

operations. Marginal savings in product blending 
may only pale in comparison to losses elsewhere 
that may be accrued as a result of the additional 
time required by fine-tuned optimisation 
parameters. One way around it 
larger CPU memory. On the other hand, this may 
be integrated in a wider recipe–
recipe–production unit optimisation as suggested 
by [5]. In a nutshell, as shown in Fig
are involved between solution quality, which i
this case are characterized by large annealing 
temperatures; and computational time. 
 
A possible area of enhancing our method is the 
use of sequential quadratic programming SQP to 
improve the solution within the neighborhood of 
the feasible region identified. Even though this 
results in the loss of some control by way of 
eliminating the use of the engineering judgment, 
it has however been used by other investigators. 
Such a hybrid method has been used by 
a set of constrained nonlinear optimisatio
problems from the open literature. Genetic 
algorithm was used to locate feasible domains 
after which SQP was used to converge to the 
exact solution. Comparing with other 
approaches, for short-term recipe optimisation, 
they reported good solution times, i
profit, and satisfactory quality indicators were 
obtained including when uncertainty is 
considered. 
 
On the issue of computational time, refinery wide 
optimisation performed by [22] focused on model 
reduction. Their approach entailed the use of 
novel artificial neural network/integer 
programming estimation of the nonlinear models 
describing the refinery. Solution times were in the 
order of 0.2 seconds. This was done against the 
backdrop of industry practice where large LP 
models which require tedious formulation and 
collection of large amounts of data are used. 
However, it is noted that this low solution time 
comes at a huge cost of utilizing a reduced 
model where the possibility of missing some 
nonlinear features inherent in the system. 
 

4. CONCLUSION 
 
Constraint or problem partitioning is an effective 
method that resolves large-
constrained nonlinear optimisation problems into 
smaller and simpler partitioned problems. A 
variant of this method was used here where 
hybrid Nonlinear Programming
Annealing procedure was applied to solve the 
offline gasoline recipe optimisation problem. The 
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operations. Marginal savings in product blending 
may only pale in comparison to losses elsewhere 
that may be accrued as a result of the additional 

tuned optimisation 
parameters. One way around it is the use of 
larger CPU memory. On the other hand, this may 

–scheduling or 
production unit optimisation as suggested 

. In a nutshell, as shown in Fig. 7, trade-offs 
are involved between solution quality, which in 
this case are characterized by large annealing 
temperatures; and computational time.  

A possible area of enhancing our method is the 
use of sequential quadratic programming SQP to 
improve the solution within the neighborhood of 

ified. Even though this 
results in the loss of some control by way of 
eliminating the use of the engineering judgment, 
it has however been used by other investigators. 
Such a hybrid method has been used by [21] on 
a set of constrained nonlinear optimisation 
problems from the open literature. Genetic 
algorithm was used to locate feasible domains 
after which SQP was used to converge to the 
exact solution. Comparing with other 

term recipe optimisation, 
they reported good solution times, improved 
profit, and satisfactory quality indicators were 
obtained including when uncertainty is 

On the issue of computational time, refinery wide 
focused on model 

reduction. Their approach entailed the use of 
el artificial neural network/integer 

programming estimation of the nonlinear models 
describing the refinery. Solution times were in the 
order of 0.2 seconds. This was done against the 
backdrop of industry practice where large LP 

s formulation and 
collection of large amounts of data are used. 
However, it is noted that this low solution time 
comes at a huge cost of utilizing a reduced 
model where the possibility of missing some 
nonlinear features inherent in the system.  

Constraint or problem partitioning is an effective 
-scale highly 

constrained nonlinear optimisation problems into 
smaller and simpler partitioned problems. A 
variant of this method was used here where 

ming–Simulated 
Annealing procedure was applied to solve the 
offline gasoline recipe optimisation problem. The 
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case study had eighteen independent variables 
where one of the variables (ethanol volume) was 
used a link variable between the two sub-
problems of the partitioned non-convex problem. 
[10] noted that this can in theory be extended to 
larger highly constrained problems with more link 
variables such as refineries where the models 
involve huge number of nonlinear equations and 
many process units. The method exhibited good 
performance with little computational resources. 
This represented significant savings as against a 
derivative-based NLP method used alone. The 
performance was examined using a sensitivity 
analysis of the simulated annealing parameters. 
Convergence times were in minutes and are 
realistic for short term recipe optimisation. With 
computing power becoming less of an issue 
these days, indeed the scope of the problem can 
be extended to handle larger scale refinery 
optimisation. 
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